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The Central Limit Problem
for Geodesic Random Walks

Erik Jorgensen

0. Introduction

The purpose of the present work is to consider the problem of defining the
concept of a random walk in a general Riemannian manifold .4, and to investigate
the behavior in the limit of a sequence of such random walks. It will be shown
that such a sequence, under reasonable assumptions, converges to a diffusion
process in .#, and in particular Brownian motion processes will be obtained as
limits of sequences of random walks with identically distributed steps.

The results which we arrive at in this paper are general versions of well-known
classical results concerning the transition from random walks to diffusion processes,
for instance: the central limit theorem and Donsker’s theorem (as formulated in:
[1] p. 68ff), and they specialize to these results when we take .4 = EN = N-dimen-
sional Euclidean space. Also, what they essentially show is that the combination
of a large number of mutually independent, individually negligible, and identically
distributed random causes leads to a “normally distributed” random effect, even
though the rule according to which these causes are combined is nonlinear, non-
commutative, and altogether not in any way derived from a natural group struc-
ture.

It might at this point be appropriate to mention, that the article is not con-
cerned with the study of diffusion processes as such. If one wishes to undertake
such a study, one does not have to worry about the convergence problem that is
investigated here. Instead, one may proceed to define such a process directly in
terms of its infinitesimal characteristics, for instance, by letting it be the solution
of a stochastic differential equation, or by prescribing its infinitesimal generator.
This approach has, for example, been taken in [6, 10-12] and [16]. In this connec-
tion, it should also be noted that Gangolli ([7]) by generalizing an idea contained
in [15] has shown how one may construct a diffusion process in a differentiable
manifold by injecting, via the exponential map, the differentials of corresponding
diffusion processes defined on the tangent spaces of the manifold. Although
Gangolli's work apparently has much in common with ours, the similarity is
only superficial as one will easily discover by comparing the results obtained in
the two papers in the case where the underlying manifold is EV.

Our approach to the problem in question is based upon the use of semigroup
methods similar to the ones used in the papers: [9, 21] and [23]. It may briefly be
outlined thusly: Starting with a family of subprobability measures defined on
the tangent spaces to the manifold .# we first construct a random walk and next
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an associated Markov process in .#. Then considering a sequence of such families
we set up conditions on basis of which we prove that the corresponding sequence
of Markov processes converges weakly to a diffusion process in .#. All of this is
formulated in the language of semigroup theory and thus the basic convergence
problem becomes the problem of deciding whether a given sequence of semi-
groups is convergent. In the present context this problem is rather complicated,
and its solution takes up a major part of the article.

The article itself is divided into three main sections and an appendix. Section 1
starts out with a brief survey of our notation, which we have tried to keep as
close as possible to that of our main reference, namely, the books: [6] vol. I and II.
After that follows a theorem by Stone concerning the weak convergence of a
sequence of Markov processes. This theorem is translated into a corresponding
theorem about the convergence of a sequence of semigroups and is from then on
used as the basic test for weak convergence. Finally, we state a lemma which links
the convergence of a sequence of semigroups to that of the corresponding sequence
of infinitesimal generators. The proof of this lemma is based upon ideas contained
in the paper: [9].

In Section 2 we begin with a description of the concept we have named “a
geodesic random walk.” Following that is the proof of our main theorem, which
states under which conditions a sequence of such random walks converges to a
diffusion process. As mentioned earlier, the proof of this theorem is rather long,
so in order to simplify it we have broken it into several smaller parts, each of
which has been stated as a lemma. The section closes with a few remarks about
the properties of the resulting limit process.

Section 3 is devoted to the study of a special class of processes in .#, namely,
those we have chosen to name Brownian motions. Here we define a Brownian
motion to be a diffusion process that may be obtained as the limit of a sequence
of geodesic random walks with identically distributed steps. Such a process may
be characterized by the condition that the coefficients occurring in the expression
for its differential generator are constant, where the word “constant” is taken to
mean “invariant under parallel translations.” In particular, we define the Wiener
process in .4 to be the Brownian motion that occurs as the limit of a sequence of
random walks where the individual steps have a symmetric distribution. As one
would expect, the differential generator of the Wiener process turns out to be
172, where V2 is the Laplace operator on 4.

Now, in case .# is a homogeneous space one usually defines the concept of a
Brownian motion in a different fashion. That is, instead of demanding that it be
invariant under parallel translations one defines (see [24-267) a Brownian motion
to be a diffusion process that is invariant under isometries of .#. The two definitions
do not in general lead to the same class of processes, but, nevertheless, the Wiener
process is a Brownian motion according to both of them. A brief discussion of
this situation has been included. The section finishes with a classification of the
different types of Brownian motions that may exist on a given manifold. In
particular, it is shown that the Wiener process is the only Brownian motion there
is on a two-dimensional complete Riemannian manifold with nonzero curvature.
This generalizes a corresponding result obtained by Yosida ([24]) for the case
M =82,
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Finally, the appendix contains a listing of those concepts from differential
geometry which are used in the three main sections, together with a few non-
standard notational conventions. Also our two basic axioms, referred to as .o/
and 4 in the main text, have been listed here.

1. Basic Cencepts

1.1. Throughout this paper .# will denote a fixed N-dimensional complete
Riemannian manifold* with metric tensor g and corresponding distance function
d(+,-). In case .# is not compact let .#,=.4 v {4} be the one-point compacti-
fication of .#, and define a metric 4(¢, *) on .#, by setting

o, q)= Y. 27" (P —1@) g€ M,
n=1
where
1 if g=4
L=y dp.q)
1+d(p,, 9)
and the sequence {p,}= , is dense in .#. The topology on .# generated by é(-, *)
is then the same as the topology generated by d(+, +) (see, for instance, [ 13] p. 1441f.).

In case ./ is already compact, we simply adjoin A as an isolated point and define
the metric 6(+, *) on M = M# U {A} by letting d=6 on M x . and

o(p, )=1 for ped.
In both cases we then have

if ge,

Lemma 1.1. The restriction of 6(-,*) to M x # uniformly continuous with
respect to d(-, *).

Define the following classes of real-valued functions on .#
C=C(#)={f: [ is bounded and continuous},
C=C(M)={f: feC and lim f(p) exists},
p—®
Co=Co(M)={f: feC and lim f(p)=0},
p— o0
Cyx=Cy(M)={f: feC and supp(f) is compact},
where supp( f) denotes the support of f, while
lim f(p)=a
p—r
means: For every ¢ >0 there exists a compact K =.# such that
| f(p)—al<e for pe.d/ ~K=K".
Clearly C=C= Cy= Cy if 4 is compact.

' See the appendix for notation and references.
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For feC set I/11=sup /().

This defines a norm relative to which each of the spaces C, C, C,, is a (real) Banach
space. Note that Cy is dense in C,, and that € consists of exactly those functions
in C which may be continuously extended to all of .#,. This we make use of
occasionally by identifying C(.#) and C(.#,), in an obvious fashion, when .# is
not compact.

Finally, whenever the term “measurable” is used it will refer to the basic
g-algebra #(4,) of Borel sets in .#(.#,). The class of bounded Borel measurable
functions will be denoted B(B,).

1.2. Let (X,,t20) be a stationary Markov process? with state space (.4, B)
and transition function
P(t,p,I'=Prob{X, eI'|X =p},

where 0<t<oo, pe#, and I'ed. The semigroup (T;,t=0) associated with
(X,, t=0) is then defined by

T,f(p)=}tf(q) P(t, p,dg), (1.1)

for 0=t and feB. (T,,t=0) is a positive contraction (“sup” norm!) semigroup
on B. If also
feCy=>T feC, for t=0, and lillgl I T f-f1=0, 1.2)
t

then (T;,t=0) will be called a C,-semigroup. We shall be working almost ex-
clusively with such semigroups, and unless otherwise specified we always take
the domain to be C, rather than B. Similarly, we take for the domain of 4, the
infinitesimal generator, the dense subset & of C, on which it is defined, ie., if
“s-lim” denotes “limit relative to the norm | - |” then

@={f:feco and Af=s-1tilr(r)1%[7:f—f] exists}.

Recall, that the operator A is linear, closed, and in general unbounded, and that
moreover d
fe2, t20=>Tfe? and AT}f:T,Af=7‘F7",f (1.3)

Tf~f=[ AT, fds,

the differentiation and integration being performed in the Banach space C,.
Because the weak and the strong generators coincide for a C,-semigroup ([6]
p. 77, Lemma 2.11), we can also assert that a function feC, is contained in &
if only it satisfies

| T,f—f|| <t constant < oo, for t20, and

.1 .

111%1 - (T, f (p)—f (p))=g(p) exists for each pe.#, (1.4)
t

and g is contained in C,.

2 For precise definitions see for instance [2] or [6].
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Finally, for >0, the map (A—A): 2 — C, is a bijection from & to C,, whose
inverse R, the resolvent of A (or of (T;, = 0)), is given by the formula

R,g=[e*Tgds, geC,. (L.9)
0

R, is linear and bounded with norm |R,| <£4~!, moreover
s-llileg=g, for geC,.

On the other hand, if we are originally given a C,-semigroup (7,,t=0) then we
may assume that it comes from some “nice” Markov process (X, t=0). Namely,
from (T;,t=0) we can first construct a transition function P(t, p,I') on (A4, B),
and then extend this function to (#,, ,) by setting

i if p=4 and Ael
) 0 if p=4 and A¢T
P, p,T) if p+4 and A¢rI

Then, if we let £ be the set of functions w(t) on [0, co) with values in .#, which are
right continuous, have left hand limits, and which moreover satisfy

o(ty)=4=w(s)=4 for s=t,,

we may zzssert3 that there exists a standard process (X,,t=0) with transition
function P(t, p, I') and sample functions belonging to Q. The semigroup (T, £=0)
associated with this process is determined by

- x [F(D+T fo(p) for p£4
ﬂf(p)—{f(A) for p=4 (1.6)

when fe C(.#,) and where fo€C, is the restriction of f—f(4) to .4.

In case we only want to study the process (X,,t=0) up till the time it leaves .4
we introduce the lifetime

I >
C(CU)={OO if X,(w)e for all t20

inf{t: X,(w)= 4} otherwise.
Here
Prob{{>s|X,=q}=P(s, q, #),

and in particular if P(s,q, .#)=1, that is if (T, t=0) is conservative, we may
assume* that { = 00. Also, if the condition ([6] p. 91)

1
lim — P(t,q, B(¢, q))=0,
i s B )

3 [2] p. 46ft,, or [6] Chapter IIL
4 [6] p. 87.
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where B(e, q)={p: pe.#, d(p, q) <&}, is satisfied for every £>0 and every compact
subset K of .#, then the sample functions of (X, t=0) may be assumed to be
continuous on the interval [0, {).

From now on we shall mainly be working with semigroups, but at the same
time we shall interpret our results as being results about the corresponding Markov
processes. In this context, one of the first problems we must deal with is the follow-

ing: Given a sequence {(7";, tz0)}2, of C,-semigroups and a corresponding
sequence of processes {(X™, t=20)}> , (on .#,). Which conditions must be imposed

upon the sequence {(7";, t=0)} in order to ensure the convergence > of the sequence
{(X™, t>0)}? To find the answer to this question we take as our point of departure
the following theorem by Stone

Proposition 1.1. The sequence {(X™, 1= 0)}, converges weakly to (X%, 1=0) if

(i) the finite dimensional distributions of (X™,t=0) converge weakly to the
finite dimensional distributions of (X', t 20); and

(it) for every ¢>0 and L>0

lim Prob { sup [min [8(X%, XI); 6(X®, XI)]]>¢}=0.
n—w t—c<ly<t<tz<t+tc
c-+0 0=y <t<tz=<L

Let us assume that there is a C,(.#)-semigroup (70] t20) such that
slim Tf=Tf, forall feCy(#) and t=0, (1.7)

and let (X9, t = 0) be associated with (70“,, t20). Then we have first

Lemma 1.2. Let the initial distributions
u,(I)=Prob {XPel}, TeB(M,)

be given and satisfy u,— p, weakly as n—co; then (1.7) implies that the finite

dimensional distributions of the processes (X, t Z0) converge weakly to the finite

dimensional distributions of the process (X9, t=0).

To prove this we need the simple

Lemma 1.3. Let {f,}>, be a sequence of functions in C(#,) converging uni-
Sormly to foe C(AH,), and let {u,}>., be a sequence of probability measures on M,
converging weakly to the measure [i; then

lim [ 1) u(dp)= | fo(p) o(dp).
n—w g M a
Proof of Lemma 1.2. Define as in (1.6) C(.# ,)-semigroups (f",, t=0) by

. {f(A)+ifo(p) if pe.st

=

HO=1114) if p=4

5 Weak convergence as introduced in [18] and [20]. However, because we are working on a half-
open parameter interval, 0<t< oo, we find it convenient to use a slightly modified version of the
standard theory. This modification has been introduced by Stone, and we refer the reader to his paper
[22] for details. Here we shall contend ourselves with listing his convergence criterion as our Pro-
position 1.1.
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where as before fe C(.#,) and f, is the restriction of f— f(4)to 4, then (1.7) implies

slim Tf=Tf, for feC(#,) and all 120. (1.8)

R—w®

We shall prove that for every k-tuple, 0=¢, <t,<.--<t,, and every function
9Py e DIE CLME) = Clly x - x M) s

&{g(XP, ..., X"} =F,(q@)e C(A,)
and
slim £(g)=Fy(9),

where &9{-} denotes expectation relative to the measure® u(I')=y(q). This in
conjunction with Lemma 1.3 will imply the validity of Lemma 1.2. The proof is
carried out by induction. For k=1 the statement is just (1.8), so assume the state-
ment is true for k=k,=1, and let

0<s<t;<-<ty, &4 Py,-.er D)€ CLMET);
then )
E{g(XY, XD, . X =T,G,(p)
with
G)=6"g(g, X, .... XV _ )}

IkO—S

provided G,(+)e C(.#,). To prove the latter let £>0 be given and choose ¢, ...,
q'e.# , with neighborhoods V,, ..., V, such that

V=l 4,

r
=1

J
and

sup  [g(q, pys oos D) — 8@ Py - P <

qeV;
w1, Py )eta

Also let {o;};_, be a partition of unity” subordinate to V;, ..., ¥, then

G9)= Y &'{ola) gld’, X . ... X _ )}
i=1

tkO—S

+é"‘{ oda)lg(e XLy, . X1 _)—gld', XI .. Xﬁ,’{’;_s)]}
i=1

=8 (q9)+ 59 (q),

where S{(+)e C(# ) according to the induction hypothesis, while

NC)] <é““’{8 > fPi(q)}:e-
P=1
Thus G,(+) can be approximated uniformly by functions in C(.#,) which implies

G,(*)eC(A,).

