Skip to main content
Log in

Zonation of metabolism and gene expression in liver

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Conclusion

The zonation of gene expression resulting in the different cellular equipment of liver cells with enzymes, translocators and subcellular structures is regulated mainly at a pretranslational level. In the dynamic zonation of carbohydrate metabolizing enzymes, gradients in oxygen and in the glucagon/insulin ratio decreasing from the periportal to the perivenous area appear to be major effectors. In the stable zonation of ammonia-metabolizing enzymes local paracrine cell-cell interactions via diffusible mediators could play a major role (Fig. 6).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andersen B, Nath A, Jungermann K (1982) Heterogeneous distribution of phosphoenolpyruvate carboxykinase in rat liver parenchyma, isolated and cultured hepatocytes. Eur J Cell Biol 28:47–53

    PubMed  Google Scholar 

  • Antakly TT, Eisen HJ (1984) Immunocytochemical localization of glucocorticoid receptor in target cells. Endocrinology 115:1984–1989

    PubMed  Google Scholar 

  • Bartels H, Vogt B, Jungermann K (1988) Glycogen synthesis via the indirect gluconeogenic pathway in the periportal and via the direct glucose-utilizing pathway in the perivenous zone. Histochemistry 89:253–260

    PubMed  Google Scholar 

  • Bartels H, Linnemann H, Jungermann K (1989) Predominant localization of phosphoenolpyruvate carboxykinase mRNA in liver parenchyma demonstrated by in situ hybridization. FEBS Lett 248:188–194

    PubMed  Google Scholar 

  • Bartels H, Herbort H, Jungermann K (1990) Predominant periportal expression of the phosphoenolpyruvate carboxykinase and tyrosine aminotransferase genes in rat liver. Histochemistry 95:637–644

    Google Scholar 

  • Bartels H, Freimann S, Jungermann K (1993) Predominant periportal expression of the phosphoenolpyruvate carboxykinase gene in liver of fed and fasted mice, hamsters and rats studied by in situ hybridization. Histochemistry 99:303–309

    PubMed  Google Scholar 

  • Bass NM (1989) Organization and zonation of hepatic lipid metabolism. Cell Biol Rev 19:61–86

    Google Scholar 

  • Bouwens L, De Bleser P, Vanderkerken K, Geerts B, Wisse E (1992) Liver cell heterogeneity: functions of non-parenchymal cells. Enzyme 46:155–168

    PubMed  Google Scholar 

  • Bratke J, Kietzmann T, Bartels H, Schmidt E, Jungermann K (1994) Die Modulation der Glucagon-abhängigen Aktivierung des Phosphoenolpyruvat-Carboxykinase-(PCK-)Gens durch Sauerstoff erfolgt im 5-flankierenden Bereich des PCK-Gens. Z Gastroenterol 32:48 (Abstract)

    Google Scholar 

  • Chen L, Davis GJ, Crabb DW, Lumeng L (1994) Intrasplenic transplantation of isolated periportal and perivenous hepatocytes as a long-term system for study of liver specific gene expression. Hepatology 19:989–998

    PubMed  Google Scholar 

  • Chiquoine AD (1953) The distribution of glucose-6-phosphatase in the liver and kidney of the mouse. J Histochem Cytochem 1:429–435

    PubMed  Google Scholar 

  • Christ B, Nath A, Jungermann K (1990) Mechanism of the inhibition by insulin of the glucagon-dependent activation of the phosphoenolpyruvate carboxykinase gene in rat hepatocyte cultures. Biol Chem Hoppe-Seyler 371:395–402

    PubMed  Google Scholar 

  • Corrin B, Aterman K (1968) The pattern of glycogen distribution in the liver. Am J Anat 122:57–72

    PubMed  Google Scholar 

  • Decker K (1990) Biologically active products of stimulated liver macrophages (Kupffer cells). Eur J Biochem 192:245–261

    PubMed  Google Scholar 

  • Eilers F, Bartels H, Jungermann K (1993) Zonal expression of the glucokinase gene in rat liver: dynamics during the daily feeding rhythm and starvation-refeeding cycle demonstrated by in situ hybridization. Histochemistry 99:133–140

    PubMed  Google Scholar 

  • Feldmann G, Scoazec JY, Racine L, Bernuau B D (1992) Functional hepatocellular heterogeneity for the production of plasma proteins. Enzyme 46:139–154

    PubMed  Google Scholar 

  • Fischer W, Ick M, Katz N (1982) Reciprocal distribution of hexokinase and glucokinase in periportal and perivenous rat liver tissue. Hoppe-Seyler's Z Physiol Chem 363:375–380

