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The Central Limit Problem 
for Geodesic Random Walks 

Erik Jorgensen 

O. Introduction 

The purpose of the present work is to consider the problem of defming the 
concept of a random walk in a general Riemannian manifold JCl, and to investigate 
the behavior in the limit of a sequence of such random walks. It will be shown 
that such a sequence, under reasonable assumptions, converges to a diffusion 
process in d/l, and in particular Brownian motion processes will be obtained as 
limits of sequences of random walks with identically distributed steps. 

The results which we arrive at in this paper are general versions of well-known 
classical results concerning the transition from random walks to diffusion processes, 
for instance: the central limit theorem and Donsker's theorem (as formulated in: 
[1] p. 68 ff.), and they specialize to these results when we take ~ = EN= N-dimen- 
sional Euclidean space. Also, what they essentially show is that the combination 
of a large number of mutually independent, individually negligible, and identically 
distributed random causes leads to a "normally distributed" random effect, even 
though the rule according to which these causes are combined is nonlinear, non- 
commutative, and altogether not in any way derived from a natural group struc- 
ture. 

It might at this point be appropriate to mention, that the article is not con- 
cerned with the study of diffusion processes as such. If one wishes to undertake 
such a study, one does not have to worry about the convergence problem that is 
investigated here. Instead, one may proceed to define such a process directly in 
terms of its infinitesimal characteristics, for instance, by letting it be the solution 
of a stochastic differential equation, or by prescribing its infinitesimal generator. 
This approach has, for example, been taken in [6, 10-12] and [16]. In this connec- 
tion, it should also be noted that Gangolli ([7]) by generalizing an idea contained 
in [15] has shown how one may construct a diffusion process in a differentiable 
manifold by injecting, via the exponential map, the differentials of corresponding 
diffusion processes defined on the tangent spaces of the manifold. Although 
Gangolli's work apparently has much in common with ours, the similarity is 
only superficial as one will easily discover by comparing the results obtained in 
the two papers in the case where the underlying manifold is E N. 

Our approach to the problem in question is based upon the use of semigroup 
methods similar to the ones used in the papers: [9, 21] and [23]. It may briefly be 
outlined thusly: Starting with a family of subprobability measures defined on 
the tangent spaces to the manifold d/l we first construct a random walk and next 
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an associated Markov process in Jr Then considering a sequence of such families 
we set up conditions on basis of which we prove that the corresponding sequence 
of Markov processes converges weakly to a diffusion process in Jr All of this is 
formulated in the language of semigroup theory and thus the basic convergence 
problem becomes the problem of deciding whether a given sequence of semi- 
groups is convergent. In the present context this problem is rather complicated, 
and its solution takes up a major part of the article. 

The article itself is divided into three main sections and an appendix. Section 1 
starts out with a brief survey of our notation, which we have tried to keep as 
close as possible to that of our main reference, namely, the books: [6] vol. I and II. 
After that follows a theorem by Stone concerning the weak convergence of a 
sequence of Markov processes. This theorem is translated into a corresponding 
theorem about the convergence of a sequence of semigroups and is from then on 
used as the basic test for weak convergence. Finally, we state a lemma which links 
the convergence of a sequence of semigroups to that of the corresponding sequence 
of infinitesimal generators. The proof of this lemma is based upon ideas contained 
in the paper: [9]. 

In Section 2 we begin with a description of the concept we have named "a 
geodesic random walk." Following that is the proof of our main theorem, which 
states under which conditions a sequence of such random walks converges to a 
diffusion process. As mentioned earlier, the proof of this theorem is rather long, 
so in order to simplify it we have broken it into several smaller parts, each of 
which has been stated as a lemma. The section closes with a few remarks about 
the properties of the resulting limit process. 

Section 3 is devoted to the study of a special class of processes in Jr namely, 
those we have chosen to name Brownian motions. Here we define a Brownian 
motion to be a diffusion process that may be obtained as the limit of a sequence 
of geodesic random walks with identically distributed steps. Such a process may 
be characterized by the condition that the coefficients occurring in the expression 
for its differential generator are constant, where the word "constant" is taken to 
mean "invariant under parallel translations." In particular, we define the Wiener 
process in ~r be the Brownian motion that occurs as the limit of a sequence of 
random walks where the individual steps have a symmetric distribution. As one 
would expect, the differential generator of the Wiener process turns out to be 

V 2 V z , where is the Laplace operator on ~ .  
Now, in case ~ is a homogeneous space one usually defines the concept of a 

Brownian motion in a different fashion. That is, instead Of demanding that it be 
invariant under parallel translations one defines (see [24-26]) a Brownian motion 
to be a diffusion process that is invariant under isometries of J L  The two definitions 
do not in general lead to the same class of processes, but, nevertheless, the Wiener 
process is a Brownian motion according to both of them. A brief discussion of 
this situation has been included. The section finishes with a classification of the 
different types of Brownian motions that may exist on a given manifold. In 
particular, it is shown that the Wiener process is the only Brownian motion there 
is on a two-dimensional complete Riemannian manifold with nonzero curvature. 
This generalizes a corresponding result obtained by Yosida ([24]) for the case 
~/___S 2. 
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Finally, the appendix contains a listing of those concepts from differential 
geometry which are used in the three main sections, together with a few non- 
standard notational conventions. Also our two basic axioms, referred to as d 
and N in the main text, have been listed here. 