® yr is the charactetistic function of the set I'.
7 Thatis: ;e C(M,), supp(p)= V,, 059, <1, and }_ 0, =1.
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Applying the second part of the induction hypothesis on the S (-) next, we get
s-lim S{"(p)=S{"(p),

hence
lim Sup 1Ga(9)— Golg)|=2¢,

n—>w geMa

and as the left hand side is independent of ¢ it must be zero, that is

S-Jifg G,,(q) = Go(‘])’
and then also® ) .
s-lim 7,6, (p)=T,Go ()

which completes the induction. Note that what we essentially have managed to
do is to show that condition (i) in Proposition 1.1 may be replaced by (1.8), which
is easier to verify in a given situation. There is a corresponding simplification of
condition (ii) available:

Lemma 1.4. Assume the hypotheses in Lemma 1.2 are satisfied, and that further-
more®.
For every £>0 there exists an o >0 so

1 4

sup — B(t, p, B4(e, p))<a, (1.9)
peM4, 0<t t .

for n sufficiently large; then the sequence {(X™,1=0)}* , converges weakly to

(X, 120).

Here B (¢, p)={q: qe.#,, 6(p, q) < ¢} and B’ is the complement of B.
In view of Proposition 1.1 we only need to show that (1.9) implies (ii). Now
the quantity
P sup [min (5(X{™, XI); 6(X2, X)) > ¢}

0t <ta<tz<L
ta-t1<f,t3—t2<f

() gmlermlion))

as one may prove by combining the proofs of Lemma 6.4 and Lemma 6.6 in [5]
(p- 129 and p. 136 resp.). Also, for given L, f, ¢ we may choose o so (1.9) holds with
&/4 substituted for &. Then for n large enough

(%L) [03?2’2,,” (t P B (5 P))]:( 5 )[2ﬁa]2 16La? B0,
peta

for f—0, n— o0,

is majorized by

and this proves the lemma.

7 " 7 Wi [ 7 3
P LG, — TGl SIT(G, — Gl + 1 T,Go = T,Go | 16, — Goll +11,Go = .G, -

9 P(z, p, I') is the transition function associated with (7"",, £=0).



The Central Limit Problem for Geodesic Random Walks 9

1.3. The essential idea behind the following lemma is contained in the paper
[97 (see [9] Lemma 4.1).

Lemma 1.5. Let {(7";, t20)}=., be a sequence of Co(.M)-semigroups satisfying
the conditions:
(a) For every t=0, fe C,, and & >0 there exists a compact subset K, of M such
that
|Tf(p)l<e forall nif p¢K,.
(b) For every t=0 and fe C, the family {T";f}"o is equicontinuous.

n=1

(c) There exists a dense subset Z of C, such that

< (9, and slimA,f=Af existsfor fed.
n=1 n->
Here A, with domain 9, is the infinitesimal generator for (T,,t20). Then there
exists a subsequence {n.};> , such that

slim T,/ =T,

exists for all t 20 and fe C,. The family of operators (1, t20) forms a Cy-semigroup
whose infinitesimal generator (A, &) is an extension of (4, D).

Proof. Let {f,},>, be dense in C, and let {t,};°, be an enumeration of the
positive rationals. For 1, f; fixed, the sequence {T f;}2, satisfies | T, ;| </l

n=1
so because of (b) there exists according to the Ascoli-Arzela theorem a sub-
e
sequence {7, f;}7°, that converges, uniformly on compact subsets of .#, to a
continuous function g, ; for which [ g, ;1 Z £l -
Next, (a) implies that the convergence is uniform on all of .#; namely, to a
given ¢>0 we may choose a compact subset K of .4 so

Iﬁf,—(zﬂk% for all n and p¢K;
hence, for k sufficiently large

|T, f(p)—g, p<e for pekK,
and

&

1T, 5(0) =0 0 S T, )+l AP <5

¢ for p¢kK,

which demonstrates the uniform convergence and also shows g, ;e C,. It may be
assumed that the sequence {n,} is independent of ([, j) (use the diagonal method).
Also in order to make the remainder of the proof easier to read we shall assume
{n,} = {n}. Thus, for every (I, j) the limit

T,f=stim 1, £
exists, and
1., /;€Co, T SIS0
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Now, let ge C,, and choose {fi}2 ; ={f;}72, with s-l}imf,;=g. We have
1 Te-Tel=ITe— T A+ T fim TSI+ T, fi— T2l
=2g =il H I T fi— T el

From which it follows that {7";1 g}e isa Cauchy sequence in the Banach space C 0>
and thus convergent. We set

T, g=s-lim T,g. geCo.
Next, if feZ and 0< 1, <t
VLTI =T A+ 0T =T A+ 1 T =T 1
ST =T AT =S+ 1T =1

Moreover, for s=0

| T.f— £l =

s 4w
Ofg(ﬂf)dt

[ T4, fds
O

< [l4fldtss-sup |4;fl=s-c
0 J

because {A4,f};> ; converges. Consequently
VLr=T AT~ T, Sl 42¢- (1),

and it may be concluded that the sequence {7"; /1%, converges in C,. As before
the limit is denoted T,f. Finally, for an arbitrary ge C, we can find a sequence

{f,} =@ converging to g, and so it follows that T,g=s-lim T,g exists.
n— 0

So far we have obtained a family (T, 1 =0) of bounded linear maps of C, into
itself. It must next be shown that they constitute a C,-semigroup. First, each

(7"“,, 120) satisfies the conditions:

Tf=f, ITI<1, 20 = Tf20
so clearly (7;,t=0) also satisfies them. Moreover, we already know

feCy = T feCy;
so it only remains to verify
@ T,.=T°TL. (b slimT/=f for feC,.
To prove (b) it suffices to show that the class
F={f feC, and s—lilr(r)l T.f=f}
t

is closed in C, and contains . So assume

{f}<& and S’}-i‘{}o =1
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then
IS~ SITS =D HINTS= S+ = A S21 =L+ L= A

% I Lf=A1=21f-fil—-0 for j—co

N

which shows & is closed. Next, if ge &
ITg—gl=lim |Tg—gl=t-suplld,gl=t-c,

hence | T,g—g||—0 for -0 so ge#. This takes care of (b). To prove (a), let
feCyandt,s=0 then
| TGN =T SISIG L = LT+ oS = TS
SILT =TT NS = TN+ Teaf ~ T
SIT(TN - TG+ I TS~ T+ f — T fl =550,
As the left hand side is independent of n it must be zero and this proves (a).

Letfor A>0 R, and R , be the resolvents for (T}, t =2 0) and ( Tn;, t = 0) respectively.
For feC,

IR/~ R, fl= ““(Tf T.f)dt

<[ e, di
where ’
0<0,0= 1T~ FAIS21/1,  lim 0,0)=0,

so the “bounded convergence theorem” yields
lim |R,f~R,f]=0. (1.10)

Let A with domain & be the infinitesimal generator of (T}, ¢=0). Choose fe%
and set

=f—A.f

g=slimg,=f—Af

then

exists. Also
If~R,gll=IR,g,~R, g| <|R,(g,—2)l + R, g~R,g| >0, for n— oo,
because ||1'é1 | £1. Thus f=R, g which in turn implies
fe@ and f—Af=g.

So altogether ) )
fe@ = few and Af=Af,

and this completes the proof of Lemma 1.5.

Remark. In order to prove that the sequence {(’711;, t20)}2  itself converges it is
enough to prove that any two convergent subsequences have the same limit.
Now, if (S,,t20) and (T;, t=0) are two such limits introduce the corresponding
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resolvents
R,f=[e "Tfdt, R,f={e "8, fdt
0 0

then the uniqueness theorem for Laplace transforms yields
R,f(p)=R,f(p) forall 2>0< T f(p)=S,f(p) for all ¢=0,

and so it suffices to show R, f =R ,fforall A>0 and feC, in order to be able to
conclude that the semigroups are the same. Define

R={g:g=(A—A)f, feD}

then an argument similar to the one given in the last part of the proof of Lemma 1.5
yields .
R,g=R,g forall ges*.

In particular if %* is dense in C,
R,g=R,g forall feC,. (1.11)

Now, if (1.11) holds for some A4, >0 then it holds for all 1>0. To see this, consider
first 4 satisfying 0< 1 <241,. According to the resolvent equation we have for ge C,

Rag_Rzog =(4o —A) Rzo R;g,

Rzg"Rzo g=o—4) Rao R,g=(Ay—4) Rao R;g.
So by subtracting the second equation from the first:

R;g—R;g=(ho—4) R, [R;8—R;zg]
Take norms on both sides and use that |1, R, [| <1 then
140 — Al
0

which can hold only if R, g =R ,g Thus we have shown that (1.11) holds for
0<A<24, if it holds for 1= 4,, but then aninduction argument shows that it must
hold for all 1>0. So altogether we may state, that if the assumption: “For some
Lo >0 the set #*° is dense in C,,” is added to the assumption in Lemma 1.5 then the

sequence {(7,,t=0)}> | itself converges.
When we do have convergence, this convergence is in a certain sense uniform
on compact t-intervals. Namely, we have

0 [
IR,g—R;gl= IR, g—R;gll, |do—Al<4iq

Lemma 1.6. Let {(i, t20)} , be a sequence of C,-semigroups with generators
{(4,, D)}z, and which satisfies

s-lim ifzif for t=0 and feC,,

s-limA, f=A,f for fe@<= (2,

n=0
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with @ dense in C,,. Then for t,>0, feC,

lim sup |1~ 17,11 =
n— o 0512t
Proof. Let f€C,, t,>0, and ¢>0 be given.
Choose f,eZ so

AR

and note that
sup |4, fl =L< o0

because the sequence {4, f.}= , converges to A, f,. Next, select points

O=s5y<8 < - <5 =1
such that
e

max (s s 1)<ﬁ

15ig
and then choose n, so

max T f-T < g for nzn,
Now, if te[0, t] then s,<t<s; , for some i, thus
| T/~ TSI T - i’"f||+||%f—-:?*fn+u%ﬂ—7":fn
<20 f~fh+ 1T A~ TfH< LT -

2 0 0 0 n n n
S A WAV WA AR VR IA

2
<5 =s) Ao fll+ 5+ (t=s) |4, fll <

for n=n,. This proves the lemma.

2. The Main Results

2.1. By now we have finished all the preliminary work and are in a position
where we can formulate and prove the central result of the present paper. This
result is a version of the central limit theorem where instead of considering sums
of vector-valued random variables we consider “sums” of random geodesic
segments in a Riemannian manifold. Such a “sum” could naturally be called a
geodesic random walk, and what we shall do is to consider a sequence of such
random walks where within a given time-period the number of steps taken
increases indefinitely while at the same time the length of the individual step
decreases to zero. In the limit we then expect to obtain a diffusion process in .#,
and in particular we expect to obtain the Brownian motion if we let the individual
steps in the random walks be identically distributed.
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However, before we give the final rigorous formulation of our problem let us
do a little pseudo-mathematics in order to motivate this formulation.

Assume there is defined on .# a family!° of subprobability measures {v,} . 4
where each v, is a measure on .#,. Let 7>0 and pye.# be given and define for
0=<t=<1 the random path £(t) starting at p, by!!

N A |

where X, is a random variable with values in M, and distribution v,, and

um:) X v,,(dX)=mean value of X, .
po

Also, if v, (#,) <1, set
Prob{&(t)=4 for t>0}=1—v, (A,).
In general “define” &(f) by induction

p"=€(n‘c), n=0, 1,...,

E ey +/AX n—u,,,)]}

T

E)=exp,, {

for nt<t<(n+1)1. If p,= A4 set &(t)= 4 for nt<t, while if p,e.# set
Prob{&(t)=4 for nt<t}=1 ~v, (M,).

Now, if there exists a stochastic process £(t) satisfying these “definitions” it may
serve as a reasonable mathematical model for diffusion in .# (in the limit for T — 0).

The sequence {£(n1)}* , is a Markov process with stationary transition
probabilities

P{((n+1)1)=4|E(mr)=4}=1
P{&((n+1)7)e A|&(nt)=p}
=(1=v, (M) 1 a ) +v, {p, + 17 [exp,  (AN{4}) —1p,]},  p*d4;
while for nt<t<(n+ 1)t &(t) is just a geodesic segment from &(nt) to E((n+ 1)7).
Because the process £(f) is a little awkward to handle we shall introduce
another process £(f) which in a certain sense is just as good as £(t) and which also

is much easier to work with. Let (n(f), 0=t < c0) be a Poisson process independent
of &(t), with parameter t~! and right-continuous sample paths. Set

ér(t)= E(n(t) : T),

then £ (¢) is a Markov process with right-continuous paths and transition function

P(t,p,[)=e"" i (t/)*

ko k!

P®(p,T)

10 See Section 4.4.
1 “exp,” denotes the exponential map in .4.
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where P®(-, +) is the k-th iterate of the transition function
P(p, I=Prob{&(c)el|£(0)=p}.

For ¢ fixed the mean value of n(t) is t/7, so loosely spoken
St .
£~ (o) =Eon

this is what we mean by saying & (t) is just as good as &(t). Also ¢ (¢) has the advantage
of being a Markov process, which makes it possible for us to define it by specifying
its associated semigroup, thus circumventing the problem of translating the
above statements into mathematics. We shall show that ¢.(-) converges weakly
to a diffusion process #(-) as 1—0, and by estimating the difference between
E(t)=E.(1) and ¢ (t) properly, we could also show that E()— n(*)as 1—0; but
this seems hardly worthwhile, and we shall not worry about doing it.

2.2. From now on assume that our manifold .# is of class o/ 2. Let {v?'},_
n=1,2,..., be a sequence of families of subprobability measures on the tangent
spaces ./, satisfying the following conditions for every §>01?

%0: Foreachn=11is
s-}irgvg’){Y: Yed, |Y|2r}=0.

?1: s-lim n{l—vg"(/lp)}=k(p).
€2: s-hmnv("){Y Ye, 1Y) 26y/n}=0.
%3: s-lim [ WodY)y=p,ed,.

" Yl <svm

%4: slim [ YQYWAY)=uPel, @ M,.
TR Y <oV

The functions k(-), ., and u'* defined by %1, 3, 4 are assumed to satisfy certain
conditions. We require

%5: Forsome a, 0<a =1, the functions k(*), u., and u‘? are Holder continuous
of order . For each pe.#, u® — pu, @ u, =02 is strictly positive definite !4, Finally

maX[SUP k(p), sup I, 15 sup le ] =M, < co. (2.1)

It should be noted that €2 implies the validity of 43 and €4 for all 6>0 once
they have been proven to hold for a particular 6 >0, and also that the limits
and 4 are independent of the choice of 5. One may even show (see [4] p. 188

12 That is, satisfies both axioms 7 and 4 in 4.3.

'3 Recall that “s-lim” means “uniformly on .#”. We shall also use the notation f,—%_f, instead
of: s-lim f, = .