    PubMed  Google Scholar 

  • Gaasbeek-Janzen JW, Lamers WH, Moorman AF, De Graaf A, Los JA, Charles R (1984) Immunohistochemical localization of carbamoylphosphate synthetase (ammonia) in adult rat liver: evidence for a heterogeneous distribution. J Histochem Cytochem 32:557–564

    PubMed  Google Scholar 

  • Gardemann A, Püschel G, Jungermann K (1992) Nervous control of liver metabolism and hemodynamics. Eur J Biochem 207:399–411

    PubMed  Google Scholar 

  • Gebhardt R, Mecke D (1983) Heterogeneous distribution of glutamine synthetase among rat liver parenchymal cells in situ and in primary culture. EMBO J 2:567–570

    PubMed  Google Scholar 

  • Gebhardt R, Ebert A, Bauer G (1988) Heterogeneous expression of glutamine synthetase mRNA in rat liver parenchyma revealed by in situ hybridization and Northern blot analysis of RNA from periportal and perivenous hepatocytes. FEBS Lett 241:89–93

    PubMed  Google Scholar 

  • Gebhardt R, Gaunitz F, Mecke D (1994) Heterogeneous (positional) expression of hepatic glutamine synthetase: factors, regulation and implication for hepato-carcinogenesis. Adv Enz Regul 34:27–56

    Google Scholar 

  • Goldberg MA, Dunning SB, Bunn HF (1988) Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 242:1412–1415

    PubMed  Google Scholar 

  • Gressner AM (1991) Liver fibrosis: perspectives in pathobiochemical research and clinical outlook. Eur J Clin Chem Clin Biochem 29:293–311

    PubMed  Google Scholar 

  • Groothuis GMM, Meijer DK (1992) Hepatocyte heterogeneity in bile formation and hepatobiliary transport of drugs. Enzyme 46:94–138

    PubMed  Google Scholar 

  • Guder WG, Schmidt U, Funk B, Weiss S, Pürschel S (1976) Liver cell heterogeneity: the distribution of pyruvate kinase and phosphoenolpyruvate carboxykinase in the rat liver lobule of fed and starved rats. Hoppe-Seyler's Z Physiol Chem 357:1793–1800

    PubMed  Google Scholar 

  • Gumucio JJ (1989a) Hepatocyte heterogeneity. The coming of age from the description of a biological curiosity to a partial understanding of its physiological meaning in regulation. Hepatology 9:154–160

    PubMed  Google Scholar 

  • Gumucio JJ ed (1989b) Hepatocyte heterogeneity and liver function. Cell Biol Rev 19:1–161

    Google Scholar 

  • Gumucio JJ, Miller DL (1981) Functional implications of liver cell heterogeneity. Gastroenterology 80:393–403

    PubMed  Google Scholar 

  • Häussinger D, Stehle T (1988) Hepatocyte heterogeneity in response to icosanoids. The perivenous scavenger cell hypothesis. Eur J Biochem 175:395–403

    PubMed  Google Scholar 

  • Häussinger D, Stehle T, Gerok W, Tran Thi TA, Decker K (1987) Hepatocyte heterogeneity in response to extracellular ATP. Eur J Biochem 169:645–650

    PubMed  Google Scholar 

  • Häussinger D, Lamers WH, Moorman AFM (1992) Hepatocyte heterogeneity in the metabolism of amino acids and ammonia. Enzyme 46:72–93

    PubMed  Google Scholar 

  • Hellkamp J, Christ B, Bastian H, Jungermann K (1991) Modulation by oxygen of the glucagon-dependent activation of the phosphoenolpyruvate carboxykinase gene in rat hepatocyte cultures. Eur J Biochem 198:635–639

    PubMed  Google Scholar 

  • Imagawa S, Goldberg MA, Doweiko J, Bunn HF (1991) Regulatory elements of the erythropoietin gene. Blood 77:278–285

    PubMed  Google Scholar 

  • Iwai M, Miyashita T, Shimazu T (1991) Inhibition of glucose production during hepatic nerve stimulation in regenerating rat liver perfused in situ. Possible involvement of gap junctions in action of sympathetic nerves. Eur J Biochem 200:69–74

    PubMed  Google Scholar 

  • Jungermann K ed (1992) Zonal liver cell heterogeneity. Enzyme special volume) 46:5–168

  • Jungermann K, Sasse D (1978) Heterogeneity of liver parenchymal cells. Trends Biochem Sci, 3:198–202

    Google Scholar 

  • Jungermann K, Katz N (1982) Functional hepatocellular heterogeneity. Hepatology 2:385–395

