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Summary.  Each element in a finite population ~ is assigned a "bonus 
value", i.e. a real number. Elements are selected from 7r by simple random 
sampling with replacement and with equal draw probabilities. Each time 
we receive a "new" element, i.e. an element which has not been previously 
selected, we receive the corresponding bonus. Let W, denote the bonus sum 
after n selections. It is well known that W, is approximately normally 
distributed under mild conditions. We give a remainder term estimate of 
the Berry-Esseen type for this normal distribution approximation.  

1. Introduction, Formulation of  Main Results and Outline of  Proofs  

Consider a finite population ~r=(1,2, . . . ,N) ,  for which there is a "bonus 
value", i.e. a real number, associated with each element. Let the bonus values 
be a = (al, a2, .. . ,  aN). In the sequel we will use the following notation. 

m N a~, (1.1) 
S = I  

1 N 
a 2 -  ~ ( a s -m)  2, (1.2) 

N--I s=l 

1 N 
N - - 1  ~ 1  ]a~- m[3' (1.3) 

Elements are selected from ~z by simple random sampling with replacement 
and with equal draw probabilities. Each time we get a "new" element, i.e. an 
element which has not been previously selected, we receive the corresponding 
bonus. Let 

W,--the bonus sum after n selections. (1.4) 

It is well known that W n under mild conditions is approximately normally 
distributed, see e.g. Rosbn (1969). Our main aim in this paper  is to establish 
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the following remainder term estimate for this normal distribution approxima- 
tion. 

Theorem 1. With assumptions and notation as above and with 

we have 

sup P(W <=x)--q~ (X 
- o o  < x <  oo 

n 

p =~- (1.5) 

DW, = V ~ - P ( 1  _e-p)  

13.4 m 2 

where C~ is the universal constant appearing in Theorem 2 below. 

Next we present some basic steps and ingredients in the proof of Theo- 
rem 1. Let 

Z , =  the number of distinct elements from rc obtained in n selections, (1.7) 

and let further J1, J2  . . . .  be the sequence of lables for the successive new 
elements obtained during the drawing procedure. Set 

k 

Sk= ~ asj. (1.8) 

Then we have the following relation. Here and in the sequel 5r denotes the 
distribution of the random variable X. 

~a (W,)--- ~ (Sz.). (1.9) 

The following proposition is an obvious consequence of the assumption of 
equal draw probabilities. 

Proposition 1. 
~(Sz.  I Z, = k) = 2.%~ (Sk). (1.10) 

Note that the distribution of S k is that of the sample sum in a size k sample 
drawn without replacement from re. We shall derive (1.6) by an appropriate 
application of (1.9), (1.10), the law of total probability and the following two 
estimates. 

Theorem 2 (HSglund (1978)). There is a universal constant C 1 such that 

( x - E S k  ~ 1 . (1.11) 
sup P ( S k < x ) - ~  \ DSk , l < C l ( 7 ) 3 ~ k ( l _ k  ) 

Theorem 3 (Englund (198t)). 

0 '087-<sup P ( Z , < x ) - r  ( x - E Z , ]  < 10.4 (1.12) 
(3vDZ.)= ~ ~-~-~-~ ]I=DZ." 
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The course of the paper is as follows. In the next section we present some 
auxiliary results, and in Sect. 3 we complete the proof of Theorem 1. 

To the best of our knowledge no numerical value for C 1 in Theorem 2 has 
been established. The method of H6glund seems to yield a very large value, 
hut there is reason to believe that C a is of moderate size, i.e. about the same 
value as the constant in the traditional Berry-Esseen theorem for sums of 
independent random variables (where the current world record seems to be 
0.7975, cf. van Beek (1972)). 

We want to point out Theorem 4.10 in Lanke.(1975), where by similar 
methods a remainder term estimate for the so-called Basu estimator was 
derived. In our notation the Basu estimator is W,/Z,. 

We conclude this section with some remarks on the "strength" of the result 
in Theorem 1. 

1. Note that if there are constants K 1 and K 2 such that 

t~ 
0 < K I _ < ~ = < K 2 <  o% (1.13) 

then the remainder term in (1.6) can be written in the form 

( ; ) 3 1  (1.14) c(K. K2) 

where C(K1, K2) is a quantity only depending on K 1 and K 2. This is a 
remainder term similar to that of the classical Berry-Esseen theorem (cf. Feller 
(1971) p. 542). 