'* That is (¢ ®¢£, 6%» =0 must imply ¢=0. This condition is used only to prove the uniqueness part
of our limit theorem.
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Lemma 1) that there exists a sequence {d,}.> ; such that
0<--<8,<0, <--<8=1; 7nd,too and §,]0 for n>o0, (22)
s—r}irgnvg'){Y: Yed,, | Y| 26,)/n}=0,

and it follows easily that § may be replaced with J, in the statements € 3, € 4.
Introduce the notation

H(p,n)={Y: Yed,, | Y| <5)/n},
G(p, n)¥H6“ (P, n),
ky(p)=n{l—vP(M,)},
Bou=_| YVP@Y),

H(p,n)

W= [ YRYYWY).

H(p,n)

Then p,, €M, i) €M, ® M, and from the remarks above it follows that

=5- hm 0, =5 lim | Yv9(dY),

"% G (p,n)

‘2)—- s- llm ,u(z) =s-lim j' Y® Yv(")(d Y).
=% Gip,n)
We may also assume that
max [supk,(p), sup |, sup leghl]=M <o

because of (2.1) and the uniform convergence.
Define on B = B(.#) the operators

n 1 1
fro)= 1/ (o, . b (1= ) voian
= | flexp,2)702).

n n 1
Sf®)=Tf (p)+—ki(p) S ()= | f(exp,Z)65(d2),
'/ﬂP
where 7 is the distribution of

1 1
Z:—;l— /,Lp’n-i-ﬁ (Y— :"Lp,n)
and
09(N) =¥ () + xr(O)(1 —T3)(A).

In particular, if =y, with I'e# then

Tr()=Pe.T). Sf@)=B@.T)
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where P(p, *) and Ig,,(p, -} are subprobability measures on .#. Thus we may write
11 (p)= If(q (0, dg); S ()= [f(q) B(p, da),
M

and as the notation suggests we want P and P to be transition functions. If we
compare with our model from Section 2 E(p, F) of course represents

s (£ (7))

while the auxiliary quantities P are introduced in order to facilitate the proofs
of some estimates to be given later on. They correspond to the situation!> where
v&(,)=1 and thus they may be expected to behave better than the B,

Now, in order to get the functions P, and P to be transition functions we must
impose some kind of restriction upon the variation of the v?) with p. Our final
condition takes care of this*®

%6: For each n limk,(p) exists. Also, there shall exist constants K >0, 6,>0,
p—> 0
and o, 0<a =1, such that for0<d<J,and alln=1

sup n|v)— | <K 6"
d(p.q}=d
We can now prove

Lemma 2.1. For each n k,(-)e C. Moreover, the operators T and S map C
into C and C into C,.

Proof. First, we have the estimate

|ku(P) = ka(@)l =1 [V (M) — v (M)
=n|FP(M)— V(MY =07 — 5P| < K [d(p, 9)1*

whenever d(p,g)<J,. Thus k,(-) is Holder continuous of order a. Moreover,
limk,(p) exists per assumption, hence k(-)eC. Note that this argument in
p—©

combination with ¢1 actually shows that k(-) is Holder continuous of order «
and is contained in C. Next, if fe C then we may write

f)=/op)+b

with f,eC, and b constant. Thus to finish the proof of the lemma it suffices to
show that T maps C, into itself and that T1eC, and the second statement is
easily proved:

n 1 n -
T1(p)=1 —7kn(p), so TleC.

P If v (M) =1 then Sf= Tf.
16 The notation is explained in the appendix. Note that we may use the same o in ¢ 5 and in 6.

2 Z. Wahrscheinlichkeitstheorie verw. Gebiete, Bd. 32



18 E. Jorgensen

To prove the first, let fe C, be given and let p,, p be a paif of points in .#. Denote

parallel translation along a short geodesic p, p by 7,, then

T (0)— Tf (po) = J fexp, X)¥(dX)— | f(exp,,Z) VpoldZ)

"”Po
_ [ flexp, e, ZD(e $NAZ)— [ flexp,,Z)30dZ)
Mpeo Mpo
= [ flexp, [t,Z])(z; 50— 7)(dZ) @3)
Mpg
+ J ((exp, 1,2~/ (exp,, 2)} 73dZ).

Po
The first integral is estimated thusly
| § flexp, [, Z), 79 —T 2N < | f1 [§5 -5

“”170
:mK[d(p, po)I*—0  for p—p,,

while the second integral is seen to tend to zero when p— p, because of the bounded
convergence theorem and the continuity of the map

p—exp,(t,Z)

at po. Thus T 'f is continuous. Next, let ¢>0 be given and choose a compact set
I' = such that

If(p)l<ze for p¢r,
then

\Tf ()l §%8+I§f(q B(p,dg)|<ie+ |1l B(p, T)

where by definition

- n 1 1
E(p, F)=v§]n) (exp, F)=v; ){Y: exp, [7 'u"’"+777 (Y—u,, n)] eF}.

Ifr>4M, then
1
gl){Y ) lupn W(Y_:up,n) >V}

<v{Y: Y=g, >irﬁ}
VLYY >3rY/n) <

2 IIfH

for r sufficiently large according to € 0.

So, if we set
={q: ge# and d(q,I')<r}
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then I} is compact!’ and for pel?

Sin . &
B(p, D) <v{Y: ]|Y|I>r}<3m

that is

TIONSS+ 101 Bp. D)<z for p¢r,

and we have thus shown T"“f € C,. This finishes the proof of the lemma.

Note. It is easy to show that the operators T and § map B into itself also, and
that in fact they are positive contraction operators on B. In the following we shall,
however, unless otherwise indicated think of them as being operators on C,.

Define for pe 4, I'e B(M)=R

PO (p, =B (p, I) = (1)
and for t 20, fe C,

fifo=e ¥ 50 11060 B .o

© k o
$.50=e 3 " 1 1g) Bp. dg)
k=0 M

o, . . ©®
where E® is the k-th iterate of P. If we set

© - (nr) Qe
Rl(t’ps[‘)_e kgo k' B; (par)
then
T.f(p)= [ f@) B(t.,p.dq); S.fp)= {f(@) E(t, p,dg),
A M
and we have

Proposition 2.t. The families (ﬁ, t=0) and (§,, t20} are Cy-semigroups. Their
infinitesimal generators are respectively

A f=n{Tf—f}, and Af=n{Sf—f}

with the common domain 9,=C,. If f=0

(@) 0<Tr<S,f
and in general for Fe B
(b) Bt p.DE(,p T).

Proof. For the first part it suffices to work with the Tn", Letfe C,, then according
to Lemma 2.1 ".;'“f € C, and more generally

1@ B¥(p,dg)=T*f(p)e Cy,  for k20.

17 Because . is complete.

2%
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Also | ﬁ""f I =<1/l so the series defining f} J converges uniformly on .#, and this
implies at once that T, fe C,. It is also easy to see that

ILAZI/1,

that T, ; 18 a positive operator, and that ( t>0) is a semigroup. Finally

ITr-fls@—e™ 11 =2 (1—e"™)
o)
s-{ipg Tf=1,
thus (Tn"t, t20)is a Cy-semigroup. Next, for fe C,,
-4
(nt)"

[T"f f1-nlif- f]“

1 —ntZ
” —my (07 { in(Tf f)} (1—e="yn[ T~ f]”
= k!

& (nyf! i
e kzz(k 57 (TS = N+ (=) In(Tf = 1)

=2(1—e™") l]n(Tf—f)H—»O for t]0

A

which shows A4, with domain 2, = C, is the infinitesimal generator for (Tn}, 1=0).
To prove the second part of the proposition, note that if fe B, f 20 then

n n 1 n
0= Tr<Tf+—k,f=57,
n
and in general for [>1

T=T-YTH=T-1EnH=-- =84,
which immediately yields
Tf<8,f, for f20

and this proves (a). As (b) is a special case of (a) this completes the proof of the
proposition. In the passing, one might note that in order to infer the validity of
(b) from that of (a) one only has to know that (a) is true for fe C,,.

Our goal is now to demonstrate that the semigroups (’_7;, t=0) and (§'t, t=0)
converge as n— oo to C,-semigroups (7;,t=0) and (S,,1=0). To carry out this
demonstration, we first make use of Lemma 1.5 to show the existence of convergent
subsequences, and then we show that the limits hereby obtained are independent
of the particular subsequences that have been chosen.

First, let us verify that condition (b) from Lemma 1.5 is satisfied. This is a
consequence of

Proposition 2.2. If fe C and t=0 then the families {Tf} ° , and {S 2| are
equicontinuous.
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Proof. We start with a few estimates. Define

o, =2sup WW{Z: Zed , |Z|>1},
peM
then according to €2

(a) lim na,=0.

n— oo

Next, for some >0 and all p, n

{Y: Yelly, sy o +V/n(Y —pp I Sny < {Y: Yed,, Y <ny/n},

s0 €4 implies

- 1 — 2
[ 1zIPvdz)= — (U V(Y =p, )| VP (@dY)
izl =1 (i, VA —pp, Il <mpil B
1 1
< [—M+M+||Y||2]vg'>(dY)
My <nvmy ﬁ

gi[zMﬂ/ﬁU i Y@ng'>(dY)||]gc—°
n (Y <nvnm} n

for some constant ¢, that is independent of p and n. Thus

(b) [ 1zIPvwEz)<=e.
zistn h

Let o be a constant satisfying 0<a <1, and let p, g be points in .# with d(p, g)=
d<min(l, §,)*¢, then from (b) and axiom £ '°

© [ [dlexp,Z, exp, 7, 2T W0@Z)<& | [1+c|ZI*]7@Z)
fiz) =1 fzli =1
§5“[1+—C§°—] —5°B,.

Now, if fe C and satisfies the Lipschitz condition
fla)—fa)Sad(qy, 42); a1, 4264, (24)
then, using the expression (2.3), we obtain
\Tf ()= Tf@I= | SI-199 =31 +| [ [f(exp,7,,Z)— f(exp, Z)]1 V3 (dZ)|
My

IO =91 +290{11 2] > 1}]

+ | ad(exp,7,,Z, exp,Z) ¥ (dZ)
{Hzll =1}

K
SIf1- [ +a,] +ash,
according to €6, (c), and the definition of «,,.

1% 5, comes from 6.
1 As usual 7, denotes parallel translation along a short geodesic segment pg.
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Next, estimate T2f
1T2f(p)~ T2 f(g)|

it [rosa v [ 1ffexp,5,2)- Triew,2)w0az)

hzll =y

SUAI- [ o 2a,t | I8+l ZPI )| s B

tzisy "
<UA1- (2o 510+ 5] a2

provided 6 8, <1.
Iterating this procedure we get

n no K -1 )
)= T @I 2111|1046 5 p] +ao g,
Jj=0
forI1=1,2,...,nL provided é p"*<1. But

ccy

nL
) < eLcco

B:L=(1+

n

so it suffices to demand
d=d(p, q)S e Lo,
Also
-1 nL __ Lec
Bl e

P

cco
and consequently

" n t K
@ )= T @) f] - [ Lo, +
if

Leccg

5“] +adele

0

d=d(p,q)<min(l, dy, e L), 0=I=<nL.

The operators S are estimated in a similar fashion.
First

. n n n 1
ISf)—Sf@ =ITf(p)— Tf(q)|+% |k, () —k, ()| |f(p)|+7f [k, (@I f(p)—f (I

<IF10)~ T1(@]+ o1 f )~ @I+ 11 [dp,a)T,

for d(p, q)<d,. So proceeding as before we get

30 -Ss@i=iA [o 3 (100 2555 (8,0 M) ] vas (5,2

j=0 j=0
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M-
for 0=1<nL provided (ﬁn+——~) <1. Moreover
n

nL—1 Mj n MnL eML
S < —} =
Z<1+ n)zM(1+ n) ="M

j=0

and ’

nL-1 Mj nL—-1 cc +M i e(cco+M)L

)= 1 0 )s

j;o (ﬁ"+ n ) ,-;0( A =" cco+M
so altogether

n n pleco+M)L
(©) IS/ =SS @=L/ lno,+2K6")+ad M]

if
d=d(p,g)Le o+l 0LI<nL.

Comparing (d) and (¢) we see that they are essentially equivalent. It will be
demonstrated below that (d) implies the equicontinuity of the family {7"; e,
and it is then clear that (e) in a similar fashion implies the equicontinuity of the
family {3, f}2.,.

Let t,>0 and ¢,>0 be given. From Chebyshev’s inequality applied to the
Poisson variable ¢ with parameter nt, we get for L=2+[t,]

2 (n to)k

e~ Mo '
k=nL+1 k!

=Prob{{=nL+1}SProb{|{—nty|ZnL+1—nty}

<" Lk
“(L+1—nty)* n’

Choose n, such that for nzn,

610l /1 _

" & and 3| f{{2+1} na,<eg

then (d) yields for n2n, and é=d(p, q)<e 2 +w)eco

T S0 - T S@l=e ™| 3 ok (7 p) - i’kf(q))|
inL Lo, n [¢) 1
e[ SO - Ty s x> ]
Leeo
ST [Lno =S| ras et
<2 RIdp.gl <t

3

if d(p, q)<(K ~*¢&,)*, where the constant K is independent of p, ¢ and n.
Now, each of the functions T f is contained in C; hence there exists a y>0

so for O0<n=n, n .
dp, @<y = 1T, f(0)~T,, f@)| <&o,

and this in conjunction with the result above gives
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For every £> 0 there exists a >0 such that
) T, /0T, f@l<s  if d(p,g)<8.

The~ class # of functions in € which satisfy condition (2.4) is dense in C, so if
ge C and >0 are given we can first find fe.# so

g
I f—gll <3
and then choose §>0 so

n n £
d(p,q)<d = T /()= T, f@ <~
for all n. Then we obtain for d(p, q)< 6

T, 80— T, e @I T, g0~ T, f@+1T, ) - T, (@) +1T,, fl@)— T, g(q)
<2|g—fI+1T,, f0)- T, fl@)l<e

for all n, which shows that the family {7"",0 g}>_, is equicontinuous and thus
finishes the proof of Proposition 2.2.

Next, we turn our attention to condition (c) of Lemma 1.5. Here we have2°
Proposition 2.3. Let fe C**?n C, then the following relations hold

@ s-lim A, = o/ f=4(D*f, 6%y +Df > —k- f
®) s-lim A, f=d {=1(D*f,0*)+(Df, .