    PubMed  Google Scholar 

  • Jungermann K, Thurman RG (1992) Hepatocyte heterogeneity in the metabolism of carbohydrates. Enzyme 46:33–58

    PubMed  Google Scholar 

  • Katz J, Kuwajima M, Foster DW, McGarry JD (1986) The glucose paradox: new perspectives on hepatic carbohydrate metabolism. Trends Biochem Sci 11:136–140

    Google Scholar 

  • Katz N (1989) Methods for the study of liver cell heterogeneity. Histochem J 21:517–529

    PubMed  Google Scholar 

  • Katz N, Jungermann K (1976) Autoregulatory shift from fructolysis to lactate gluconeogenesis in rat hepatocyte suspensions. The problem of metabolic zonation of liver parenchyma. Hoppe-Seyler's Z Physiol Chem 357:359–375

    PubMed  Google Scholar 

  • Katz N, Jungermann K (1992) Metabolic heterogeneity of the liver. In: Tavaloni N, Berk PD (eds)_Hepatic anion transport and bile secretion: physiology and pathophysiology. Raven Press, New York, pp 55–70

    Google Scholar 

  • Katz N, Teutsch HF, Jungermann K, Sasse D (1977a) Heterogeneous reciprocal localization of fructose-1,6-bisphosphatase and glucokinase in microdissected periportal and perivenous rat liver tissue. FEBS Lett 83:272–276

    PubMed  Google Scholar 

  • Katz N, Teutsch HF, Sasse D, Jungermann K (1977b) Heterogeneous distribution of glucose-6-phosphatase in microdissected periportal and perivenous rat liver tissue. FEBS Lett 76:226–230

    PubMed  Google Scholar 

  • Kietzmann T, Schmidt H, Probst I, Jungermann K (1992) Modulation of the glucagon-dependent activation of the phosphoenolpyruvate carboxykinase gene in rat hepatocyte cultures. Evidence for a heme protein as oxygen sensor. FEBS Lett 311:251–255

    PubMed  Google Scholar 

  • Kietzmann T, Schmidt H, Unthan-Fechner K, Probst I, Jungermann K (1993) A ferro-heme protein senses oxygen levels, which modulate the glucagon-dependent activation of the phosphoenolpyruvate carboxykinase gene in rat hepatocyte cultures. Biochem Biophys Res Commun 195:792–798

    PubMed  Google Scholar 

  • Kirchner G, Harbers M, Bünsch A, Seitz HJ Höppner W (1993) Zonation of glucokinase in rat liver changes during postnatal development. FEBS Lett 328:119–124

    PubMed  Google Scholar 

  • Koury ST, Bondourant MC, Koury MJ, Semenza GL (1991) Localization of cells producing erythropoietin in murine liver by in situ hybridization. Blood 77:2497–2503

    PubMed  Google Scholar 

  • Kuo CF, Paulson KE, Darnell JE (1988) Positional and developmental regulation of glutamine synthetase expression in mouse liver. Mol Cell Biol 8:4966–4971

    PubMed  Google Scholar 

  • Lamas E, Kahn A, Guillouzo A (1987) Detection of mRNAs present at low concentrations in rat liver by in situ hybridization: application to the study of metabolic regulation and azo dye hepatocarcinogenesis. J Histochem Cytochem 35:559–563

    PubMed  Google Scholar 

  • Lawrence GM, Trayer IP, Walker DG (1984) Histochemical and immunohistochemical localization of hexokinase isoenzymes in normal rat liver. Histochem J 16:1099–1111

    PubMed  Google Scholar 

  • Lawrence GM, Jepson MA, Trayer IP, Walker DG (1986) The compartmentation of glycolytic and gluconeogenic enzymes in rat kidney and liver and its significance to renal and hepatic metabolism. Histochem J 18:45–53

    PubMed  Google Scholar 

  • Maly IP, Sasse D (1987) The intra-acinar distribution patterns of alcohol dehydrogenase activity in the liver of juvenile, castrated and testosterone-treated rats. Biol Chem Hoppe-Seyler 368:315–321

    PubMed  Google Scholar 

  • McGrane MM, Yun S, Moorman AFM, Lamers WH, Hendrick G, Arafah B, Wagner TE, Honson RW (1990) Metabolic effects of developmental, tissue-and cell-specific expression of a chimeric phosphoenolpyruvate carboxykinase (GTP)/bovine growth hormone gene in transgenic mice. J Biol Chem 265:22371–22379