2. If m=0,  then the last term in (1.6) vanishes and the bound in (1.6) reduces 
to 

liNe_P(1 _ e_p). (1.15) 

Hence, if m = 0  and n/N<=K2<~ the bound in (1.15) is of the type 

C(K2)(7/a)3/]/n, where C(Kz) is a quantity only depending on K z. Note that 
this incorporates the case n ~ N. 

3. We shall show below that the first term to the right in (1.6) is "necessary" 
by considering the following situation. Let the bonuses be a~=l,  i 
= l, 2 . . . . .  N/2, and a i= - 1 ,  i=  N/2 + 1,..., N (we assume that N is even for 
simplicity). Then we have m=0,  a ~  1 and ),~ 1 and (1.6) reduces to 

8 + 1.76 C 1 (l.16) 
]/Ne-P(1 - e - p ) '  

By Ceby~ev's inequality we have (note that EW, =0, cf. Lemma 2.2) 

P(-- ]/3 D Wn < W~ < ]/3 D I/V~)>= 2. (l.17) 
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Since the bonuses are integer-valued, W, is also integer-valued. The interval 

(-1/3DW,, ]/3DW,) contains at most [2 I /3DW,+  1] of the point masses in the 
distribution of W n. Hence (1.17) yields that the largest point mass p(n, N) 
satisfies 2_ 

p(n, g ) >  3 (1.18) 
= 2 ] ~ D W , +  1" 

From the subsequent Lemmas 2.2, 2.3 and 2.4 it can be deduced that 

D 2 W n = 0 .2 Ne-V(1 - e -p) (1 + r(n, N)), (1.19) 

where ]r(n, N)[ <0.1. Hence, since a ~  1, we have 

_2 
3 . (1.20) 

p(n, N ) > 2 I / ~ ] / N e _ , ( 1  -e -P)+ 1 

Furthermore since ~b(x) is continuous we have 

P(W,<=x) ( x - E W , ]  >=�89 N). (1.21) 
supx - q~\ DW, ] 

By combining (1.21) with (1.20) we see that the first term to the right in (1.6) is 
indeed "required". 

4. An interesting particular case of coupon collection is that of classical 
occupancy, i.e. when a i=  1, i=  1, 2, ..., N. By letting the bonus values be a i = 1 
+_e where e ~ 0 ,  it can fairly easily be shown that we do not "lose" the 
particular case of classical occupancy, i.e. Theorem 3 is in a sense "essentially" 
(apart from the numerical value of the constant) a particular case of Theo- 
rem 1. 

5. As stated in 2 above, the term 1.1 (m/a)Zp has a reducing effect on the bound 
in (1.6) when m=0,  but it can also have a considerable reducing effect when 

m4=0. So e.g. if m = a =  1 and p_-__ 1/l/~ the present bound (1.6) is of the order of 

magnitude C/l/n, while omission of the term above would yield a bound of the 
order C/n 1/4. 

2. Some Auxiliary Results 

By well known results for sampling without replacement from a finite popu- 
lation we have the following result. 

Lemma 2.1. 
ES k = kin, (2.1) 

t 
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From (1.9), (1.10), (2.1), (2.2) and well-known formulas for the moments of 
sums with randomly many terms the following formulas are readily derived. 

Lemma 2.2. 
EW.=mEZ~ (2.3) 

DZ w"=a2 N EZ" ( 1 - ~ " )  +mz D2 Z " - a 2  D2 N (2.4) 

In proving Theorem 1 we can without loss of generality assume that 

Ne-P(1 - e7 p) > 32 (2.5) 

which can be seen by the following argument. By Jensen's inequality we have 
for N > 2 (the case N = 1 is degenerate) 

> - -  (2.6) 
\ a ]  =[/  U =] /2"  

Hence Theorem 1 is trivial, in the sense that the right hand side of (1.6) 
exceeds 1, if (2.5) is not fulfilled. We will in the sequel use (2.5) without explicitly 
mentioning it each time. Next we state two results from Englund (1981). Note 
that (2.5) implies that N > 128. 

Lemma 2.3. Define r l (n, N) by the relation 

I f  N >  100, we have 

E Z , = N ( 1  - e -P)+r l (n ,  N). 

O<rl(n, N) <0.511 pe -p. 