Proposition 2.3 clearly implies condition (c) because the class of C® functions
with compact support is dense in C, and is contained in C*®. To prove the
proposition note first that (b) is a special case of (a) so it suffices to show (a). Next

A, f@)=n{Tf (D)~ )}

2.5
=n [[f(exp, V)= f@)] ¥ (@Y)—n[1-5D(4,)] f(p) )
Mp
and
' n[1=99(M )] =k, (p) 25> k(D) (2.5

according to €1, thus we only have to worry about the integral. Here we follow
the well-known recipe: First truncate appropriately, then substitute for the
difference f(exp,Y)—f(p) the first two terms of its Taylor expansion and take
limits. So assume f is a given function in C*® ~ Cy, then according to Lemma 4.3,
for pe.# and Yyed,

f(exp, Yo) =/ (P)=<{Df, Yo), +3<D*f, ¥, ® Yo, + R(p, ¥o)

R(p, V))|[SK|Y,|***, K constant.

where

20 (29 js defined in Section 4.2.
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Insert 1 1
Y,=— + (Y-
o bt (V)

then

n [ (exe, - bty o) -1
= (DS ty > +V DS, Y= p1, >

(2.6)
DYty ) ® (Y iy D+ Doy 1 ® (Y1,
Vn

1 1 1
+-2—;<D2ﬂ Hpn ® ,up’n>+nR (p,;ﬂp’n'FW(Y—,up’n)) .

This quantity has to be integrated over .#,. Write n M,=G(p,n)V G(p, n) and
integrate over each of these sets separately. First

1 1 (n)
O ) G e ) R P

G(p, n)*

L2[ flinv(Gp, n)) 250

n— oo

according to (2.2). Next, break the integral over G(p,n) up in accordance with
the decomposition (2.6) and estimate each term individually.

Note that because f has compact support

L=sup[max(|(Df),ll 1(D*),l]] < co-

Now
H:(g n)<Df, Y5,v9@Y)=<Dfu, >,
consequently
@ | J VndDA Y=y, v @Y))
G(p,n)

=ynl— [ ADLYI V@Y DS 1y, (1= V(G (p, )|

H'(p,n)~G(p, n)

Y11V 1VP(G @, )+ 1D ) 1,1 (1= V5 (G (2, )]

<L [(1 + M) V(G (p, n)“)+4—1n~Mn(1 —v;">(ﬂp))] a0

1
Vn Vn s

because of (2) and the boundedness of k(p).

® | { : <D2f,up,n®(Y—up,n)>,,+—21;<z>2ﬁu,,,,,@u,,,,,>,,}vg”(dY)‘

G(p,n) ﬂ
1 1
< [WLH#,,,,.!I ity ol +0,/8) +5= Lt ol | V(G 0. m) 250

because ,}0 as n— o0.

2 The sets G(p, n) and H'(p, n) are defined in the beginning of this section.
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1 1
(C) n R (pa_l't n+_(Y_I'L n)) v(")(dY)‘
G(I{n) n p, ]/—I’; b, p
1 1 LI
énK —_ n+—_ Y— n v" dY
<K2“[ L, 1 a+5°‘] ( ! 1) Ly v
= —Hpn T~ Hpn n e Hp,n v
n P ﬁ 2 Gimm) Vn P 14

<e, | (M+IYI*)v9@Y),

Hi(p,n)
where lime,=0.

h—

Also because of (4.7)
J 1Y@y NIug I <y/NM

Hi(p,n)
so altogether
sfimln | R(p _ u,,,,,+#<Y—up,n)) vﬁ)(dY)‘ ~0
) o g ,.)<Df’ Hp,p Ve (dY)=LD S, 1y, 0, V(G (P, 1) =2 (DS 1),
(e) %G(g ,,)<D2f’ (Y—t1y,,) ® (Y— 1, )0, V5 (@Y)
=’% Hl({ ,,)<D2f’ YRY—p,, @ Y=Y ® i, ,+thy, n ® Hpw)pVy (dY)+ p(p, 1)

=L D [ uP0,— D fo by w ® thy - [1=3VS (H (0, m))] +p(p, 1),

where

lo (0, S5 L[y, ol +1/1]? - vP (G, nY) S Ly v (G (p, 1)) 25~ 0.

Moreover
s lim (', ) =1

so all in all the above expression has the limit
3D P —p @ py,=3<KD’f,0%),

uniformly in p as n— 0.
Combining (2.5), (2.5) with (a)-(e) we obtain

s-limd, f=3<D*f,6*) +<{Dfpu>—k-f

whenever fe C‘** n Cy, and this finishes the proof of Proposition 2.3.

Let K be a compact subset of .# and let ¢>0 be given. According to axiom o/
there exists a C® function f with compact support such that

x=f=xr, F=supp(f)



The Central Limit Problem for Geodesic Random Walks 27

and
Sup [max {[|(Df),II, I(D*f),1}]S -+ 4M

So it follows from Proposition 2.1 (b) when pe F¢, t=0:
0SBt p, K)SE(t p, K)SS, f(9)=S, £ (o)~ (D)

(f" fds>(p)<“S Jds

]

<tlA, fI St{lLf |+ A, f— LS}

< t{SII}p DNl - ol + DN - I+ 1A, f =1}
& 0 0
§K{7+ IIAnf—&ff!I}-
Also Proposition 2.3 tells us we can choose n, so
A, f—dfl<s  for n=n,
2
hence we have
Lemma 2.2. For every compact subset K of .# and every §>0 there exists a
compact subset F of # and an integer n, such that K< F and
0<P(t,p, K)<B(t, p. K)<te

for nzn,, peF¢, and all t20.

Now, we can verify (a) of Lemma 1.5. Namely, if this condition were not
satisfied then there would exist fe C,, e>0, t>0, and sequences n, 1 0, p, — 0
so for all k

T f (bl 2,

where we may assume f>0. Set

K={p:ped,2f(p)ze},

then K is compact because fe C,. Moreover

s<T /()= | S@E, 1o d)Sf1- By (6 p K+ 5
M

so for all k

g
<5 =B (t p, K).
2111 *

On the other hand, according to Lemma 2.2 there is a compact F<.# and an
integer n, such that

P(s,p,K)<s

&
4] f1I

for nzn,, peF° and all s=0. Now, for k sufficiently large n,>n, and p,e F* so
for such k |

0<P (t pk:K)—t é Bl (tapka)

4tllfl
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which is absurd. Consequently, the sequence {(f},tg())};',‘;1 (and by a similar

argument also the sequence {(§,, t20)}. ;) must satisfy condition (a).
From Lemma 1.5 it now follows that every subsequence {m;};>, of {n},
has a further subsequence {r,};>; such that for every fe C, and t=0 the limits

Tf=slimTf; Sf=slimS,f @7

exist. The families (7;,t=0) and (S,, t=0) are C,-semigroups with generators A
1]
and 4 whose domains contain 9 =C?®n Cy and which satisfy

Af=off, Af=sf when fe@,

where 7 and o are the differential operators defined by (a) and (b) in Propo-
sition 2.3. So in particular we have shown the existence of C,-semigroups whose
generators, when properly restricted, coincide with ./ and o without assuming
that ¢? be strictly positive definite. However, the limits obtained might depend
upon the subsequences chosen and in particular the original sequences might
not themselves converge. To show that this unpleasant situation does not occur
we need the extra condition upon o2, which, as will be shown below, implies
that the limits we get are independent of the particular subsequences from which
they are derived.

An elementary argument based upon this observation then yields the result
that for every feC, and t=0

s-kimT f=T.f; s-lim§,f=S,f.
n— o n— 0
However, before we can prove this we need several auxiliary results concerning
o
the behavior of the operators A and A and of the sequences

{(T,t20)}, and {(S,,t20)};,.
First
Lemma 2.3. For arbitrary feC,, f20, t=20, I'eB(M), pet the following
inequalities hold

(a) 0ST,f<S,f
() P(t,p. )< P(t, p, ).

Here P and P are the transition functions corresponding to (T;,t=0) resp.
(S,, t=0). The proof of the lemma is simple. Namely, (a) is a consequence of (a)
in Proposition 2.1 while (b) follows from (a) of the present lemma. One might
note, that intuitively this result and its counterpart in Proposition 2.1 are obvious
because the process corresponding to (ﬁ,th) has a positive probability of
being “killed” while the process corresponding to (§,, t=0) is conservative. In
this connection also note that although we know Ig,‘,(t, p, #)=1 for all n we do
not yet have a similar result for Ig(t, p, H).

In the following let B(g, p) denote the ball in .# with center p and radius e,
and let B*(c, p) denote its complement (in .#) then
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Proposition 2.4. For every compact set I'c.# and every pair of positive
numbers (g, n) there exists an integer ky and a number y>0 such that

(2) B AR R
;el',
1 c
®) S,y Rule B )<
per |
when kzk,.

Corollary. For every compact set I' = M and every pair of positive numbers
(e, n) there exists a number y>0 such that

1 0
(©) sup —{1—P(t, p, B(e, p))} <n.
o<tsy t
pel
1
(d) Osgpy~P(t p, B, p)) 1.
pel’

Proof of Corollary. If F <.# is compact then (2.7) implies
Tim &, (5, )< P (t,p, F).
Hence

P(t,p, B*(, p) < P(t, p, B(2, D)

1-P(t,p, B p)<1- (t P(TP))

.0 & 0 e
< —1i e = 1 _— e
<1 ,}gn;B,k(t,p,B(z,p)) kl%lo{l B,k<t,p,B(2,p)>},

and an application of Proposition 2.4(a) immediately yields the desired result.

In order to prove Proposition 2.4 note first that statement (b) follows from
statement (a) and Lemma 2.3(b), so it suffices to prove (a)22. Now, if (a) were not
true, there would exist a compact subset I of .#, numbers g,>0, n,>0, and
sequences n;— oo, 1;10, {g;};2, = I, so for all j

IIA

1 B;(J: q]sB(SOa ‘1]))>t

J

Because of the compactness of I, it may be assumed that g;— g, for j— co.
Hence, for j sufficiently large

B(%%a do) = B(go, Qj)

and thus for such j

1—3,}(11-, d;. B (3¢, ‘10))>fj flo-

22 The idea behind the proof is from [6] (p. 93-95).
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Choose next feCg such that

X0, a0 =S = XBt20, 40

then '
S, /0= | f@ P, p.d)) < B,(t;, p, BGeo, a0),
SO th )
N o <1—S, fla)=1-S5, f(a)+S, fla)—S, f()-
SO

0=4 (o) =lim -~ IS, f(go)~ F40)]
=fim 15, fla)~fla)1=lim 15, fl4) =11,

because [S f—f1 converges uniformly to 4 f; thus for j sufficiently large

tno=21S, flg)— S,,. Sfg)l. (2.8)

Let t=max t; and choose *3 j, so for j= j,
J

Sup IIS (A1) ~S, (AN <3nq,

_S_.

and next choose j, = j, so for j=j,

thenif j=j,

13, -5, 11 =Hj [0, £ 41+ 18,514 )] ds

<t;|Ay f=Af]+t- sup 1,4 1)~ S, Al <b o,

-S_

which in connection with (2.8) yields, when j is sufficiently large,

g "
240 SIS, £(@) =S, fEMN=IS, f—=5S, fll<itno
This is a contradiction and consequently we may conclude that (a) is true.

Note, that once it has been shown that {(T t=0)}>_, rather than the sub-

sequence {( , =20 j, converges then (a) and (b) become valid for the P 1?;
rather than for the P, P

ng® “ngt
Next we shall look a little more closely at the operators A and A %% Recall
the remark following the proof of Lemma 1.5 according to which the actual

convergence of the sequence {(7";, t=0)}2 , would follow from what we already

23 Use Lemma 1.6.
24 On the next few pages we shall work only with the operators T;, 4, .«. The results we obtain will of

PR

course correspond to similar results relating to the operators S,, A, <.
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know by now provided it is true that the set
R={f: feC,, f=g—Ag for some geP}

is dense in C,. Also when geZ then 4g=./g, so essentially we are faced with
the problem of having to solve the differential equation f=g— .o/ ¢, and to show
that the solution g is contained in 2 for f ranging within a dense subset of C,.
For general manifolds .# we cannot handle this problem directly. So instead we
proceed by solving the equation locally first, and then use the known properties
of the generator A in order to glue the local solutions together. The method is
lengthy and will be broken into several parts each of which will be formulated
as a lemma. First we prove 4 is a local operator.

Lemma 24. If fe9,, ge P, and f=g on a neighborhood of the point p, then

Af(po)=A4g(po).

Here 2, denotes the domain of A. To prove the lemma, let he @, with h(p)=0
for peB(r, p,), then

|4 h(po)| =

1
lim —[ | k(@) P(t, po, d9)—h(po)]
M

1 o1
lim— [ &(g)P(t, p,. dq)’é il 1,’f€‘ ~ P(t.po, BCr, Po))=0

ot Bew, po)

according to the corollary to Proposition 2.4. By setting h=f—g we obtain the
statement of the lemma.

Lemma 2.5. If fe 9, C%:? then for each pe #

loc
Af(p)= f(p).
Proof. Let fe9,n C%? and let p,e.#. Then, according to Lemma 4.2, there

loc

is a function f,e C*® ~ Cy such that f,(p)=f(p) for peB(x,, p,) for some r,>0,
and because f,e9P <=, Lemma 2.4 yields

Af(po)=Afo ()= fo(po)= f(po)-

Because A is a local operator it makes sense to talk about A4 f even when f
is not defined everywhere on .#. To be specific, let 4 be an open subset of .#
and let f be a function which is bounded and continuous on %. If now, for every
point pe% we can find a neighborhood V, of p with V,=% and a function ge2,
such that g= f on V, then we may set

Af(p)=A4g(p).

We denote the class of such functions f by the symbol 29. In case .# is compact
2,=2, but in general 9, is a proper subset of 2. Note, that if fe»? and
pe% then

Af@ﬁﬂﬁy%{ff@ﬂ%andm~f@H-
4

This follows immediately from the proof of Lemma 2.4.
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Lemma 2.6. Let ¥ = # be open and let f be a bounded continuous function on
& which (on %) belongs to class C{%,®. Then

loc

fe29 and Af(p)=of(p) for pe%.

Proof. Let f be given and satisfy the conditions of the lemma, and let p,e¥%.
As in the proof of Lemma 2.5 we can find a function f, with compact support
in 4 such that fye C** and f,(p)=f(p) on a neighborhood of p,; but then

fo€Z, and  Afo(po)=o fo(po),
which proves the lemma.

Lemma 2.7. Let % be a bounded®> open subset of M and let f be a function
which is continuous on 9§ U 0% and whose restriction to 9 is contained in 9%. If for
some A>0, f satisfies the equation

Af=Af on 9, f=0 on 09,
then f=00n% U d%.
Proof. If f does not vanish identically on ¥ it either has a positive maximum

or a negative minimum. Assume the former, and choose p,e% so f(p,) is maximum
then

Af(po)=lim ([ 1(0) P& o, da)— (o)} 0
K7

0="21(po)—Af(Po) 24 f(pe)>0,

which is a contradiction; thus f<0. But the assumption that f has a negative
minimum also leads to a contradiction (consider — f) consequently we must
have f=0.