    PubMed  Google Scholar 

  • Moorman AFM, De Boer PAJ, Geerts WJC, Van de Zande L, Lamers WH, Charles R (1988) Complementary distribution of carbamoylphosphate synthetase (ammonia) and glutamine synthetase in rat liver acinus is regulated at a pretranslational level. J Histochem Cytochem 36:751–755

    PubMed  Google Scholar 

  • Moorman AFM, De Boer PAJ, Charles R, Lamers WH (1991) Pericentral expression pattern of glucokinase mRNA in rat liver. FEBS Lett 1287:47–52

    Google Scholar 

  • Nakatsukasa H, Silverman JA, Gant TW, Evarts RP, Thorgeirsson SS (1993) Expression of multidrug resistance genes in rat liver during regeneration and after carbon tetrachloride intoxication. Hepatology 18:1202–1207

    PubMed  Google Scholar 

  • Nauck M, Wölfle D, Katz N, Jungermann K (1981) Modulation of the glucagon-dependent induction of phosphoenolpyruvate carboxykinase and tyrosine aminotransferase by arterial and venous oxygen concentrations in hepatocyte cultures. Eur J Biochem 119:657–661

    PubMed  Google Scholar 

  • Neveu MJ, Hulley JR, Babcock KL, Hertzberg EL, Nicholson BJ, Paul DL, Pitot HC (1994) Multiple mechanisms are responsible for altered expression of gap junction genes during oncogenesis in rat liver. J Cell Sci 107:83–95

    PubMed  Google Scholar 

  • Novikoff AB (1959) Cell heterogeneity within the hepatic lobule of the rat (staining reactions). J Histochem Cytochem 7:240–244

    PubMed  Google Scholar 

  • Ogawa H, Pitot HC, Fujioka M (1994) Diurnal variation of the serine dehydratase mRNA level in rat liver. Arch Biochem Biophys 308:285–291

    PubMed  Google Scholar 

  • Probst I, Schwartz P, Jungermann K (1982) Induction in primary culture of “gluconeogenic” and “glycolytic” hepatocytes resembling periportal and perivenous cells. Eur J Biochem 126:271–278

    PubMed  Google Scholar 

  • Pugh CW, Tan CC, Jones RW, Ratcliffe PJ (1991) Functional analysis of an oxygen-regulated transcriptional enhancer lying 3′ to the mouse erythropoietin gene. Proc Natl Acad Sci USA 88:10553–10557

    PubMed  Google Scholar 

  • Püschel GP, Jungermann K (1994) Integration of function in the hepatic acinus: intercellular communication in neural and humoral control of liver metabolism. Prog Liver Dis 12:19–46

    PubMed  Google Scholar 

  • Püschel GP, Oppermann M, Neuschäfer-Rube F, Götze O, Jungermann K (1991) Differential effects of human anaphylatoxin C3a on glucose output and flow in rat liver during orthograde and retrograde perfusion. The periportal scavenger cell hypothesis. Biochem Biophys Res Commun 176:1218–1226

    PubMed  Google Scholar 

  • Quistorff B (1990) Metabolic heterogeneity of liver parenchymal cells. Essays Biochem 25:83–136

    PubMed  Google Scholar 

  • Quistorff B, Katz N, Witters LA (1992) Hepatocyte heterogeneity in the metabolism of fatty acids: discrepancies on zonation of acetyl-CoA carboxylase. Enzyme 46:59–71

    PubMed  Google Scholar 

  • Rappaport AM (1960) Betrachtungen zur Pathologie der Leberstruktur. Klin Wochenschr 38:561–577

    PubMed  Google Scholar 

  • Reid LM, Fiorino AD, Sigal SH, Brill S, Holst PA (1992) Extracellular matrix gradients in the space of Disse: relevance to liver biology. Hepatology 15:1198–1203

    PubMed  Google Scholar 

  • Runge D, Jungermann K (1991) Distribution of cyclic AMP phosphodiesterase in microdissected periportal and perivenous rat liver tissue with different dietary states. Histochemistry 96:87–92

    PubMed  Google Scholar 

  • Salsano F, Maly IP, Sasse D (1990) The circadian rhythm of intraacinar profiles of alcohol dehydrogenase activity in rat liver: a microquantitative study. Histochem J 22:395–400

    PubMed  Google Scholar 

  • Sasse D (1975) Dynamics of liver glycogen. Histochemistry 45:237–254

    PubMed  Google Scholar 

  • Sasse D (1986) Liver structure and innervation. In: Thurman RG, Kauffman FC, Jungermann K (eds) Regulation of hepatic metabolism, intra- and intercellular compartmentation. Plenum press, New York London, pp 3–53