Lemma 2.4. Define r 2 (n, N) by the relation 

D 2 Z ,  = Ne-P(1 - e-P(1 + p))(1 + r 2 (n, N)). 

I f  N > 100, we have 

(2.7) 

(2.8) 

(2.9) 

p 1 
Ne_P( l_e_p)<0.39 .  [] (2.11) eV-1  

Lemma 2.5. Let X, Y, Z and Z' be random variables such that Z is independent 
of X, Z' is independent of Y and 2~~176 Then we have, for any real 
number a 

s u p ] P ( a X + Z < x ) - P ( a Y + Z ' < x ) ] < s u p ] P ( X < x ) - P ( Y < x ) ] .  (2.12) 
x x 

6.13 pe -v 
Ir2(n, N)I <=�89 N e_P( 1 _e_V)y G 12.3 

Remark. By (2.10) and the elementary inequality 1 - e - P ( l + p ) > � 8 9  p)2 
p > 0, we obtain (using also (2.5) and p < e p -  1, p > O) 

6.13 pe -p 
Irz(n, N)I <Ne_V(  1 _e_p( 1 +p)).  (2.10) 
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Proof The case a = 0 is trivial. For a > 0 we have 

] P ( a X + Z < x ) - P ( a Y + Z ' < = x ) I =  -oo ~ ( P ( a X + z < x ) - P ( a Y + z < = x ) ) d F z ( z )  

which readily yields (2.12). The case a < 0  can be treated quite similarily. 

Next we introduce some additional notation. Let 

(2.13) 

[] 

Y(n,  N ) =  {k: [k -EZ , [  =< (Ne-P(1 - -  e - P ) )  3/4, 1 <_k<_N} (2.14) 

q(n, N) = [ EZ,], (2.15) 

where [-.] denotes integer part. For notational convenience we supress N and 
write q(n) instead of q(n, N). 

Lemma 2.6. I f  (2.5) holds, then 

q(n)>0.96 N ( 1 - e  -e) and N - q ( n ) > 0 . 9 9  Ne  -p. (2.16) 

Proof 
q (n) = N (1 - e-  P) + (EZ, - N (1 - e-  P)) + (q (n) - EZ,). (2.17) 

By using (2.7), (2.8), (2.15) and (2.5) we get 

r 1 (n, N) E Z , - q  (n) > 1 1 1 q(n) - 1 - t  > 1 -  _>0.96.  (2.18) 
N ( l " e  -p) N ( 1 - e  -p) N ( 1 - e - P )  = N ( 1 - e - P )  = 3 2 -  

In the same manner we obtain 

N - q ( n )  1 r l (n 'N)  0.511pe-P-> 0.511 
- ~ E Z " - q ( n ) > l  1 -  >0.99. (2.19) 

Ne-P  Ne-V  Ne  -v - Ne  -p - 3 2 e -  

where we also used the inequality pe-P<=l/e, p>O. [] 

Lemma 2.7. I f  (2.5) holds and if k e Y ( n ,  N), we have 

k ~> 0 .5 7 (1 -e -P )  and 1 - k ~ > 0 . 5 7 e  -p. (2.20) 
N -  N -  

Proof We easily get from (2.14) that for k e f ( n ,  N) we have 

k > l _ e _ p 4  r 1 (Ne-P(1-e-P))3/4>=(1-e-P)(1  
N -  N N 

> ( 1 -  e-P) ( 1 - 4 ~ 3 2 )  >0.57 (1 - e-P). 

e-p  

~/Ne-P(1 - e-p) ) 

(2.21) 
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Similarily we get 

k [ 0.511 pe -p 1 - e  ~ 
1 - - - > e  -p 1 

N = ~ N e  -p ~ /Ne-P(1  - e - P ) ]  

( 0 . 5 1 1 1 )  
_->e -p 1 32e 4-~32 = '>057e-P" [] 

Lemma 2.8. I f  (2.5) holds, then 

1-DSqc~; = " N e -  ( l - - e - ) "  

Proof. By using (2.2) we get (also using [ 1 - ] / x l < r l - x ] ,  x>0)  

DS k I 1 ] /  k ( N - k )  < 1 

= - V 

(1_;_) 
N 

q(n)_k 1 q(n)+k 
= N N N < I + ] k . E Z . [  N ( 1 - e  -p) N e  -p 

q(n) [ l _ q ( n ) ~  = N e - P ( 1 - e  - ' )  q(n) N - q ( n ) "  