Let (R,, > 0) be the resolvent of the semigroup (7;, t =0). Then

Lemma 2.8. Let fe C, be Holder continuous of order o, then

R, feC&n9g,

loc

when A>0.

Proof %6, Let A>0 and p,e.# be given. Choose a coordinate system
(V,@)(V =M, ¢: V— E") on a neighborhood V of p, so the following conditions
are satisfied

(a) F(X)=fo¢@ 1(x) is Holder continuous of order o on ¢(V)="U.
(b) The coefficients in the coordinate expression for the operator «7:
A G(x)=a"1(%) 6,0, G(X)+b*(%X) 0, G(X) + ¢(X) G (%)
are Holder continuous of order a.
Let B be a ball (Euclidean metric) contained in U and with center ¢(p,), and
consider the differential equation
(A— ) G(X)=F(X) for xeB,
G(X)=(R, e (X)) for xedB.

25 That is, % is compact.
26 See also [6] p. 158.
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According to the general theory >7 of such equations, there is a uniquely deter-
mined solution G(X) which is continuous on B and of class C**® on B. Set g(p)=
G(¢(p)), then g is of class C*® on ¢ ~'(B)=V, <V and continuous on V,. Also

(A—=) g(p)=f(p) for peVy,
g()=R, f(p) for pedVj.
Next, Lemma 2.6 yields

gedy° and S g=Ag on V,
hence

f)=A-H)g)=(A—-A4)g/), peV,.
On the other hand, if & is the restriction of R, f to V, then
he@i°, and (A—A)h(p)=(A—A)R, f(p)=1(p)

for peV,,, which by Lemma 2.7 implies h(p)=g(p) on V.
Thus R, f agrees on ¥, with a function in C®* and consequently R, fe C% .

loc
Now we can finally complete the proof of the convergence theorem. Let

{(71":, t=0)} and {(71“:, t=0)} be two convergent subsequences for our original se-
quence with limits (7;, t=0) resp. (7;, t20), the corresponding generators and
resolvents being denoted by A, A’ resp. R;, R). Choose a function fe C, which
is Holder continuous of order «, then according to Lemma 2.8 and Lemma 2.5
we have for >0

R, feC%”n9, and AR, f=4R, f,

loc

R, feC%?n9, and AR, f=sR,f.

Hence
A=A R, f=(A—AR, f=f=A—-AVR) f=(A—-A)R} |
or
(A-) R, f—R} [)=0;
moreover

lim R, f(p)=lim R} f(p)=0
p—w p—®
and these two results taken together imply *® R, f=R) f. In other words, we

have shown ,
R, f=R; 1,

for A>0 and f ranging within a dense subset of C,. But this in turn implies

Lf=T'f, for t=0 and feC,,

i
so whenever a subsequence {(7,,t=0)}2_; converges it must converge to (T, t = 0).
On the other hand, we know already that any prescribed sequence {(T},t = 0)}}>,
has a convergent subsequence. Combining these results we may then conclude

that the original sequence {(Tf’,, t20)};> , itself converges to (T;, t=0). Thus we
have

27 [17] p. 167, Theorem 36 IV.
28 Argue as in the proof of Lemma 2.7.

3 Z. Wahrscheinlichkeitstheorie verw. Gebiete, Bd. 32
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Theorem 2.1. Let .# be a complete Riemannian manifold of class o/ B and let
{(v("’)p,5 ab | be a sequence of families of subprobability measures on the tangent
spaces M, satlsfymg conditions € 0-€ 6. Then the corresponding C,-semigroups

(T;, t=0) and (S,, t20) satisfy for feCy,t20
slimT,f=T,f, slim$,f=S,f,

where (1;, t 20) and (S,, t20) are C,-semigroups whose generators A and A when
applied to a function f in C*® n Cy are determined by

Af=od f=3(D* fa*>+{D fw>—k-f,
Af=of f=3KD ;6% +<D f1>.
The corresponding transition functions satisfy the inequality
Pt,p, [)SP(t,p, ) for (1, p, [)e(EY)* x M x B(H).

Remark. On basis of Lemma 1.6 we can make the apparently stronger state-
ments, that for fe C, and ¢,>0

(a) lim sup |T,f~Tf]=0

n—o0 0=t=<to

(b) lim sup |$,f—S,f]=0.

n—w 0<t<t

Corollary. Let the conditions of Theorem 2.1 be satisfied and let {o,} | be a
sequence of integers for which
.1
lim—o,=t>0.
n—o 1
Then for feC, . .
s-imT*f=T, f, s-limS*™f=S§, .
Recall that

T/(0)= | f@EB(p.dg);  Sf(p)= ff(q )B(p,dq).
M
The corollary states that the iterates
B*p,) and E*(p,")

converge vaguely to the measures P(t, p,-) and }O’(t p, -} respectively. For the
proof it suffices to consider the (T) only. So let the sequence {a,}>_; with

.1
lim—a,=t
n—wo J1

be given, and let feC,. If 0<e<1 we have

k
ot (nt < nt _ 1
kKl = &2(nt)*  e*nt

|k —nt|>ent
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according to Chebyshev’s inequality, hence

o= prgemn 5 O oy B

2u}12|0 ( t) 22
n
< —nt Tzzn Tk
S T t) ;1_ng 1T f =T f .
Now, if I>k .
. n " " l—k»ln' " 1 k—1
T’f-T"f=T"{ ) Tf(Tf—f)}= { Y 194, f)}
j=0 j=0
thus
n n I-k
17— <—=14, 1)
which after insertion in (2.9) yields
. HfH nof Lok
[Tof= T IS +tlAf e JIE)SS e
<2V ipa,ne {e+ : }
nt

hence
lim | 7%~ T, || Setlim |4, f].
Also, the left-hand side is independent of ¢, thus it must be zero whenever the right-

hand term is finite, in particular it must be zero when fe 9.
But 2=C,n C*?is dense in C, and so we may conclude

fim || 72~ 7, £ =0

for all feC,. This immediately implies the statement of the corollary.

Theorem 2.2. Assume the conditions listed in Theorem 2.1 are satisfied, and let
(X; " 120), (X, t=0) be standard processes on M, associated with the semigroups
(T;, t20) resp. (T,, t 2 0) and satisfying: weak- lim XP =X then the sequence of
processes {(X, t=0)}, converges weakly to ' the process (X9, t = 0).

In order to prove this theorem we need according to Lemma 1.4 only show
that for every ¢ >0 there exists an o >0 and an integer n, so

1.
sup E,(t p, B(e,p))Sw, for nzn,, 2.19)
peM 4
O<1

where B (g, p) is the complement (in .# ) of the bail

Bue, p)=1{q:qe M, 5(p, q)<e}.

3
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Also we retain the notation B(g, p) for the ball
Ble, p)={q: qe.#, d(p, 9)<s},

and let B°(¢, p) denote the complement in .# of B(g, p).
The proof of (2.10) will be based upon the following

Lemma 2.9. For every compact subset I' of .# and every £>0 there exists
constants a, b such that for all t>0

sup sup(1—B(t, p, #))<at, (2.11)
n pel

lim sup B(t, p, B°(e, p))<bt. (2.12)

n—o© pel

Proof of Lemma. According to Proposition 2.4(b) there exists an integer n,
and a number y>0 so

sup B,(t, D: Bc(ga p))é 1-t
pel
1
when nzn, and 0<t<y. Set b=max (7, 1) then bt > 1 for t= y, consequently
sup B(t, p, B°(¢, p)) < bt
pel’
for n=n, and all t. This proves (2.12). Next, choose p,e.# and define the sequence

E={p:ped,d(py,p)<n}, n=12, ...

Each E, is closed and bounded, hence compact. Also F,1.# as n{o. Select func-
tions f,e Cy(.#) which satisfy

rEhHE1 SBE[II(DJ"),,H+||(D2f)pl|]§1,

this can be done according to axiom 7. Write K, for the support of f,, then K,
is compact and F, = K. Also, because I'" is compact, there exists an n, such that
I'cF, . Then, for peI’ we have

L=R(t,p, M) S 1= R(t, 1. Kp,) S o (0) ~ T £, (0)
|- (s ds| @S 1AL St QAL+ 1405, = AL

<t {SupLlo3+ iy |1+ 1] + 141y — AL} Sat,

with a independent of p and [, and this proves (2.11).
As an immediate consequence of the above proof we also obtain
Corollary.
supL {1—P(t,p, #)} < 0.
peM t

O0«t
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To see this, let pe.# and choose n, so peF, , then

1—P(t9paﬂ)§1_P(t:paKno)
<1-lmR( p. K,)=lim[1-B(. p, K,,)]

<t {Hkli+sup[1|02$|+IquH]}

where a, does not depend upon p, thus

SUP—{I P(t,p, M)} = aq.
peAl
O<t

Now, we are able to prove (2.10). Let ¢ >0 be given and define

2¢
E={pzpe/4,5(p, A)z~—3—}, 1}={p:peﬂ, o(p, 4 );_3—}

These sets are compact in .4 and
I cinterior (I});

also we may assume that ¢ is so small that I] is non-empty. If pel; and ge B (e, p)

then
2¢

&
o(g, )= (g, p)— (4, p)>8—§=7

so gel; and consequently
sup B(t, p, By(e, p)) S sup B¢, p, [)=sup (1, p, I}).
pe[‘zc PE[; pEI}C

Choose fe CZ(#) such that

m=f=xn
then for pely

B p DT ro=110) —f(p)—(g A, fd5) ()

=t “Anfiléct: with ¢=sup ”Aan’

thus
sup B(t, p, Bi,(e, p))<ct, forall n,t>0. (2.13)
pely

Next, according to Lemma 1.1, there exists a p >0 so for all pe.#

B(p> p)CBA(89 p)

and this in conjunction with (2.12) yields

sup E(t, p, By (e, )< sup (1, p, B'(p, p)) =b

pehs pelz
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for nzn, and all £>0; hence

sup B(t, p, B (e, p)) < sup B¢, p, B (e, p) + sup[1 — B(t, p, .4)]

pelz pebh; prely

2.14
<(a+b)t, for n=n, andall t>0. @14)

Combining (2.13) and (2.14) we obtain (2.10), and this completes the proof of
Theorem 2.2.

Corollary. Almost all sample-paths of the process (X°,t=0) are continuous
on the interval [0, {).

Proof. Immediate from the corollary of Proposition 2.4.

Remarks. (1) It should be noted that the real difficulty in the proof of Theo-
rem 2.1 is to establish that the graph of the differential operator (of, 9), ¥ =
C2* ~ 9 ,, is dense in the graph of (4, 2 ). To see that this result is a consequence
of our prooflet f,€ 2, and let e>0. Set

go=So—Afo
and choose a g, C, which is Holder continuous of order « and satisfies

&

lgo—8l < 5

Then according to Lemma 2.8 .
=R g9,
SO

o =Sol = IRy (go = £l < g0 — £l <5

and consequently

1(for Afo) = fos LI = Lo =Ll + 1 Afo — L L
=fo=fl +1(fo—g)—(fi=8H =2 fo =Ll + g0 —8.l <&

which proves our statement.

(IT) We know already that C* n Cp = 2, but by using the fact that the weak
and the strong generators for a C,-semigroup coincide we may even prove

Lemma 2.10. If feC* Cy then fe 9D, and
Af=4f.
Proof. Recall ([6] p. 20) that if { £}, is a sequence of functions in C, such that

S(p)=1lim f,(p) exists for every pe.#, and sup|/f,[<w

then {f,}2_, is said to converge weakly to f. We denote this by
fu—2=f, for n—oo.

The weak infinitesimal generator A of the semigroup (7, t=0) is then defined by
referring to this type of convergence rather than to uniform convergence. How-
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ever, because (T, t=0) is a C,-semigroup: A= 4, and also 4 is a closed operator;
thus we have:
If{f}1c9, and f,-—=f Af,~>geC

(2.15)
for n— o0, then feZ, and Af=g.

Now, let fe C2 n Cy then there exists >° a sequence { f,} ; = C* n Cy such that

fi—>f and of,—2>of for n—oo.
But for each n
1,9, and Af,=4f,,

so from (2.15) we may conclude
f€e2, and Af=d/f.
We remark that we by now have shown that our limit process (X?, r20)is a

diffusion process in the sense of: [6] Section 5.18.

(ITI) Next, let us look a little more closely at the function P(t, p, #)="the
probability that the process starting from p at time zero is still alive at time ¢”. Set

Q(t, p)=P(t, p, M)

then
Q(t+s,p)= [ P(t,q, #) P(s,p,dq) < Q(s, p)
M

so for p fixed Q(z, p) is a nonnegative decreasing function with (see the corollary
to Lemma 2.9)

00, p)=1=s1lim O(t, p).
Let us first show

o0 _
¢ 0.p)=—k(p). (2.16)

To see this, let I' = .# be compact and let ¢>0, define
L={p:d(p,I)<¢}

then I; is a compact neighborhood of I' Let >0, then according to the corollary
to Proposition 2.4 there is a y>0 such that

1
sup _ — P(t, p, B(e, p)) <1

pel,0<t=y

%% This is the approach used in [6] (p. 165). The existence of the sequence {f,}%_, is also shownthere in
the case # =E". To take care of our situation it suffices to cover the support, F, of f with coordinate
balls {V}-, and then select functions g;e C* satisfying 0< ¢, < 1 with supp(p,) being compact and
contained in V,, and such that

L
Y oi(py=1 for peF.
i=1
We can then find sequences [{f;,}2 15, of C*® functions with compact support so
fn— 0 f, Af,—oH(@;-f) for n—oo, 1Si<L.
Set f, =Y, fi,, then {f,}@ | has the desired properties.
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and then also

1
sup TP(t: D, ];C)gﬁ

pel,G<tsy

Thus, if /' is any bounded measurable function

fim sup [ }f {f(q) Pz, p, dq)] =
o

10 per

Now, choose fe C® n Cg with y, < f<1, then for pel”
~k(p)= Af(P)vhm {ff(Q)P(t p,dg)—1}

o1
=lim—{P(t.p. .4)~ 1 - | (1~1 (@) P(: p. do)}
FC
—tim L (0 - 00. =22 0, 5
o~ . P N S , D),

and this proves (2.16).
Next, according to the corollary to Lemma 2.9 the function

1
—t‘{l'_Q(tap)}’ t>07 pejl:

is bounded. Hence we have

+

0. .1
o1 (tnp)"ylng“h_{Q(t+h7p)—Q(t!p)}

. 1
=£1ﬁ>l { T [Qh,q)—1]1 P, p,dg)

= {2 0.9)Pt,p.da),
M
SO
a Q (t,p)=— [ k(q) P(t, p, dq). (2.17)
M

Set A =sup k(p), then (2.17) yields
peAl
ar Q

(t.p)z~4- Q. p)-

Assume for a moment that we know Q(-, p) is left continuous, then this result
in conjunction with §(0, p)=1 gives
gt p)ze ™,

and in particular if k=0 we obtain P(t,p, #)=1 so in this case the process
(X{9, t>0) considered as a process on .4, is conservative.
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Finally, the left continuity of Q(-, p) follows from the inequalities (h>0)

020(t—h,p)=Q(t:p)= | [1=0h @) Ple—h.p.da)
=h-5%[l-Q(h, 91 P(t—h,p,d)=h-K,
M

where 1
K=sup—[1-0(, p}] < 0.

pe# t

O<t
We can make a similar construction for each of the processes (X", t=0), that is
if we set

0.t p)=HE(t, p, ,/ﬂ‘):e—nti (_};.?—Bz(j)(p’ M),

j=0

k(p)=n[1 =y ()]
6Q [k,

M

then

(@) (. p, dq), (2.17)

as one easily shows. If now k() is contained in C, rather than in € we may use
(2.17) and (2.17") to show

s-imT f=Tf forall feC.

n— o0

To do this, it apparently suffices to verify

s-lim B(¢, p, #)=P(t, p, H) (2.18)
because every feC is of the form f, + ¢ where f,e C, and ¢ is a constant. But

sup |P(t7 b, %)_—El(t7 Ds e/%)Izsup [Q(te p)_Qn(ta p)l

t taQ
s, p)ds— z
Of ( p) I

—sup

,p)ds

=sup g{ikn(p)—ik(pn T,k(p) — T, k(p)} ds

t t
< [k, =kl ds+ | | T,k— Tkl ds
0 0

n— o0

<t[Jk,— k| + sup || T;k—T,k|] =0
O0=s=zt

and so (2.18) follows.

