Skip to main content
Log in

Kramers-Krönig relations in nonlinear optics

  • Tutorial Review
  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We review dispersion relations, which relate the real part of the optical susceptibility (refraction) to the imaginary part (absorption). We derive and discuss these relations as applied to nonlinear optical systems. It is shown that in the nonlinear case, for self-action effects the correct form for such dispersion relations is nondegenerate, i.e. it is necessary to use multiple frequency arguments. Nonlinear dispersion relations have been shown to be very useful as they usually only require integration over a limited frequency range (corresponding to frequencies at which the absorption changes), unlike the conventional linear Kramers-Krönig relation which requires integration over all absorbing frequencies. Furthermore, calculation of refractive index changes using dispersion relations is easier than a direct calculation of the susceptibility, as transition rates (which give absorption coefficients) are, in general, far easier to calculate than the expectation value of the optical polarization. Both resonant (generation of some excitation that is long lived compared with an optical period) and nonresonant ‘instantaneous’ optical nonlinearities are discussed, and it is shown that the nonlinear dispersion relation has a common form and can be understood in terms of the linear Kramers-Krönig relation applied to a new system consisting of the material plus some ‘perturbation’. We present several examples of the form of this external perturbation, which can be viewed as the pump in a pump-probe experiment. We discuss the two-level saturated atom model and bandfilling in semiconductors among others for the resonant case. For the nonresonant case some recent work is included where the electronic nonlinear refractive coefficient,n 2, is determined from the nonlinear absorption processes of two-photon absorption, Raman transitions and the a.c. Stark effect. We also review how the dispersion relations can be extended to give alternative forms for frequency summation which, for example, allows the real and imaginary parts ofχ (2) to be related.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. A. Kramers,Atti Congr. Int. Fis. Como 2 (1927) 545.

    Google Scholar 

  2. R. De L. Krönig,J. Opt. Soc. Am. Rev. Scient. Instrum. 12 (1926) 547.

    Google Scholar 

  3. Idem, Ned. Tijdschr. Natuurk 9 (1942) 402.

    Google Scholar 

  4. H. Bode, ‘Network Analysis and Feedback Amplifier Design’ (Van Nostrand, New York, 1945).

    Google Scholar 

  5. H. M. Nussenzveig, ‘Causality and Dispersion Relations’ (Academic Press, New York, 1972).

    Google Scholar 

  6. W. Schützer andJ. Tiomno,Phys. Rev. 83 (1951) 249.

    Google Scholar 

  7. E. P. Wigner,Am. J. Phys. 23 (1955) 371.

    Google Scholar 

  8. E. C. Titchmarsh, ‘Introduction to the Theory of Fourier Integrals’ (Oxford University Press, Oxford, 1948).

    Google Scholar 

  9. J. S. Toll,Phys. Rev. 104 (1956) 1760.

    Google Scholar 

  10. A. Yariv, ‘Quantum Electronics’, 2nd Edn (Wiley, New York, 1975).

    Google Scholar 

  11. K. A. Shore andD. A. S. Chan,Electron. Lett. 26 (1990) 1206.

    Google Scholar 

  12. D. A. B. Miller, C. T. Seaton, M. E. Prise andS. D. Smith,Phys. Rev. Lett. 47 (1981) 197.

    Google Scholar 

  13. J. F. L. Ridener andJ. R. H. Good,Phys. Rev. B10 (1974) 4980.

    Google Scholar 

  14. M. Sheik-Bahae, D. J. Hagan andE. W. Van Stryland,Phys. Rev. Lett. 65 (1990) 96.

    Google Scholar 

  15. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan andE. W. Van Stryland,IEEE J. Quantum Electron. QE-27 (1991) 1296.

    Google Scholar 

  16. S. M. Kogan,Sov. Phys. JETP 16 (1963) 217.

    Google Scholar 

  17. P. J. Price,Phys. Rev. 130 (1963) 1792.

    Google Scholar 

  18. W. J. Caspers,ibid. A133 (1964) 1249.

    Google Scholar 

  19. P. Meystre andM. Sargent III, in ‘Elements of Quantum Optics’ (Springer-Verlag, Berlin, 1990).

    Google Scholar 

  20. R. W. Boyd andS. Mukamel,Phys. Rev. B29 (1984) 1973.

    Google Scholar 

  21. T. S. Moss,Proc. Phys. Soc. Lond. B67 (1954) 775.

    Google Scholar 

  22. E. Burstein,Phys. Rev. 93 (1954) 632.

    Google Scholar 

  23. D. A. B. Miller, M. H. Mozolowski, A. Miller andS. D. Smith,Opt. Commun. 27 (1978) 133.

    Google Scholar 

  24. H. M. Gibbs, T. N. C. Venkatesan, S. L. McCall, A. Passner, A. C. Gossard andW. Wiegmann,Appl. Phys. Lett. 34 (1979) 511.

    Google Scholar 

  25. H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner andW. Wiegmann,ibid. 35 (1979) 451.

    Google Scholar 

  26. D. A. B. Miller, S. D. Smith andA. M. Johnston,ibid. 35 (1979) 658.

    Google Scholar 

  27. B. S. Wherrett andN. A. Higgins,Proc. R. Soc. A379 (1982) 67.

    Google Scholar 

  28. E. O. Kane,J. Phys. Chem. Solids 1 (1957) 249.

    Google Scholar 

  29. L. Bányai andS. W. Koch,Z. Phys. B: Condens. Matter 63 (1986) 283.

    Google Scholar 

  30. N. Finlayson, W. C. Banyai, C. T. Seaton, G. I. Stegeman, M. O'Neill, T. J. Cullen andC. N. Ironside,J. Opt. Soc. Am. B6 (1989) 675.