N 

(2.22) 

(2.23) 

(2.24) 

where 0 < 0 <  1. By using (2.26) we obtain 

which by using 
(2.25). [] 

\y x l l  / 

A < ~  1 ]~f (1 1 2  = ] / ~  1 - y  - -  exp ( - ~  (x) 2 - ~ ) ) ,  

(2.27) 

(2.28) 

the simple inequality lY] �9 exp ( -  cr 2 y2) < 1/~ ] ~ ,  ~ > O, yields 

o(;1 z x Y ] ~ _  exp 

By Taylor expansion we obtain 

Application of (2.16) yields (2.23). [] 

Lemma 2.9. I f  x > 0 and y > O, then we have for any real number z 

The lemma holds with the constant 1 +(27re)-l/2< 1.25. 

Proof. Since the left hand side of (2.25) is dominated by 1, we can without loss 
of generality assume that of generality assume that 

Y < (2.26) 
1 

- 1 1.25" 
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3. Proof  of  Theorem 1 

From (1.9) and (1.10) we obtain by conditioning on Z n 

~K~-11< p (z~ x (~, X)) 

{x-EW.~ <e(z~ N)) + ~k~, N) P(sk <=~) e ( z .  = k ) -  �9 ~ - !  

P(S~<_~)-~ (~-km~ 
+ sup _ 1 D ~ - ~  / 

kaYF (n, N) 

x - k m  

\ D~q(~ l " \]/D 2 Sq(.) + m 2 D 2 

+ 

<2P(Z,r sup P(Sa <x)-q~ { x - k m ]  

+ ~I ~ i~II. P ( Z ~  k) 

(~-km~ (V ~-me~Z. 
D 2 Sq(n) + m 2 D 2 Z n 

~_A1 + Az(x)+ A3(x)+ A4(x)+ As(x ). (3.1) 

We shall show that these five terms can be estimated as follows (C1 denoting 
the universal constant in Theorem 2). 

2.78 (3.2) 
A I <  

=l /Ne-P (1  - e - p )  

@)3 1 (3.3) 
A:(x) =< 1.76 C~ 1/Ne_V( l_e_~ ) , 

1.8 (3.4) 
A 3(x) <]/N e-P(1 _e-p) '  

13.4 (3.5) 
A~,(x) < l/Ne_P(1 _ e-P( 1 +p)), 

A4(x)< 1.1 p, (3.6) 
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0.56 
As(x) <=]/N e-P(1 _e-p)" 

The estimates (3.2)-(3.7) together with (3.1) and 
(2.78 + 1.8 +0 .56 ) ] /2<  8. We now turn to the task of proving (3.2)-(3.7). 

Proof of (3.2). By (2.14) and Cebygev's inequality we obtain 

(3.7) 

(2.6) prove Theorem 1 since 

P(Z,r  N))=< D2Z" < 
(Ne-P(1 - -  e - p ) ) 3 / 2  = 

by using Lemma 2.4, (2.11) and the inequality 1 -e -P (1  +p)< 1-e  -p, p>O, 

<l.39Ne-P(1-e-P(l+p)) < 1.39 
= (Ne-P(1 - -e -0 )  3/2 =]/Ne-P(1 _e-p)' 

proving (3.2) [] 

Proof of (3.3). By Theorem 2 we have 

sup P(Sk=<x)-(blx-km|/ \ <C 1 (_]7 sup 
3 

kE$f'(n, N) \ DS k ] \a ! k~:~(n, N) 

• 
1 

]/N e-P(1 - e-p)' 

(3.8) 

By Lemma 2.7 we have 

1 1 
sup < 

k~ar("' N ) l / k  ( 1 -  Nk---) = ]/0"57 x 0"57 

which yields (3.3). [] 

Proof of (3.4). Observing Lemma 2.9 and Lemma 2.8 we get for k~S(n, N) 

cb [ x - k m ]  C x - k m ]  =<1.25 l +lk-EZ,  I 
\ DS k ] - ~  ~DS~-q(,) ! x 1.06 Ne-'(1-e-P) '  

(3.9) 

(3.1o) 

yielding 

(3.11) 

~=o x -  mEZ, 
Aa(x)= k \DSq(n) ] Sq(n)+mZD2Zn 

Let U denote a standard normal random variable which is independent of Z,.  
Then we have 

(x - krn] P(Z, = k) = P (mZ, + UDSq(,)=< x). (3.15) 
~ dj) \ DS q(n) ] k=O 

[] Simple use of (2.5), Lemma 2.4 and (2.11) as in (3.9) yields (3.4). 