In particular we may now claim, that if the measures vﬁ,") are all genuine
probability measures, that is if

VW) )=1 or k(p)=0,
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then all the processes {(X%, t=0)}® , may be taken to be conservative processes
on .# rather than on .#,. Also, referring to the corollary of Theorem 2.1, for each
pe/ the sequence {P®)(p, )}, of probability measures on #(.#) converges
weakly to the probability measure P(t, p, *) when o, ~nt.

3. Brownian Motions

3.1. Consider for a moment the situation where our manifold .# is N-dimen-
sional Euclidean space EV. Ordinary random walks in E¥ may then be visualized
as being a special kind of geodesic random walks, namely, as being geodesic
random walks with identically distributed steps. Also, the corresponding limit
processes (obtained as in Section 2) may be thought of as making up a special
class of processes canonically associated with the geometric structure of EN. We
shall call these processes Brownian motions in EV,

On basis of this point of view we now proceed to define the concept of a
Brownian motion in an arbitrary Riemannian manifold .#. Namely, we define:
a Brownian motion in .# is a diffusion process which may be obtained as the
limit process 3° for a sequence of geodesic random walks with “identically distrib-
uted steps.” Here we say that a random walk has identically distributed steps if it
is constructed on basis of a family of probability measures {v,}, , on the .Z,
with the property that for every p, g in 4

Va=Tpa Vp

where 7, denotes parallel translation along any broken C® curve joining p and q.

Consequently, if
Af=3(D?*f,0*) +{(Df, uy (3.1)

is the differential generator of a Brownian motion then the tensorfields y and ¢°
are invariant under parallel translations.

That is, if 7, is defined as above then

1,,0=0; and T, p,=p,. (3.2)

pa-p q

On the other hand, if we are given tensorfields u and o2 satisfying (3.2) and also
p,€M,, cre M ,Q.M,, o} is symmetric and strictly positive definite; then there
exists a Brownian motion in .# with differential generator given by (3.1).

To see this, fix poe.4, let {e;}\_, be an orthonormal basis for .#,, such that

fIA

N
o= e®e, O0<M=A,=-Zhy,

i=1
and let v, be the measure on .4, corresponding to a uniform mass distribution
of total mass 1on the ellipsoid &, with center u, and principal axes along the e;
with lengths /;=al,, where the value of the constant ¢ will be determined later.
First, we show that if y is a broken C*® curve starting and ending at p, and <
denotes parallel translation along y then

©6,,=&,, andconsequently tv, =v,.

30 Tn the sense of Section 2.
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So let Xeé&,,. This means
N ) N xl 2
X=p,+ ) x'e, where ) (;—) <o?,
i=1 i=1 \

and we must show tXeé, , that is

N
X =, + Y Ee;, with
i=1
But ., = u,, per assumption so

N N N
T (,upo+ Y xt el-) =l t Y X T =p, + ) e
i=1 i=1 i=1
where
N . . N . :
te;=) fle, =3 xp;
j=1 j=1
thus it remains to prove
N 1 N o 2
D [I > x ﬁ;] <o?. (3.3)
i=1 ij=1
To do this, let X be the column vector (x?), and introduce the matrices
Az{lijh Bz{bij}

where

A=A 0

ij=4-0; and b= j,
then the sum in (3.3) equals:
|A~'BX|*=x*B* A~?BXx.
The fact that 7 is an isometry implies that the matrix B is orthogonal. Furthermore,
according to (3.2)

N N
_Zﬂvizei@)ei:afm:‘cafw:_z i} BlBfe;@e
i=1 i,j,k=1
o)
T LS
o1 0 for j=+k
which means
A*=BA? B,
and consequently
A~2=B*A"*B.
Altogether
Sty Yoo,
Y[ Zes] =it er=ia e = 3 L s
i=1 ij=1 i=1 "M

and this proves (3.3).
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We have thus shown that for every parallel translation, 7, around a closed
circuit starting and ending at p,, it holds

T gpo < ér)Po
and this implies
. . T gﬂo = gpo
as claimed.

Next, we may define v, for arbitrary pe.# by setting

Vo= Tpop ¥po

where 7, , denotes parallel translation along any broken C® curve y joining
po and p.

What we have just shown implies that the definition is independent of the
choice of y. Moreover, it is clear that

| Xv,dX)=p,, )X@va(dX)—uP@)up:a; ' (34)

if this just holds at p=p,. So let us prove that by computing the integrals at p=p,.

Let E be the ellipsoid in EN centered at the origin and with axes in the directions
of the coordinate axes and with lengths /,, so

E={>€:>€=(x")eE"’, i (:—i)zgcxz}.

i=1 i

We can then identify E and &, via the map
N .
X =y + Y x'e.
i=1
If ¥ denotes the volume of E and dx Lebesgue measure in EN we may then write

N 1 o
XXy, 3, |57 (5% eim sy,
i=1 v E

#po
‘/aj X®va0(dX)_:upo®:upo =Jt§ (X_.upg)®(X_,up0) Vpo(dX)
pPo po
Norr .o 1 o
= 3 [3 pevas]e@e=ry S0 as) e
i,j=1 V E Vi=1 E

i

X
A

:}I;ii(g ( )2d>f> I e,®e;.

Set 3! yi J,a=x' then in these coordinates

E~{3:y=()eEN, Y yi<1}=$
SO

g (j—i)zdx= g(yi)2 dy-D

31 No summation!
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with D=(4; -+~ Ax) - o +2, and

=

o
f(y)zdy=ﬁ

N

. 1
)2 dj=— [ |5 dg=K
g(y) y Nglyl y

i=1

I

where K only depends upon N. Altogether

(G

2 KD
j—l) di) 27 ei®ei=7 02,

and as V is proportional to «" while D~ aN*2 we may choose « such that KD=V,
This proves (3.4). Now set v’ =v_for all n>1, pe.#, then it is easily verified that
the sequence {(vg'))pe ahr , satisfies conditions ¥0-%6, and consequently the
sequence of random walks constructed from these measures converges weakly
to a diffusion process in .# with differential generator o7 given by (3.1).

Moreover, this diffusion process is a Brownian motion because the corre-
sponding random walks have identically distributed steps. We have thus shown

Proposition 3.1. The operator
Af=3(D*f,0*) +{Df, u

is the differential generator of a Brownian motion if and only if u and ¢* are constant.

“constant” here means “invariant under parallel translations”, and it is of
course still assumed that ¢? is strictly positive definite.

Example. For each pe.# choose an orthonormal basis {e,(p)}\,, and then
set {sum over repeated indices)

u=0, o;=e,(p)®e(p), (3.5)

then these fields satisfy (3.2). What p is concerned this is obvious, and it is also
clear from the above computations that ¢2 is the covariance 32 of a uniform
distribution on a sphere in .#, centered at 0, and thus is invariant under rotations
of ., about 0. But parallel translation around a closed loop starting and ending at
p is such a rotation, and consequently o7 satisfies (3.2).

It thus follows, that there always exists at least one Brownian motion in .#,
namely, the one ** whose differential generator is

o f=3(D*f,¢%)

with 62 determined by (3.5). We shall call this process the Wiener process in ./Z.

The differential generator o7 of the Wiener process is 3 V%, which may be seen
as follows. For pe.# let as before {e,(p)})., be an orthonormal basis for .#, and
let {&/(p)}}_, be the corresponding dual basis for M. Then

o;=e(p)®@e(p),  g,=¢(P)®(P)
32 Which in the present setting is contravariant,

33 Processes whose generators are proportional to each other will not be considered as being essentially
different. It is of course assumed .# is complete and of class o/ 2.
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where g, is the metric tensor “evaluated” at p. Using the definition of V2 (see 4.1)
we now have

- (D*f 05> =<8, G*>=(V*f)(p)
for fe C?, and this proves our claim.

The transition function W (t, p, I') of the Wiener process is the natural counter-
part to the normal distribution N(z, X, §) dy in E¥, where

N =52
Nt X, 5)=Q2nt) 2-e 2

and just as N(tX,¥) is invariant under rotations and translations of EN so
W(t, p, I') is invariant under isometries of .#, i.e., if ¢: .4 — 4 is an isometry then

W, p, D)=W(t, 0~ (p), 0~ (D). (3.6)
To see this, set for t =0, pe #, e B(M):
Q(ta D F): W(ta (P_l(p)ﬂ (P—l(r))’

then @ is a transition function. The corresponding semigroup (S,,t=0) is easily
seen to be a Cy-semigroup, and if (7,, t=0) is the semigroup associated with W
then we have, for fe C, and t =0

@*(S.N)=T(¢*f) (3.7)
@* ) =f(eP)-

Let the operator 4 with domain & = C,, be the infinitesimal generator of (T;, t 20),
and correspondingly let (4,,%;) be the infinitesimal generator of (S, t=0),

then (3.7) yields
¢*feD =feP, and @*(4,[)=Alp*f).
Now, if fe C? n Cy then also ¢p*fe C* N Cxc 9, so
A fP)=(0™ ) o A@*N)P) =30 )*o V2 (@*) D) =1V (p)= A1 (D),
from which we may conclude (see Remark I at the end of Section 2) that

@=9, and Af=A,f for fed,

where

and then also
TLf=S,f forall feC, and t=0.

This in conjunction with
o, p, M)=W(t, 0~} (p), M)=1

Q(t, p,I)=W(t,p,I)
which is the statement (3.6).

In case the class of isometries of .# is “large”, (3.6) apparently imposes strong
restrictions upon the possible behavior of W(t, p, I'), and might even in some
cases be expected to characterize W (¢, p, I') uniquely. This point of view has been
taken by Yosida in several of his papers ([24,25] and also [26] p. 398 {f.). Specifically,

implies
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he has considered the situation where .4 is a homogeneous space and has defined
a Brownian motion on such a space to be a temporally homogeneous Markov
process whose transition function P(t, p, I') satisfies (3.6) and the condition **

.1 .
ltllnoa s P(t, p,V;)=0

for all pe.# and all nelghborhoods V, of p. On basis of this, he proves that the
corresponding semlgroup isa C- semlgroup > whose infinitesimal generator, A,
in local coordinates is given by the expression

*f of
ox'ox’ axt’

Af()?)z%b”(i) +d'(X) for feC*n9,,

where the “infinitesimal drift” and “variance” are determined by

; .1 .
ad'(Xo)=lim— [ (x'—xp) P(t, Xy, dX)
1o ys

1 Fol<e (3.8)
bi(xo)=lim — | (x'—x{)(x) —x}) P(t, X,, d%)
1o f d(x,%g)<e

the integrals being independent of the choice of ¢ > 0. Now, (3.6) implies
Acp*=9*cA4, on C*n9,,

whenever ¢ is an isometry of .#, and this relation may be used to set up differential
equations which must be satisfied by the o’ and b”. From this Yosida proved ([24])
that there is essentially only one Brownian motion on $2, namely, the Wiener
process with generator $V2,

1t should be pointed out, that in general “invariance under isometries” is not
the same as “invariance under parallel translations.” Thus, our definition of a
Brownian motion is not the same as the usual one, but nevertheless the Wiener
process is a Brownian motion according to both definitions. In terms of the
infinitesimal characteristics u and ¢, where as usual

A f=3{D*f,6*>+<{Df 1>,

the difference between the two definitions shows up as follows. It follows from
Proposition 3.1, that the process with generator .o is a Brownian motion according
to our definition if

2__ 2 _
Tpa0p =0y Tpg p=Hty>

for all p,q;
while it is a Brownian motion according to Yosida’s definition if

Pyl =1y, @, (07)=0;, Torall p,q,

whenever ¢ is an isometry mapping p into g, and ¢ denotes the differential of ¢.

34 Lindeberg’s condition. Compare with the corollary of our Proposition 2.4.
35 1t is assumed that P(t, p, #)=1.
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In order to prove this statement we first give. an invariant interpretation of
(3.8). Let pe.# be given, then there exists a ball B, in ./, centered at 0, and a
ball B, in .# centered at p such that the map

exp,: B, B,
is a diffeomorphism. Define for Borel sets I'c B,
my(t, I')=P(t, p, exp, I'),

then for each t=0 m,(t, -) is a subprobability measure on B, and for f bounded
and measurable

B[ f@ P p,dg)= B] f(exp, X) m,(t, dX).

Thus, if f agrees on B, with a function in 9, the Lindeberg condition implies

.1
Af@)=lim— [ { /(exp, X) m(t,dX)~/ ()].
BP
Now, let we.#} and define the function f on B}, by
f(exp, X)=w(X).

