Skip to main content
Log in

Structure modeling of the acetylcholine receptor channel and related ligand gated channels

  • Published:
Molecular Engineering

Abstract

In this model-building study a model for the pore of the acetylcholine receptor channel is proposed. The pore is formed by five α-helices of the M2 segment where three rings of hydrophilic side chains point into the channel lumen. This model is in agreement with most experimental data like photolabeling, drug affinity studies, single channel conductivity measurements and cryo electron microscopy known about this channel.

This study predicts a strong coupling of the motion of the ions in the channel to that of the charged and highly hydrophilic amino acid side chains at the channel wall. Due to the negative net-charge in the pore more than a single cation may occupy the pore region. The resulting strong local electric fields make the commonly used constant field approximation obsolete for this type of ion channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Franciolini and A. Petris:Mol. Biol. Evol. 6, 503–513 (1989).

    Google Scholar 

  2. V. B. Cockcroft, D. J. Osguthorpe, E. A. Barnard, and G. G. Lunt:Proteins 8, 129–169 (1990).

    Google Scholar 

  3. V. A. Parsegian:Nature 221, 844–846 (1969).

    Google Scholar 

  4. V. A. Parsegian:Ann. New York Acad. Sci. 264, 161–174 (1975).

    Google Scholar 

  5. R. S. Eisenberg:J. Membrane Biol. 115, 1–12 (1990).

    Google Scholar 

  6. O. S. Andersen and R. E. Koeppe II:Physiol. Rev. 72, S89-S158 (1992).

    Google Scholar 

  7. B. Hille:Ionic Channels of Exitable Membranes, Sinauer Associates Inc., Sunderland, Massachusetts (1992).

    Google Scholar 

  8. E. A. Barnard:Trends Biochem. Sci. 17, 368–374 (1992).

    Google Scholar 

  9. W. A. Catterall:Science 242, 50–60 (1988).

    Google Scholar 

  10. A. V. Maricq, A. S. Peterson, A. J. Brake, R. M. Myers, and D. Julius:Science 254, 432 (1991).

    Google Scholar 

  11. V. B. Cockcroft, D. J. Osguthorpe, E. A. Barnard, A. E. Friday, and G. G. Lunt:Mol. Neurobiol. 4, 129–169 (1990).

    Google Scholar 

  12. J. Deisenhofer, O. Epp, K. Miki, R. Huber, and H. Michel:J. Mol. Biol. 180, 385–398 (1984).

    Google Scholar 

  13. H. Michel and J. Deisenhofer:Chem. Scripta 27B, 173–180 (1987).

    Google Scholar 

  14. C. Toyoshima and N. Unwin:Nature 336, 247–250 (1988).

    Google Scholar 

  15. N. Unwin:Neuron 3, 665–676 (1989).

    Google Scholar 

  16. A. K. Mitra, M. P. McCarthy and R. M. Stroud:J. Cell Biol. 109, 755–774 (1990).

    Google Scholar 

  17. N. Unwin:J. Mol. Biol. 229, 1101–1124 (1993).

    Google Scholar 

  18. H. Betz:Biochem. 29, 3591–3599 (1990).

    Google Scholar 

  19. J. Finer-Moore and R. M. Stroud:Proc. Natl. Acad. Sci. USA 81, 155–159 (1984).

    Google Scholar 

  20. G. Spach, H. Duclohier, G. Molle and J.-M. Valleton:Biochemie 71, 11–21 (1989).

    Google Scholar 

  21. J.-P. Changeux, J.-L. Galzi, A. Devillers-Thiry, and D. Bertrand:Quart. Rev. Biophys. 24, 395–432 (1992)

    Google Scholar 

  22. C. Miller:Neuron 2, 1195–1205 (1989).

    Google Scholar 

  23. J.-L. Galzi, A. Devillers-Thiry, N. Hussy, S. Bertrand, J.-P. Changeux, and D. Bertrand:Nature 359, 500–505 (1992).

    Google Scholar 

  24. A. Karlin:The Harvey Lecture Series 85, 71–107 (1991).

    Google Scholar 

  25. T. Konno, C. Busch, E. von Kitzing, K. Imoto, F. Wang, J. Nakai, M. Mishina, S. Numa, and B. Sakmann:Proc. R. Soc. Lond. B 244, 69–79 (1991).