Proof of (3.5). By definition we have 

A3(x) < 1.325 I+EIZ , -EZ ,  I< 1.325 1.325 DZ, (3.13) 
- Ne-V(l_e-V) =Ne-V(l_e-V) ~ Ne-V(l_e_~,). 

(3.12) 
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If V is a normally distributed r.v. with E V = E Z ,  and DV=DZ, ,  which is 
independent of U, we get 

(_ . x - r n E Z ,  
\]/D 2 Sq(,) + m 2 D 2 Z , ]  = P(mV+ UDSq(,) < x). (3.16) 

By inserting (3.15) and (3.16) into (3.14) and using Lemma 2.5 we obtain (3.5) 
from Theorem 3 and Lemma 2.4 (see also the remark after Lemma 2.4). [] 

Proof of (3.6). We easily get 

A 4 ( x ) ~  
E!~ ~ DSq(n) ] \ OSq(n) ]1 

~, x - m E z .  ( x-m~Z~ ] 
~-A'4(x)+ A~(x ). (3.17) ! 

By Taylor expansion (where 0 < O k < 1) we have 

/x-mEZ~ m (x-_mEzq 
I 

m2 (X - mEZ,  [x - k m  
~c 2D 2 Sq(n ) (EZ n - k) 2 ~ "  -~ O k DS q(n) ] ] '  

(3.18) 
,, < which yields by Lemma 2.4, (2.11) and the inequality [q~ (x)L = 1/2]/~e 

m 2 
' < .DZZnsup]~"(x ) l  A4(X) = 2D 2 Sq(n) x 

< 1.39 [m~21-e-P(1+p)  Ne -p N O - e  -p ) 
= 2 ~ e ~  ~ a ]  1 - e  -p N - q ( n )  q(n) 

By using the inequality 1 - e - P ( 1  +p)<p(1 -e -P)  and (2.16) this yields 

(3.19) 

A'4(x)<O.18 ( ~ f  p. (3.20) 

In order to estimate A'~(x) we use Lemma 2.9 to get 

A 4 ( x ) < l . 2 5  r + m 2 D 2 Z n  ~ m2D2Zn 
_ DSq(n) 1 0.625 O2 Sq(n~, (3.21) 

where we used the inequality I]/1 + x -  l l<�89 x > 0  in the last step. Repeating 
the argument in (3.19) and (3.20) we see that 

< 0 6 2 5 x - 1 3 9  ( m f p < 0 . 9 2 ( ~ / p .  (3.22) 
A~(x) = 0.99 x 0.96 

By combining (3.22) and (3.20) we get (3.6). [] 



On the Coupon Collector's Remainder Term 391 

Proof of (3.7). By us ing  (2.4) we get  

(1 q(n)] D2Zn] 
+~ t x- tqt ), - N - ,  

H e n c e  we get  

]D 2 Wn-(D2Sq(n)-}-m2DZZn)l<ff 2 EZ.-q(n)-~ q2(n)-E2Zn D2Zn 

IEZ,-q(n)] �9 1 q(n)NEZ"- + 1.39 {72 < 2 . 3 9  {r 2, (3.24) <0-2 

where  we used  L e m m a  2.4, (2.11) a n d  (2.15). S ince  EW,=mEZ, (cf. (2.3)) we get  
by us ing  L e m m a  2.9 

{b ( x-mEZ, )_{b (x ~mEZ, ] 
A s ( x ) =  

 r ~ vwo ]1 

DW. 1. (3.25) < 1.25 

By us ing  the i n e q u a l i t y  Ix-ll<lx2-11, x>0, we get  f r o m  (3.25), (3.24) and  

(2.16) 
1.25 x 2.39 {T 2 1.25 x 2.39 3.15 

< (3.26) q(n) ( q ~ _ )  =Ne-P(1-e-P) ' A5 (x) ~ D2Sq(n) N ~ -  1-- 

By us ing  (2.5) we easi ly o b t a i n  (3.7) f r o m  (3.26). [ ]  
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Note Added in Proof Dr. Malcolm Quine of Univ. of Sydney informs me that he has obtained the 
preliminary estimate 48 of C a in Theorem 2. 