It is no restriction to assume (see [26] the proof given on p. 400-403) that f agrees
on a neighborhood, which we may assume is B;,, of p with a function in C>* " 4,.
Consequently

.1 .1
Af(p)—ltllnoi - [3{ o(X)m,(t,dX)-0]=w (ltlll’{)l " B{ X myt, dX)) i
To find Af(p)=/f(p) introduce normal coordinates on B),. That is, the point

expp(oc e;) where {e;}Y_, is some fixed orthonormal basis for JZ gets coordinates
(e, ..., o). Then we may write

0o Y pok oo

a1 =g (5L LY ew

where . . ‘ .
f@, ..., 0¥ =f(exp, (@' e)) = (o e)=0o w(e,).
Because of the choice of coordinate system, the Christoffel symbols vanish at p3°
hence i
Af(p)=p w(e)=w(u,)
36 For each set (8, ..., B¥)eE" the curve

X(O)=(tf", ..., t %) ~exp,(t f'e)
is a geodesic. Consequently for 1 k<N

dzx+ Kk dxt dx? " .
=——+ (X)) ————=[;(X i pf
0 dt? +I(E) dr dt L) B,
so for t=0and all i, j, k N
Lip)B =0  so I}¥(p)=0.
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which taken together with the result above yields
.1
6!)('up) = <1tlll'(l')l T B{ X mp(t, dX)) s

and thus because we.#;* was arbitrary

1 :
pp=lim — B{ X my(t, dX). (3.81)

A similar argument, using the function

fexp,X)={o®w, X®X)
gives

.1 .
ai = lt1lr(r)1 ’ B{ X®X m,(t,dX). (3.811)
Now, let ¢: .# — . be an isometry with g=¢(p) and put

¢4«(B)=B,, ¢(B,)=B,,
then the map

(o €Xp,=exp,° P,

is a diffeomorphism sending B, onto B;. So, constructing the measure m,(t, *)
on B, the same way as we constructed m,(t, *) on B, and using that P(t, p, I') per
assumption is invariant under ¢ we obtain

m,(t, [)=m(t, ¢, ('), for I'eB(B,).
Finally, this result combined with (3.81+ ii) is easily seen to imply

Q*(ﬂp)zﬂq’ (P*(O';):O'Z
which is what we wanted to prove.

3.2. After this detour, we return to our original definition of a Brownian
motion as being a diffusion process in .# that may be obtained as the limit of a
sequence of geodesic random walks with identically distributed steps. As shown
in Proposition 3.1, such a process is essentially characterized by the requirement
that it must satisfy (3.2), and consequently we may classify Brownian motions by
classifying the corresponding tensorfields u and ¢2. We shall in the following use
this approach to obtain a description of which Brownian motions there may
exist in a given manifold .#. Our motivation for considering this type of problem
has been the result by Yosida mentioned above, that the Wiener process is the
only Brownian motion in S?. We shall prove a corresponding result for general
manifolds.

Because of the way things have been set up, our results will follow rather easily
from certain standard theorems from differential geometry 3”. Consequently, we
have omitted the proofs and tried to keep the exposition as brief as possible.

37 Our basic reference here is [14].

4 Z. Wahrscheinlichkeitstheorie verw. Gebiete, Bd. 32
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If p is an arbitrary point of ./ and y is a closed curve starting and ending at p,
then paralle] translation along y induces an automorphism of M, One defines
¥(p), the homogeneous holonomy group at p, to be the group of automorphisms
of .#, that may be obtained by such parallel translations. The connectedness
of .4 implies that for any pair of points, (p, g), ¥(p) and ¥(q) are isomorphic, and
consequently we may speak of the holonomy group ¥(=¥(p)="P(q) of .#
without referring to any particular point p.

Now, if 4" is a subspace of .#, which is invariant under the action of ¥ and
which contains no proper P-invariant subspace then .4 is said to be irreducible,
and, in particular, if .#, is irreducible we say that the manifold itself is irreducible.
Generally, .4, can be written as a direct sum

My= M) DM D - D ME (3.9)

of mutually orthogonal ¥W-invariant subspaces where ,//l;, e /%If‘ are irreducible
and
M) ={X:XeM,and tX =X for all te ¥(p)}.

It may of course happen that ./, = {0}.

(3.9) is a so-called canonical decomposition of .#,, and it is unique up to a
reordering of the .4} if .4 is simply connected. A basis {¢,}Y_, for M, with the
property that

0. 1. L
e €My € sy €My - enEM,

o €l

will be said to be adapted to the given decomposition.

Recall that the concept of parallelism is defined in terms of the Riemannian
connexion V rather than in terms of the metric tensor g. Consequently, if g and 3
are metric tensors generating the same affine connexion then one would expect
that canonical decompositions relative to these metrics could be chosen so as to be
closely related. And indeed, using elementary linear algebra one may prove.

Lemma 3.1. Let g and g be two metric tensors on M which generate the same
affine connexion V, then for each pe.# there exists a decomposition

%Pzﬂ;)@'“@'ﬂ;

which is canonical relative to both metrics, invariant under parallel translations,
and satisfies

(I) For each i, 1 i< L, there is a constant 1,>0 such that

(2) g,(X, Y)=1,8,(X, Y), for X, Ye .l

(II) .#) may be written as a direct sum

,ﬂf:%l@...®%K

of mutually orthogonal subspaces such that
b2 X, Y)=1g,(X,Y), for X, Ye%jfor some constants [,>0, 1 <j<K.
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On the other hand, let (3.9) be a given g-canonical*® decomposition of My,
pPoEM, and let
Moy =0, ® - D

Wwhere the %’;‘0 are g-orthogonal. Define for each pe . # a corresponding decomposition
of M, by parallel transport of the given decomposition from p, to p. Choose positive
numbers A, ..., Ay, 1y, ..., Iy and define g by conditions (a) and (b) together with the
conditions that §(X,Y) must be linear in X and Y and that the spaces i), ..., X,
My, ..., My must be g-orthogonal. Then g is a metric tensor which is invariant under
parallel translations, and thus the connexion generated by g is V.

We are now ready to describe the different Brownian motions in .# on basis
of the requirement that 62 and z must be “constant™. The two terms are independent
of each other so we may treat them separately. First, the remarks above imply
immediately

Proposition 3.2. There exists Brownian motions with nonzero drift, u, on M
if and only if the holonomy group ¥(p) at any point p leaves fixed some nonzero
element of M ,. Conversely, every such element X, can be used to define a drift term
u by setting y, =<, X . ©,, denoting parallel translation from p to q.

Specifically, the proposition says that if we consider a canonical decomposition
(3.9) of .4, then the condition for the existence of a nonzero drift term p is that

MO+ {0}.

Next, consider the tensorfield 2. It is a symmetric and strictly positive definite
tensorfield of type (2, 0) satisfying condition (3.2), and we shall use this to define
a new metric tensor g on /. First, for pe.# define the map
Fol,— uk
by
CF(X),Y)=g,(X,Y)
forall X, Yin M,. Then set
g,(X.Y)=<a}, F(X)®F(Y))

for X, Y in .4, (we are “lowering indices”). It is straightforward to check that this
defines g as a metric tensor on .#, which is invariant under parallel translations,
and consequently Lemma 3.1 applies. Using the notation introduced in that
lemma we thus have, for pe.#,

My= M) D - DMy,
M) =H© - DA,
these spaces being mutually orthogonal relative to both metrics, and
2,(X,Y)=4;g,(X.Y), for X,Yin ,/l;%, 1<i<L; (3.10)
g,(X.Y)=1lg,(X,Y), for X,Yin .

% That is, canonical relative to the metric g.

4%
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It is clearly no restriction to assume that the J#; are one-dimensional, so this we
shall do also. Now, choose for each pe.# a basis {e;,(p)}}, for .4, which is adapted
to the given decomposition, and such that, for 1<i<K, e,(p) spans J{;f. We may
assume that this basis is orthonormal relative to the metric g and orthogonal
relative to the metric g. Set for 1<i<K

(Si)i =e,(p)®ei(p),

and if e, , ,(p), .... e, (p) are those vectors among the e;(p) which span ./,
15ig L, set

kivt

(5= Y e(n®ep).

J=ki+1

The (s?)’ and (s?); are symmetric contravariant tensorfields that are invariant under
parallel translations, and for each pe.# we have the decomposition

K L
or=Y 1 (sDi+ Y A (s2). (3.11)
i=1 i=1
If, in particular, .# is irreducible there is only one term, i.e.,
N
or=4) e(n)®ei(p),
i=1

and this means (compare with (3.5)) that the corresponding Brownian motion
has differential generator

A
=D, 0?y =272,

so it is (essentially) the Wiener process.
In the general case we derive from (3.11):

Proposition 3.3. Let .4 be a complete Riemannian manifold of class o/ .
(1) If M is irreducible there exists only one Brownian motion on ./, namely the
Wiener process.
(I1) In case M is reducible, the Brownian motions on M may be classified as
follows. Let poe M and let
My =My, ® - @My,
be a canonical decomposition of M,,,. Also, let {e;}}_, be an orthonormal basis for

M, adapted to this decomposition with

0. 1
e, e €My e g, €My el

let I, ..., L, Ay,..., Ay be positive numbers and let a, ..., o, be arbitrary real
numbers. Set

k1 ky L ki+1
— . 2 __
P‘po—zl"‘jej’ apo—le,-ej®ej+_st[ > ej®ej]7

j=ki+1

— 2 __ 2
Mg = Tpog Hpo> 04 = Tpog P po> qe‘%’
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where 1, denotes parallel translation along any C* curve joining p, and q. Then
there exists a Brownian motion on 4 with differential generator

A f=5{D*f,0*)+{Df, . (3.12)
Moreover, every Brownian motion on 4 may be obtained in this fashion.

The geometric content of this result is perhaps most easily comprehended if
one compares with what happens if .# =E". A Brownian motion on EN has

generator A
o + b o

= ij ] 'y
Af=a Ox' ox? ox*

with constant coefficients. Here it may be assumed that the matrix {a"} has zero
entries outside the diagonal, and thus the process may be viewed as being a “sum”
of one-dimensional motions along the coordinate axes. Now, Proposition 3.3
expresses the corresponding result for a general manifold .#, namely, that locally
a Brownian motion on .# may be thought of as being the “sum” of certain basic
Brownian motions which cannot themselves be further reduced. If .# is simply
connected we can obtain a complete analogy with the case .# =EY by using the
de Rham decomposition theorem *° according to which .# is isometric to a

direct product
MO X M X - x ME

where .#°=EX, K=dim.#0 20, and .4*, ..., 4" are simply connected, complete,
irreducible Riemannian manifolds, each one being of class o/ # (because . itself
is assumed to be of class .o/ ). Identifying .# and .4° x --- x M* we get

M= (M), @ (M), ® - B (MY,

the point being that ﬂlf = ("), for each j, where as usual the .47 are given by (3.9).
Let X,(),..., X,(t) be independent Brownian motions in #°, ..., .#* with

generators e P 7 o,
Ho5v=X [i5aga o]

=1

resp.
o, fi=2 -3V, for 1<i<L,

where V;>denotes the Laplace operator in .4".
Then the process
X(0)=(Xo(t), ..., X.(1))
is the Brownian motion in .# whose differential generator is given by (3.12).
The general version of the theorem by Yosida mentioned earlier now foliows
from Proposition 3.3:

Corollary. Let .# be a 2-dimensional complete Riemannian manifold of class
A RB and with nonvanishing Gaussian curvature K, then there exists only one
Brownian motion on .#, namely, the Wiener process.

39 [14] p. 192, Theorem 6.2.
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Proof. The restricted *® holonomy group ¥° of ./ is a closed connected sub-
group of SO(2) so either it contains only the identity map or it is all of SO(2).
Now, the existence of a point p at which the curvature is different from zero
implies (use the Gauss-Bonnet formula) that ¥°(p)+ {identity map} and con-
sequently ¥°=S0(2), which means .# is irreducible.

The result now follows from (I) of Proposition 3.3.

4. Appendix

The purpose of the present section is to establish the general notation relating
to some basic concepts from differential geometry ! which are being used through-
out this paper.

4.1. 4 will always denote a fixed N-dimensional complete Riemannian
manifold with metric tensor g and associated Riemannian connexion V. In
particular, .# is assumed to be connected and separable. For pe.# the tangent
and cotangent spaces at p are denoted .#, resp. 4", and in general we write (./Z,);
for the space of tensors of type (r, s) over .#,. Occasionally we shall need to view
an object Te(.#,); either as being a linear functional on the space

rtimes stimes

or as being an (r + s)-linear functional on the space
My X X MF XM X M.
In both cases we write
<LS) or (ST)

for the action of T on §.

An inner product and a corresponding norm is defined on (.Z,); in the following
fashion. Choose an orthonormal basis {e;})_, for .#, and let {¢’}}" | be the corre-
sponding dual basis for M ; then the collection

. 15/, EN
J1 Js =J1=
{6, ® Qe Q"R - ®e& }lging
forms a basis for (.#,); which now is taken to be orthonormal. This yields the
desired inner product, and we obtain the counterpart of Schwarz’s inequality

KT, SX=IT] - 1IS].

Let f'be a real valued differentiable function on .#. With f we associate two tensor-
fields, namely, (1) Df = the differential of £, and (2) D*f which is defined as foltows*2,

40 This is defined in the same way as ¥, but referring only to parallel translations along nullhomotopic
curves.

41 Our basic references on this subject are the books: [8] and [14]. In order to avoid misunderstandings
we remark that the word “differentiable” here means “of class C®” unless otherwise indicated.

42 In general we define tensorfields T by exhibiting for each pe.# the “value” T,e(A,); of T at p. The
degree of smoothness of T then depends upon the smoothness of this assignment and is found by
expressing the definition in terms of local coordinates.



The Central Limit Problem for Geodesic Random Walks 55

Let ped, XeM,, Yed,. Choose a curve y(t), 0St=1, with
y(0)=p; 7,.(0)=tangentto y(-)at 0=X,
and define the vectorfield Y, along y(¢) by requiring
Yo=Y, V, ,%=0,
i.e, Y, is the parallel translate of Y along y(-). Finally set

(P(t) = <(Df)y(z) Y05
then D*fis defined at p by the conditions
(Df),e(t,);,  (D*f),. X®Y)=¢'(0).

To see that this definition is independent of y(+) introduce a local coordinate
system (¥, 2)** around p and set

a(p)=(x i) X:f%ai’ Y=1185i,
ay)=(x'©), V=103,

Then *4 .
(y(0) =( 7:40)=800;,
dr/ . dx’
i = <kZN
I +1n I =0, for 1Zk<
$0

DSy Yo =006, £(»(1)),

d dn* . dx'
W, Xe 1> =[L nk(t)akf(v(t))] - as+rean |

t=0 t=0
=(0;0;f— kf) Mo fl
Thus, the coordinate expressions are
Df= (5 f) dx’

4.1)
D*f=(0,0,f — T8, f) dx' @ dx,

from which one sees that D?f is symmetric.
If we write for fand h differentiable

2(Df)(Dy=(Df)®(Dh)+(Dh) @ (Df)

43 Ve, n: V— EN= N-dimensional Euclidean space. We describe points in EY by the letters X =(x")
and differentiation in the coordinate directions by

a
6,f =5 (fea™),

The 0, are viewed as being tangent vectors to .#, and form at each point p a basis for .#, whose corre-
sponding dual basis is {dx'}_,.
** The I} are the Christoffel symbols:

Ve 8=T3j Ohs

where repetition of the index k means: sum over k, ISkSN.
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we obtain the useful formalism
D{fh)=fDh+hDf,
D%(fh)=fD?*h+2(Df)(Dh)+ hDf.