    Google Scholar 

  26. M. Noda, H. Takahashi, T. Tanabe, M. Toyosato, Y. Furutani, T. Hirose, M. Asai, S. Jinahama, T. Miyata, and S. Numa:Nature 299, 793–797 (1982).

    Google Scholar 

  27. T. Claudio, M. Ballivet, J. Patrick, and S. Heineman:Proc. Natl. Acad. Sci. USA 80, 1111–1115 (1983).

    Google Scholar 

  28. A. Devillers-Thiery, J. Giraudat, M. Bentaboulet, and J.-P. Changeux:Proc. Natl. Acad. Sci. USA 80, 2067–2071 (1983).

    Google Scholar 

  29. H. R. Guy and F. Hucho:Trends Neurosci. 10, 318–321 (1987).

    Google Scholar 

  30. K. Imoto, C. Methfessel, B. Sackmann, M. Mishina, Y. Mori, T. Konno, K. Fukuda, M. Kurasaki, H. Bujo, Y. Fujita, and S. Numa:Nature 324, 670–674 (1986).

    Google Scholar 

  31. R.J. Leonard, C. G. Labarca, P. Chanet, N. Davidson, and H. A. Lester:Science 242, 1578–1581 (1988).

    Google Scholar 

  32. P. Charnet, C. Labarca, R. J. Leonard, N. Vogelaar, L. Czyzyk, A. Gouin, N. Davidson, and H. Lester:Neuron 2, 87–95 (1990).

    Google Scholar 

  33. V. Witzemann, E. Stein, B. Barg, T. Konno, M. Koenen, W. Kues, M. Criado, M. Hofmann, and E. Sakmann:Eur. J. Biochem. 194, 437–448 (1990).

    Google Scholar 

  34. K. Imoto, C. Busch, B. Sackmann, M. Mishina, T. Konno, J. Nakai, H. Bujo, Y. Mori, K. Fukuda, and S. Numa:Nature 335, 645–648 (1988).

    Google Scholar 

  35. F. Wang and K. Imoto:Proc. R. Soc. Lond. B 250, 11–17 (1992).

    Google Scholar 

  36. A. Villarroel, S. Herlitze, M. Koenen, and B. Sakmann:Proc. R. Soc. Lond. B 243, 69–74 (1991).

    Google Scholar 

  37. K. Imoto, T. Konno, J. Nakai, F. Wang, M. Mishina, and S. Numa:FEBS Letters 289, 193–200 (1991).

    Google Scholar 

  38. A. Villarroel and B. Sakmann:Biophys. J. 62, 196–208 (1992).

    Google Scholar 

  39. H. A. Lester:Ann. Rev. Biophys. Biomol. Struct. 21, 267–292 (1992).

    Google Scholar 

  40. A. Devillers-Thiery, J.-L. Galzi, J. L. Eisele, S. Bertrand, D. Bertrand, and J.-P. Changeux:J. Membrane Biol. 136, 97–112 (1993).

    Google Scholar 

  41. F. Hucho and R. Hilgenfeld:FEBS Letters 257, 17–23 (1989).

    Google Scholar 

  42. S. Furois-Corbin and A. Pullman:Biochim. Biophys. Acta 984, 339–350 (1989).

    Google Scholar 

  43. R. M. Stroud, M. McCarthy, and M. Shuster:Biochem. 29, 11009–11023 (1990).

    Google Scholar 

  44. G. Eisenman, A. Villarroel, M. Montal, and O. Alvarez: ‘Energy profiles for ion permeation in pentameric protein channels: from viruses to receptor channels’, in J. M. Ritchie, P. J. Magistretti and L. Bolis (eds.),Progress in Cell Research, Springer Verlag, New York, pp. 195–211 (1990).

