Skip to main content
Log in

Superconducting and normal state properties of Li1+x Ti2−x O4 spinel compounds. I. Preparation, crystallography, superconducting properties, electrical resistivity, dielectric behavior, and magnetic susceptibility

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

LiTi 2 O 4 is one end member of the homogeneity range of the spinel phase Li 1+x Ti 2−x O 4 (0≤x≤1/3) and is superconducting at temperatures up to 13.7 K. Various measurements were carried out in order to characterize the superconducting and normal state properties of LiTi 2 O 4 and of other compositions within the homogeneity range of the spinel phase. These measurements establish LiTi 2 O 4 as ad-band superconductor and show thatT c decreases to <1.5 K forx≳0.1. This disappearance of superconductivity with increasingx was found to be correlated with anomalous changes in the lattice parameter with composition, and, from electrical resistivity measurements, is tentatively attributed to the occurrence of a composition-induced metal-semiconductor transition atx≈0.1. The metallic character of LiTi 2 O 4 and the composition dependence of the observed electrical properties are shown to follow from crystallographic considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Schooley, W. R. Hosler, and M. L. Cohen,Phys. Rev. Lett. 12, 474 (1964).

    Google Scholar 

  2. J. K. Hulm, C. K. Jones, R. Mazelsky, R. C. Miller, R. A. Hein, and J. W. Gibson, inLow Temp. Phys.—LT9 (Plenum, New York, 1965), Part A, p. 600.

    Google Scholar 

  3. N. J. Doyle, J. K. Hulm, C. K. Jones, R. C. Miller, and A. Taylor,Phys. Lett. 26A, 604 (1968).

    Google Scholar 

  4. M. D. Banus,Mat. Res. Bull. 3, 723 (1968).

    Google Scholar 

  5. M. D. Banus and T. B. Reed, inThe Chemistry of Extended Defects in Non-Metallic Solids, L. Eyring and M. O'Keeffe, eds. (North-Holland, Amsterdam, 1970), p. 488.

    Google Scholar 

  6. J. K. Hulm, C. K. Jones, R. A. Hein, and J. W. Gibson,J. Low Temp. Phys. 7, 291 (1972).

    Google Scholar 

  7. H. R. Khan, Ch. J. Raub, W. E. Gardner, W. A. Fertig, D. C. Johnston, and M. B. Maple,Mat. Res. Bull. 9, 1129 (1974).

    Google Scholar 

  8. B. T. Matthias,Physica 69, 54(1973).

    Google Scholar 

  9. B. T. Matthias,Int. J. Quantum Chem., Symp. No. 8, p. 499 (1974).

  10. D. C. Johnston, H. Prakash, W. H. Zachariasen, and R. Viswanathan,Mat. Res. Bull. 8, 777 (1973).

    Google Scholar 

  11. A. Deschanvres, B. Raveau, and Z. Sekkal,Mat. Res. Bull. 6, 699 (1971).

    Google Scholar 

  12. D. B. Rogers, J. L. Gillson, and T. E. Gier,Solid State Comm. 5, 263 (1967).

    Google Scholar 

  13. D. C. Johnston, unpublished results.

  14. H. Kessler and M. J. Sienko,J. Chem. Phys. 55, 5414 (1971).

    Google Scholar 

  15. D. C. Johnston, Ph.D. Thesis, University of California, San Diego (1975), unpublished;Diss. Abs. Int. 35(11) (1975).

    Google Scholar 

  16. International Tables for X-ray Crystallography, Vol. III (Kynoch Press, Birmingham, 1965), p. 202.

  17. L. J. van der Pauw,Philips Res. Rep. 13, 1 (1958).

    Google Scholar 

  18. D. K. Wohlleben, Ph. D. Thesis, University of California, San Diego (1968), unpublished.

    Google Scholar 

  19. D. Wohlleben and M. B. Maple,Rev. Sci. Inst. 42, 1573 (1971).

    Google Scholar 

  20. W. G. Wyckoff,Crystal Structures, 2nd ed., (Interscience, New York, 1965), Vol. 3, p. 76.

    Google Scholar 

  21. V. Sadagopan, E. Pollard, and H. C. Gatos,Solid State Comm. 3, 97 (1965).

    Google Scholar 

  22. G. H. Jonker, inInternational Symposium on the Reactivity of Solids, 3rd, Madrid, 1957 (1958), Vol. 1, p. 413.

  23. F. Bertaut and A. Durif,Compt. Rend. 236, 212 (1953).

    Google Scholar 

  24. G. Blasse,Philips Res. Rep. Suppl. (1964).

  25. A. Lecerf,Ann. Chim. (Paris)7, 513 (1962).

    Google Scholar 

  26. R. K. Datta and R. Roy,J. Am. Ceram. Soc. 50, 578 (1967).

    Google Scholar 

  27. H. Okazaki,Japan. J. Appl. Phys. 5, 559 (1966).

    Google Scholar 

  28. P. Poix,Ann. Chim. 10, 49 (1965).

    Google Scholar 

  29. R. W. McCallum, D. C. Johnston, C. A. Luengo, and M. B. Maple,J. Low Temp. Phys. 25, 177 (1976).

    Google Scholar 

  30. J. K. Hulm, C. K. Jones, D. W. Deis, H. A. Fairbank, and P. A. Lawless,Phys. Rev. 169, 388 (1968), and references therein.