The Laplace operator V' may now be defined in the following invariant fashion.
If I,(+,*) denotes inner product on (./#,); define (Gf),&(4,)3 by

L((G*f),, X®Y)=((D*f),, XQY)
forall X, Yin .#,. Then we can set
(7N ()=<g, (G*N),

where g, is the metric tensor evaluated at p, and fas usual is a differentiable function
on 4.

In coordinates this reads
Vif=g"(0,0,f —L%6,/)=1IgI~*8,(Igl*g" a1,

g:gudxl ®dxj’

where

{g"} is the inverse of the matrix {g;,}, and |g| is the determinant of {g,}.

4.2. The distance between a pair of points p, g in .# will be denoted d(p, q).
There is always a geodesic segment y(t), a<t < b, joining p and g for which

length of y=|y|=4d(p, q).

Such a segment will be called a short geodesic segment and denoted pg. Although
in general the choice of y is not unique unless p and q are close together this con-
vention will not cause any difficulties in the following. We can now define the
concept of Holder continuity of a tensorfield:

Definition 4.1. Let 0<a=<1. A tensorfield T of type (r,s) defined on 4 is said
to be Héolder continuous of order o if there exists a constant K> 0 so

sup [KT,, 1,400 —<T,,, 0>|: (A7), [0l = 11=Kd*(p, q), (4.2)
forallp,qin 4.

Here 7,, denotes parallel translation along any short geodesic segment pg,
and part of the requirement is that the inequality must hold for every choice of pg.
If we are dealing with a function frather than a tensorfield we substitute the condi-

on ) - @I <K d(p. ) (43)

for (4.2). In case every point p, has a neighborhood ¥, such that (4.2) (or (4.3))
holds with K= K(V, ) we say that T (or f) is locally Holder continuous of order a.
The situation that will concern us the most is the one where fis twice continuously
differentiable (fe C%) and D*f is Holder continuous of order a. We then write
feC*? or fe C{2:* depending upon whether this holds globally or locally. The
following lemmas are easily proved
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Lemma 4.1. The function fe C? is contained in C%, if and only if every point p,,
in M is contained in a coordinate neighborhood Vy such that*®

10:0,f(X)= 0,0,/ =K - |[x—yI

for some constant K, 1<i,j< N, and all X,y in B(V,), where B denotes the coordinate
map: Vy— EN.

Lemma 4.2. Let fe C%® and let pye M. Then there exists a neighborhood V

of po and a function fy with compact support such that fye C*® and f,(p)=f(p) for
peV.

Lemma 4.3. Let 0<a <1 and let fe C'?*® and have compact support. Then there
exists a constant K so

|f(exp, X) = f(p)— {(Df),» X>—3{(D*f),, X@XD|SK - [ X|>+

for all pe M and X € M,

Here “exp,” is the exponential map: .#,— ./, and the estimate in Lemma 4.3
is obtained from the Taylor expansion of the function

p()=f(exp,tX), —ow<t<oo,
about t=0.

4.3. In this section we shall take a look at the “good” property of Riemannian
manifolds on which the proof of our main theorem (Theorem (2.1)) is based. Let
pe# and let X, Ye./,, set

(5 0)=exp,(tX), —oc0<i<oo0,

and let 7, denote parallel translation along y(-,0) from p=y(0,0) to p,=y(t,0),
then define Y5 s)=exp, (s-7,Y), —oo<s<oo.

The problem*® to be considered is that of finding an upper bound for the distance
between the points y(0, 1) and y(1, 1) in terms of X and Y. We shall prove

Lemma 4.4. To every point pe.# and every compact neighborhood V of p there
exists a constant ¢20 such that for geV and X, Yed, with | X||<1 and | Y| <1

we have
dy(0, 1), (1, D)X - L+ Y.

In order to prove the lemma we need a few results concerning the geometry of
the tangent bundle J.# of .4 . These we list first, referring the reader to the paper:
[19] for proofs and further information.

Let (V,a), a: V— U< EY, be a coordinate system on .# and let TV= Uper 4,
be the part of 7.4 lying above V. TV is identified with U x E¥ by letting a pair
(p, X), peV and Xe.#,, correspond to a pair (X,7) where X=o(p) and X ~0'9,.
This makes TV into a coordinate patch in J.4. If y(t), a<t<bh,is a curve in V
with y(a)=q and X is an element of .#,, then the lift § of y to (g, X) is the curve in

B x—yP=Y", (x'—y"? where X =(x") and j=(y}).
46 See also [3] p. 2471
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T M which satisfies
Ha)=(g, X). mi(O)=7(t), a=<t=b,

dv o d
ZY) = —Li(x() );t(t) ()

where we have written in coordinates

WO~X()=(x'©);  H(6)~(X(@), 7)),

and where n: 9.4 — # is the projection map, 1.e., n(p, X)=p. By piecing together
this definition extends to all of .#, so it makes sense to talk about the lift of an
arbitrary curve in .#. Note that § may be visualized as consisting of a pair (y(-), X.)
where p(+) is a curve in .# and X. is a parallel vectorfield along v. In particular, if
7 has the property that

F(t)y=(v(t), y, (1)) forall ¢
which in coordinates reads
dxi_ . dvt

&= (44

then y is a geodesic. Let P=(p, X)e J.4 then there exists a unique integral curve
&(t, P), — 00 <t < o0, of the system (4.4) satisfying

&(0, P)=P.
@(-, P)is the lift to P of the geodesic mo &(+, P), and for all ¢, s

&(t+s, P)=&(1, D(s, P)).

Considered as a function: E' x Il — T d(-,+) is of class C*, while for ¢

fixed the map
T: P> T,P=9(t, P)

is a diffeomorphism of 7.4, and as one easily sees the family (7, — oo <t <o)
constitutes a one-parameter group of diffeomorphisms of 7.4, the so-called
geodesic flow. For pe.#, X e ./, the geodesic y with

0)=p, 7,0=X
is now given by

y(O)=exp,(tX)=n-T,P, P=(p, X),
and in particular we get the exponential map factored

exp, X=noT(P), P=(p,X),

where we have set T=T;.
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Finally, let P=(p, X)e 7.4 and let Ye.#,. The horizontal lift #,(Y) of Y
to P is then defined to be the tangent at P to the lift § to P of any curve y with

0)=p, 7,0)=7, (4.5)

Hp(Y) =7, 0)e(TM),.

thus

this definition being independent of the choice of y satisfying (4.5).
We now have the tools needed for the proof of Lemma 4.4. Let pe.# and let
X, Yoedl, with | X[ =Y, =1. For — oo <u, v<oo set
c(t,u)=exp,(tuXo)=mod(t, (p, uX,))
and let G(-;u, v) denote the lift of ¢(-; u) to the point (p,vY,) in 4. The curve
y(, 1) corresponding to*” the vectors X =uX, and Y=1vY, is then

y(t, 1)=moToG(t; u, v)
and consequently

4300, 1), 9(1, D)= [ lly, (& ] de < [ [ 7,6 l)nZdrT
with 48
Vet )=m 0T oG, (t;u,v)

and
G (t; 1, 0) = A, (€, (85 1, ).

The integral .
E(u, v)=0§ vt 1))1* dt

is a C* function of the variables (p, X, Y,, 4, v). For the moment we shall keep
(p, X, Y,) fixed and expand E(u, v) in terms of ¥ and v. To this end note first that
c(t; u)=clut; 1) so

c (t;wy=uc,(ut;1); G, u,v)=Gut; 1,v)

thus
H'))*(t, 1)”2=M2 “TE*O T*o%(ut; LU)(C*(HI; 1))“2
and
E(uv U)=u.§‘ ”n*oT*o%(s;l,v)(c*(S; 1))“26{5
0
Set
7, 0T, o, (X2 for u=0
F ) = * 0 tx (p, vY0) \“2 0
(u7 7—) {M_ZE(M, U) for M#O
then

F(u’ U)=§ HTC*O T*o%(ut; 1,»)(C*(ut; 1))\‘2(1{’

47 In the notation of the lemma.
*% For amap ¥, ¥, denotes the differential of ¥. The functions ¢(+;u), G(-; 4, v) etc. are thought of as

. . ) . d
being functions of t parametrized by u, v. So for instance, ¢, (¢; u) means i c(t; u).
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so F is of class C* in the variables (p, X, Y, 4, v), and the same can then also be
said about the function
! 0°F

D(u,v)= f(l 0) —— 5 (u, Ov) dO
which is the remainder in the expansion
F(u,v)=F(u, 0)+v oF (u 0)+v2D(u, v).
On the other hand, it will be shown in a moment that

F(u,0)=1, I w0)=0. (4.6)
v

Consequently
E(u,v)=u?[1+v*D(u, v)]

and the conclusion of the lemma follows (u%~ | X|* and v?2~| Y| ?). So it only
remains to prove (4.6). First

ToG(t; u,0)=G(t; u, 0)
so
o ToG(t; u, 0)=mo G(t;u, 0)=c(t; u),
that is for v=0
17, & DI? = lle, (&5 w)]? = | X,l1> =12,
hence

1
Fu,0)=u"2E@,0)=u"?{|y,(t DI*dt=1,
0

which proves the first part of (4.6). To prove the second part it obviously suffices
to show

0
= 176 DI =0.

So consider for u fixed the expression
y(t, )=moToG(t; u,v)

as a map from the (¢, v)-plane into .#. Letting V denote covariant differentiation
we have (with slight abuse of notation)

oy @v)

0 0 0 0
sy (2.5 el o, ) e, )
Eu

ot ot ot & ov
0
Moreover, for v=0, the vectorfield FZ} is parallel along the curve

mo ToG(t; u,0)=exp,(tuX,),
and consequently
oy

e sl =0

v=0
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Inserting this in the above equation we obtain

0
‘6—1; “')’*(t: 1)”2'0:0:07

as claimed. This finishes the proof of the lemma.

It will at times be necessary to assume that the manifold .# possesses certain
extra properties besides those already mentioned. These we have listed below as
axioms .o/ and %#. A manifold satisfying axiom ., or axiom %, or both will be
referred to as being of class .o/, or class 4, or class <&/ respectively.

Axiom 4. For every compact set K< M and every ¢>0 there exists a C®
function f with compact support, so

0=f=1, f(p)=1 for pek,
and
sup [max {| (D), I, (D), 31 e

In the formulation of the next axiom the notation is the one introduced in
connection with Lemma 4.4;

Axiom 4. There exists a constant ¢ 20 such that for pe M, X € M,, Ye M, with
IXIIS1 and | Y| £1 we have

d(y(O, 1), 7(L, D)X (L +c | Y]?),
where
Y, 0)=exp,(tX)=p,, y(ts)=exp,(sY),

Y, being the parallel translate of Y along v(+, 0).

We should like to point out that it is possible that every complete manifold
is of class «7. At least we do not know of any counterexample. Under any circum-
stances, both axioms are satisfied in the following important special cases:

(I) .# = N-dimensional Euclidean space,
(IT) 4 is compact.
Here (I) is obvious, while (II) is a consequence of Lemma 4.4. 4 is also satisfied
if ./ is a homogeneous space. This follows in a similar fashion from Lemma 4.4.

44. Let U be an N-dimensional real vector space furnished with an inner
product I(-,*), and let v be a Borel measure*® on U with v(U)< 1. Such a measure
will be called a subprobability measure on U. For m= 1, the m-th absolute moment

|ul™ of v is defined by
™ = [ o] ™v(dv),
U

where ||v]|2=1I(v,v), and also if |u|"™ < co we define, u™, the m-th moment of v,
to be the element of U®---® U (m times) which satisfies

™0 R @™ = | [ﬁ(v, 01')] v(dv)
U Lj=1

% U is furnished with the topology associated with the metric induced by I(-, +). In the following
“measurable” means “Borel measurable.”
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for all (6%, ...,0™) in U* x --- x U*. Here U* is the dual of U. Clearly

<[ 11101 ] - 1e1m=16'@--@071 - ol

j=1

H (0, 0%

so the integral is well-defined and also
IKp™,0' @@ 0| u™- 10" ®---® 6™
We use the notation
i = [o@- @ vv(dv),

U

and also if A< U is measurable

[r@-@uvv(dr)= [v®--®vV(dv)

A U
with ¥ given by: ¥(B)=v(4B). If {¢;}}"_, is a basis for U then

U:Uiei’ v®...®y=yi1...Uimgi1®...®eim
and if follows that

fo®@--®@uvv(dv)=[ [v"-- v'v(dv)] e, ®---®e;,.
A A

In particular, if the basis is orthonormal

sees

from which one easily obtains

IO S P <Y N @ <YN 1. 4.7

If V is another real vector space and 7 is a linear map from U to V then 7 induces
in a natural way a linear map, which will be denoted by 7 also, from the space
U®---® U to the space V®---® V, namely,

ol Pouy, @ @uy)=a I (Tu ) @ ® (Tuy,).
Moreover, the measure v on U induces a measure tvon V
w(d)=v(r71(4)),
and if u® and u® are the k-th moments of v resp. tv we have the formula
B=1ud. (4.8)

Let us now return to our manifold .#. Assume there is defined for each pe.# a
subprobability measure v, on .#, satisfying

{lol?v,(dv)<co;
Mp
then we may construct tensorfields u, u® and ¢? by setting
(w),= [vv,dv); U?),= [o@uvv,(dv); o*=pP~pup.
Ay

P
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These tensorfields need of course not exhibit any kind of regularity in their
dependence upon p unless further conditions are imposed upon the v,. Such
conditions will be set up next.

To this end, recall that for measures m,, m, defined on the same space U the
quantity >°

Imy —my|=sup [| | f(v)(m,(dv)—m,(dv)|: fe C(U), | fI =1] (4.9)
U

is used to measure the deviation between m, and m,. Now, in our case, the measures
v, are defined on different spaces and thus cannot be compared directly by the
use of (4.9). But, by introducing certain isomorphisms 7,, between the spaces
M, and .4, we can instead compare v, and 7,,v,. So fix p and g in .# and let 7,
denote parallel translation along a short geodesic 7g. Then define [v,—v,l to be>!
the supremum of the numbers |v, -7, a v,| taken over all such pg. We can now talk
about continuity of the map p — v, and in particular we can define Hélder continuity
of order o by the condition that there shall exist a constant K so for every p, g
in 4

vyl K d*(p, 9). (4.10)
Here |v,—v, | <2, so it suffices to verify (4.10) for d(p, g)<some positive constant.
Local Holder continuity is defined in a similar fashion.
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