    Google Scholar 

  45. A. Pullman:Chem. Rev. 91, 793–812 (1991).

    Google Scholar 

  46. E. A. Barnard, M. G. Darlison, and P. Seeburg:Trends Neurosci. 10, 502–509 (1987).

    Google Scholar 

  47. G. Fasman and W. A. Gilbert:Trends Biochem. Sci. 15, 89–95 (1990).

    Google Scholar 

  48. P. E. Stein, A. Boodhoo, G. J. Tyrrell, J. L. Brunton, and R. J. Read:Nature 355, 748–750 (1992).

    Google Scholar 

  49. J. D. Lear, Z. R. Wasserman, and W. F. DeGrado:Science 240, 1177–1181 (1988).

    Google Scholar 

  50. W. F. DeGrado and J. D. Lear:Biopol. 29, 205–213 (1990).

    Google Scholar 

  51. K. S. Akerfeldt, J. D. Lear, Z. R. Wasserman, L. A. Chung, and W. F. DeGrado:Acc. Chem. Res. 26, 191–197 (1993).

    Google Scholar 

  52. S. Oiki, W. Danho, V. Madison, and M. Montal:Proc. Natl. Acad. Sci. USA 85, 8703–8707 (1988).

    Google Scholar 

  53. S. Oiki, V. Madison, and M. Montal:Proteins 8, 226–236 (1990).

    Google Scholar 

  54. A. Grove, J. M. Tomich, T. Iwamoto, and M. Montal:Prot. Sci. 2, 1918–1930 (1993).

    Google Scholar 

  55. M. O. Montal, T. Iwamoto, J. M. Tomich, and M. Montal:FEBS Letters 320, 261–266 (1993).

    Google Scholar 

  56. M. Oblattmontal, L. K. Buhler, T. Iwamoto, J. M. Tomich, and M. Montal:Journal of Biological Chemistry 268, 14601–14607 (1993).

    Google Scholar 

  57. G. L. Reddy, T. Iwamoto, J. M. Tomich, and M. Montal:J. Biol. Chem. 268, 14608–14615 (1993).

    Google Scholar 

  58. S. J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio, G. Alagona, S. J. Profeta, and P. Weiner:J. Am. Chem. Soc. 106, 765–784 (1984).

    Google Scholar 

  59. K. Cooper, E. Jakobsson, and P. Wolynes:Prog. Biophys. molec. Biol. 46, 51–96 (1985).

    Google Scholar 

  60. D. G. Levitt:Biophys. J. 59, 271–277 (1991).

    Google Scholar 

  61. D. G. Levitt:Biophys. J. 59, 278–288 (1991).

    Google Scholar 

  62. B. Roux and M. Karplus:Biophys. J. 59, 961–981 (1991).

    Google Scholar 

  63. V. Barcilon, D. P. Chen, and R. S. Eisenberg:SIAM J. Appl. Math. 52, 1405–1425 (1992).

    Google Scholar 

  64. V. Barcilon:SIAM J. Appl. Math. 52, 1391–1404 (1992).

    Google Scholar 

  65. E. Jakobsson:Int. J. Quant. Chem. 25–36 (1993).

  66. S. Bek and E. Jakobsson:Biophys. J. 66, 1028–1038 (1994).

    Google Scholar 

  67. D.J. Adams, T. M. Dwyer, and B. Hille:J. Gen. Physiol. 75, 493–510 (1980).

    Google Scholar 

  68. H. Eyring, R. Lumry, and J. W. Woodbury:Rec. Chem. Prog. 10, 100–114 (1949).

    Google Scholar 

  69. S. Furois-Corbin and A. Pullman:FEBS Letters 252, 63–68 (1989).

    Google Scholar 

  70. S. Furois-Corbin and A. Pullman:Biophys. Chem. 39, 153–159 (1991).

    Google Scholar 

  71. G. Eisenman and O. Alvarez:J. Membrane Biol. 119, 109–132 (1991).

    Google Scholar 

  72. C. Gruber, J. L. Lebowitz, and P. A. Martin:J. Chem. Phys. 75, 944–954 (1981).

    Google Scholar 

  73. S.-W. Chiu, J. A. Novotny, and E. Jakobsson:Biophys. J. 64, 98–109 (1993).

    Google Scholar 

  74. D. P. Chen, V. Barcilon, and R. S. Eisenberg:Biophys. J. 61, 1372–1393 (1992).

    Google Scholar 

  75. F. F. Offner:Biophys. J. 62, 281–283 (1992).

    Google Scholar 

  76. E. Jakobsson:Biophys. J. 64, A201 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Kitzing, E. Structure modeling of the acetylcholine receptor channel and related ligand gated channels. Mol Eng 5, 25–43 (1995). https://doi.org/10.1007/BF00999576

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00999576

Key words

Navigation