    Google Scholar 

  31. S. Geller and G. W. Hull, Jr.,Phys. Rev. Lett. 13, 127 (1964).

    Google Scholar 

  32. C. Kittel,Introduction to Solid State Physics, 4th ed. (Wiley, New York, 1971), p. 373.

    Google Scholar 

  33. N. F. Mott,Contemp. Phys. 14, 401 (1973), and references therein.

    Google Scholar 

  34. P. W. Selwood,Magnetochemistry, 2nd ed. (Interscience, New York, 1956), p. 78.

    Google Scholar 

  35. H. P. R. Frederikse and G. A. Candela,Phys. Rev. 147, 583 (1966).

    Google Scholar 

  36. F. E. Senftle and A. N. Thorpe,Phys. Rev. 175, 1144 (1968).

    Google Scholar 

  37. R. M. White,Quantum Theory of Magnetism (McGraw-Hill, New York, 1970), p. 86.

    Google Scholar 

  38. M. B. Robin and P. Day,Adv. Inorg. Chem. Radiochem. 10, 247 (1967).

    Google Scholar 

  39. C. J. Ballhausen,Introduction to Ligand Field Theory (McGraw-Hill, New York, 1962).

    Google Scholar 

  40. P. H. Keesom and G. Seidel,Phys. Rev. 113, 33 (1959).

    Google Scholar 

  41. D. G. Wickham and J. B. Goodenough,Phys. Rev. 115, 1156 (1959).

    Google Scholar 

  42. B. L. Dubey and A. R. West,Nature (Phys. Sci.) 235, 155 (1972).

    Google Scholar 

  43. B. L. Dubey and A. R. West,J. Inorg. Nucl. Chem. 35, 3713 (1973).

    Google Scholar 

  44. E. Kordes,Fortschr. Mineralog. 18, 27 (1934).

    Google Scholar 

  45. E. Kordes,Z. Krist., Mineralog. Petrogr. Abt. A92, 139 (1935).

    Google Scholar 

  46. G. Lang,Z. Anorg. Allgem. Chem. 276, 77 (1954).

    Google Scholar 

  47. J. F. Dorrian and R. E. Newnham,Mat. Res. Bull. 4, 179 (1969).

    Google Scholar 

  48. F. F. Barblan,Schweiz. Min. Pett. Mitt. 23, 295 (1943).

    Google Scholar 

  49. F. Barblan, E. Brandenberger, and P. Niggli,Helv. Chim. Acta 27, 88 (1944).

    Google Scholar 

  50. A. Lecerf,Compt. Rend. 254, 2003 (1962).

    Google Scholar 

  51. B. Reuter and R. Weber,Naturwiss. 53, 251 (1966).

    Google Scholar 

  52. A. Jostsons and P. McDougall, inInternational Conference on Titanium, London, 1968, p. 745 and references therein.

  53. E. Hilti,Naturwiss. 55, 130 (1968).

    Google Scholar 

  54. D. Watanabe, J. R. Castles, A. Jostsons, and A. S. Malin,Acta Cryst. 23, 307 (1967).

    Google Scholar 

  55. K. H. Kim and F. A. Hummel,J. Am. Ceram. Soc. 43, 611 (1960).

    Google Scholar 

  56. M. Lundberg and S. Andersson,Acta Chem. Scand. 18, 817 (1964).

    Google Scholar 

  57. A. M. Byström,Acta Chem. Scand. 3, 163 (1949).

    Google Scholar 

  58. R. S. Roth, H. S. Parker, and W. S. Brower,Mat. Res. Bull. 8, 327 (1973).

    Google Scholar 

  59. F. A. Hummel and Tseng-Ying Tien,J. Am. Ceram. Soc. 42, 206 (1959).

    Google Scholar 

  60. A. Taylor and N. J. Doyle, inThe Chemistry of Extended Defects in Non-Metallic Solids, L. Eyring and M. O'Keeffe, eds. (North-Holland, Amsterdam, 1970), p. 523.

    Google Scholar 

  61. E. Hilti and F. Laves,Naturwiss. 55, 131 (1968).

    Google Scholar 

  62. M. Lenglet,Rev. Chim. Min. 2, 217 (1965).

    Google Scholar 

  63. M. P. Mathur, M. Ashkin, J. K. Hulm, C. K. Jones, M. M. Conway, N. E. Phillips, H. E. Simon, and B. B. Triplett,Low Temperature Physics—LT 13 (Plenum, New York, 1974), Vol. 2, p. 601.

    Google Scholar 

  64. G. S. Pawley, W. Cochran, R. A. Cowley, and G. Dolling,Phys. Rev. Lett. 17, 753 (1966).

    Google Scholar 

  65. H. P. R. Frederikse, W. R. Thurber, and W. R. Hosler,Phys. Rev. 134, A442 (1964).

  66. E. Ambler, J. H. Colwell, W. R. Hosler, and J. F. Schooley,Phys. Rev. 148, 280 (1966).

    Google Scholar 

  67. T. Mitsui and W. B. Westphal,Phys. Rev. 124, 1354 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research sponsored by the Air Force Office of Scientific Research, Air Force Systems Command, USAF, under AFOSR Contract Number AFOSR/F-44620-C-0017.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnston, D.C. Superconducting and normal state properties of Li1+x Ti2−x O4 spinel compounds. I. Preparation, crystallography, superconducting properties, electrical resistivity, dielectric behavior, and magnetic susceptibility. J Low Temp Phys 25, 145–175 (1976). https://doi.org/10.1007/BF00654827

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00654827

Keywords

Navigation