    Google Scholar 

  31. J. P. Löwenau, S. Schmitt-Rink andH. Haug,Phys. Rev. Lett. 49 (1982) 1511.

    Google Scholar 

  32. Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffrey, N. Peyghambarian, L. Banyai, A. C. Gossard andW. Wiegmann,ibid. 57 (1986) 2446.

    Google Scholar 

  33. D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, andW. Wiegmann,IEEE J. Quantum Electron. QE-20 (1984) 265.

    Google Scholar 

  34. J. S. Weiner, D. A. B. Miller andD. S. Chemla,Appl. Phys. Lett. 50 (1987) 842.

    Google Scholar 

  35. Y. Wang, N. Herron, W. Mahler andA. Suna,J. Opt. Soc. Am. B6 (1989) 808.

    Google Scholar 

  36. F. V. Karpushko andG. V. Sinitsyn,J. Appl. Spectrosc. USSR 29 (1978) 1323.

    Google Scholar 

  37. D. C. Hutchings, A. D. Lloyd, I. Janossy andB. S. Wherrett,Opt. Commun. 61 (1987) 345.

    Google Scholar 

  38. B. S. Wherrett, D. Hutchings andD. Russell,J. Opt. Soc. Am. B3 (1986) 351.

    Google Scholar 

  39. Landolt-Börstein, ‘Numerical Data and Functional Relationships in Science and Technology’, Vols 17a and 17b ‘Group III’ (Springer-Verlag, Berlin, 1982).

    Google Scholar 

  40. W. Franz,Z. Naturforsh. 13a (1958) 484.

    Google Scholar 

  41. L. V. Keldysh,Sov. Phys. JETP 34 (1958) 788.

    Google Scholar 

  42. K. Tharmalingam,Phys. Rev. 130 (1963) 2204.

    Google Scholar 

  43. M. Abramowitz andI. A. Stegun, ‘Handbook of Mathematical Functions’ (Dover, New York, 1964).

    Google Scholar 

  44. B. O. Seraphin andN. Bottka,Phys. Rev. 139 (1965) 560.

    Google Scholar 

  45. Opt. Quantum Electron. 22 (special issue on charge transport nonlinearities) (1990).

  46. P. Gunter andJ. P. Huignard (editors), ‘Photorefractive Materials and their Applications’, Vol. 61 (Springer-Verlag, Berlin, 1988).

    Google Scholar 

  47. B. S. Ryvkin,Sov. Phys. Semicond. 15 (1981) 796.

    Google Scholar 

  48. D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus Jr, A. C. Gossard andW. Wiegmann,IEEE J. Quantum Electron. QE-21 (1985) 1462.

    Google Scholar 

  49. J. A. Van Vechten andD. E. Aspnes,Phys. Lett. 30A (1969) 346.

    Google Scholar 

  50. M. H. Weiler,Solid St. Commun. 39 (1981) 937.

    Google Scholar 

  51. B. S. Wherrett,J. Opt. Soc. Am. B1 (1984) 67.

    Google Scholar 

  52. E. W. Van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha andT. F. Boggess,Opt. Engng 24 (1985) 613.

    Google Scholar 

  53. E. W. Van Stryland, A. L. Smirl, T. F. Boggess, M. J. Soileau, B. S. Wherrett andF. A. Hopf, in ‘Chemistry and Physics of Picosecond Phenomena III’, Vol. 23, edited by K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser and A. Laubereau (Springer-Verlag, Berlin, 1982) p. 368.

    Google Scholar 

  54. J. M. Worlock, in ‘Laser Handbook’, edited by F. T. Arecchi and E. D. Schulz-DuBois (North-Holland, Amsterdam, 1972) p. 1323.

    Google Scholar 

  55. D. J. Moss, E. Ghahramani, J. E. Sipe andH. M. Van Driel,Phys. Rev. B41 (1990) 1542.

    Google Scholar 

  56. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan andE. W. Van Stryland,IEEE J. Quantum Electron. 26 (1990) 760.

    Google Scholar 

  57. M. Sheik-Bahae, A. A. Said andE. W. Van Stryland,Opt. Lett. 14 (1989) 955.

    Google Scholar 

  58. R. Adair, L. L. Chase andS. A. Payne,Phys. Rev. B39 (1989) 3337.

    Google Scholar 

  59. I. N. Ross, W. T. Toner, C. J. Hooker, J. R. M. Barr andI. Coffey,J. Modern Opt. 37 (1990) 555.

    Google Scholar 

  60. M. J. LaGasse, K. K. Anderson, C. A. Wang, H. A. Haus andJ. G. Fujimoto,Appl. Phys. Lett. 56 (1990) 417.

    Google Scholar 

  61. J. F. L. Ridener andJ. R. H. Good,Phys. Rev. B11 (1975) 2768.

    Google Scholar 

  62. F. Smet andA. Van Groenendael,ibid. A19 (1979) 334.

    Google Scholar 

  63. D. J. Moss, J. E. Sipe andH. M. Van Driel,ibid. B36 (1987) 9708.

    Google Scholar 

  64. P. N. Butcher andD. Cotter, ‘The Elements of Nonlinear Optics’ (Cambridge University Press, Cambridge, 1990).

    Google Scholar 

  65. F. A. Hopf andG. I. Stegeman, ‘Applied Classical Electrodynamics’, Vol. 2: ‘Nonlinear Optics’ (Wiley, New York, 1986).

    Google Scholar 

  66. S. Chapman,Am. J. Phys. 24 (1956) 162.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutchings, D.C., Sheik-Bahae, M., Hagan, D.J. et al. Kramers-Krönig relations in nonlinear optics. Opt Quant Electron 24, 1–30 (1992). https://doi.org/10.1007/BF01234275

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01234275

Keywords

Navigation