    Google Scholar 

  • Sasse D (1992) Liver architecture. Enzyme 46:8–32

    PubMed  Google Scholar 

  • Sasse D, Germer M (1985) Die metabolische Zonierung des menschlichen Leberparenchyms im Vergleich mit verschiedenen Säugern. Acta Histochem Suppl 31:79–81

    Google Scholar 

  • Sasse D, Katz N, Jungermann K (1975) Functional heterogeneity of rat liver parenchyma and of isolated hepatocytes. FEBS Lett 57:83–88

    PubMed  Google Scholar 

  • Schumacher HH (1957) Histochemical distribution pattern of respiratory enzymes in the liver lobule. Science 125:501–503

    PubMed  Google Scholar 

  • Semenza G, Nejfelt MK, Chi SM, Antonorakis SE (1991) Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene. Proc Natl Acad Sci USA 88:5680–5684

    PubMed  Google Scholar 

  • Seseke F, Gardemann A, Jungermann K (1992) Signal propagation via gap junctions, a key step in the regulation of liver metabolism by the sympathetic hepatic nerves. FEBS Lett 301:265–270

    PubMed  Google Scholar 

  • Smith DD, Campbell JW (1988) Distribution of glutamine synthetase and carbamoylphosphate synthetase I in vertebrate liver. Proc Natl Acad Sci USA 85:160–164

    PubMed  Google Scholar 

  • Thurman RG, Kauffman FC (1986) Sublobular compartmentation of pharmacologic events (SCOPE): measurement of metabolic fluxes in periportal and pericentral regions of the liver lobule with microfluorometric and micropolarographic techniques. Hepatology 5:144–151

    Google Scholar 

  • Thurman RG, Kauffman FC, Baron J (1986) Biotransformation and zonal toxicity. In: Thurman RG, Kauffman FC, Jungermann K (eds) Regulation of hepatic metabolism, intra- and intercellular compartmentation. Plenum Press, New York London, pp 321–382

    Google Scholar 

  • Traber PG (1989) Acinar localization of enzymes involved in biotransformation: analysis of the cytochrome P450 gene superfamily. Cell Bio Rev 19:87–116

    Google Scholar 

  • Traub O, Look J, Dermietzel R, Brümmer F, Hülser D, Willecke K (1989) Comparative characterization of the 21 kD and 26 kD gap junction proteins in murine liver and cultured hepatocytes. J Cell Biol 108:1039–1051

    PubMed  Google Scholar 

  • Trus M, Zawalich H, Gaynor D, Matschinsky F (1980) Hexokinase and glucokinase distribution in the liver lobule. J Histochem Cytochem 28:579–581

    PubMed  Google Scholar 

  • Wagenaar GT, Chamuleau RA, de Haan JG, Maas MA, de Boer PA, Marx F, Moorman AF, Frederiks WM, Lamers WH (1993) Experimental evidence that the physiological position of the liver withing the circulation is not a major determinant of zonation of gene expression. Hepatology 18:1144–1153

    PubMed  Google Scholar 

  • Welsh FA (1972) Changes in distribution of enzymes within the liver lobule during adaptive increases. J Histochem Cytochem 20:107–111

    PubMed  Google Scholar 

  • Wojcik E, Dvorak C, Chianale J, Traber PG, Keren D, Gumucio JJ (1988) Demonstration by in situ hybridization of the zonal modulation of rat liver cytochrome P-450b and P-450e gene expression after phenobarbital. J Clin Invest 82:658–666

    PubMed  Google Scholar 

  • Wölfle D, Jungermann K (1985) Long-term effects of physiological oxygen concentrations on glycolysis and gluconeogenesis in hepatocyte cultures. Eur J Biochem 151:299–303

    PubMed  Google Scholar 

  • Zierz S, Jungermann K (1984) Alteration with the dietary state of the activity and distribution of adenylate cyclase stimulated by glucagon, fluoride and forskolin in microdissected rat liver tissue. Eur J Biochem 145:499–504

    PubMed  Google Scholar 

  • Zierz S, Katz N, Jungermann K (1983) Distribution of pyruvate kinase type L and M2 in microdissected periportal and perivenous rat liver tissue with different dietary states. Hoppe-Seyler's Z Physiol Chem 364:1447–1453

    PubMed  Google Scholar 

  • Zimmerman HJ (1978) Hepatotoxicity. Appleton-Century-Crofts, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jungermann, K. Zonation of metabolism and gene expression in liver. Histochem Cell Biol 103, 81–91 (1995). https://doi.org/10.1007/BF01454004

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01454004

Keywords

Navigation