1. Basic Concepts 

1.1. Throughout this paper ~ will denote a fixed N-dimensional complete 
Riemannian manifold 1 with metric tensor g and corresponding distance function 
d(., .). In case ~ is not compact let ~ = ~ ' u  {A} be the one-point compacti- 
fication of J/l, and define a metric 6(., .) on Jr by setting 

where 

oo 

6(p, q)= ~ 2-"  If.(P)-f.(q)[, p, qe d G, 
n = l  

1] if q=A 

f , (q)= d(p,, q) if qeJ~,  
+ d(p,, q) 

and the sequence {P,},~I is dense in ~/. The topology on ~ generated by 6(', ") 
is then the same as the topology generated by d(., .) (see, for instance, [13] p. 144ff.). 
In case ~ '  is already compact, we simply adjoin A as an isolated point and define 
the metric 6(- , . )  on J{A = J{  W {A } by letting d = 6 on ~ • #/1 and 

6(p, A)= 1 for p~J~. 
In both cases we then have 

Lemma 1.1. The restriction of 6(', ") to ~ x J//l uniformly continuous with 
respect to d(., .). 

Define the following classes of real-valued functions on ~r 

C = C(J~)= {f: f is bounded and continuous}, 

C =  C(JCQ = {f: f ~  C and limf(p) exists}, 
p~ov 

Co-- Co(J/Q= {f:  f s C  and l imf(p)=0},  
p~co 

C~ = C~(J~) = {f: f e  C and supp(f)  is compact}, 

where supp(f)  denotes the support o f f  while 

lim f (p) = a 
p~oo 

means: For every e > 0 there exists a compact K c ~  such that 

[ f ( p ) - a [ < e  for p ~ J C I \ K = K  C. 

Clearly C = C = C o = C K if J / i s  compact. 

1 See the appendix  for no ta t ion  and  references. 

1" 
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For f ~  C set 
II f II = sup I f(P) l. 

p~,M 

This defines a norm relative to which each of the spaces C, C, C O is a (real) Banach 
space. Note that C~ is dense in Co, and that C consists of exactly those functions 
in C which may be continuously extended to all of JP/a. This we make use of 
occasionally by identifying C ( ~ )  and C(J/gA), in an obvious fashion, when Jr 
not compact. 

Finally, whenever the term "measurable" is used it will refer to the basic 
a-algebra ~(~d)  of Borel sets in ~/(~'~). The class of bounded Borel measurable 
functions will be denoted B(BA). 

1.2. Let (X t, t > 0) be a stationary Markov process 2 with state space (~', ~r 
and transition function 

P(t, p, F)= Prob { Xt +ss Fl X~= p}, 

where 0 < t < c ~ ,  p~J//, and F ~ .  The semigroup ( T , t > 0 )  associated with 
(Xt, t > 0) is then defined by 

T, / (p)= S f(q) P(t, p, dq), (1.1) 
dr  

for 0 < t  and feB. (T, t>O) is a positive contraction ("sup" norm!) semigroup 
on B. If also 

feCo =*" TtfeCo for t_>0, and lira IITtf-f]  I =0 ,  (1.2) 
t$o 

then (Tt, t>0)  will be called a Co-semigrou p. We shall be working almost ex- 
clusively with such semigroups, and unless otherwise specified we always take 
the domain to be C O rather than B. Similarly, we take for the domain of A, the 
infinitesimal generator, the dense subset ~ of Co on which it is defined, i.e., if 
"s-lim" denotes "limit relative to the norm [1 �9 I1" then 

~ = { f :  f~C~ and A f = s - l i m l  [T t f - f ]  exists} t 

Recall, that the operator A is linear, closed, and in general unbounded, and that 
moreover ,4 

f ~ ,  t=>0 =~ T~fe@ and AT~f= T~Af=~t  " T~f (1.3) 

T t f - f  = i ATJds, 
0 

the differentiation and integration being performed in the Banach space C 0. 
Because the weak and the strong generators coincide for a Co-semigrou p ([6] 
p. 77, Lemma 2.11), we can also assert that a function f e C  o is contained in @ 
if only it satisfies 

II Ttf-ft l  < t. constant < o% for t>0 ,  and 

lim 1 (TJ(p)-f(p))=g(p) exists for each peJCL, (1.4) 
t].O t 

and g is contained in C 0. 

2 For precise definitions see for instance [2] or [6]. 
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Finally, for 2>0 ,  the map (2 -A) :  N ~  C O is a bijection from @ to C o, whose 
inverse R z, the resolvent of A (or of(T,  t > 0)), is given by the formula 

cO 

R z g =  ~e -z~ T~gds, geC o. (1.5) 
0 

R~ is linear and bounded with norm IIRzl I ~ 2  -~, moreover 

s-limRzg=g, for geC o. 

On the other hand, if we are originally given a Co-semigrou p (T~, t>0)  then we 
may assume that it comes from some "nice" Markov process (X t, t>0). Namely, 
from (T, t>0)  we can first construct a transition function P(t,p,F) on (~r N), 
and then extend this function to (~g~, N~) by setting 

[10 i fp=A and A~F 
i f p = A  and ACF 

P(t,p,F)= P(t ,p,F\{A})+l-P(t ,p,J/g)  if p~A and AeF 
(P(t,p,F) if p+A and A~E 

Then, if we let (2 be the set of functions ~o(t) on [0, oe) with values in Jr which are 
right continuous, have left hand limits, and which moreover satisfy 

cO(to)=A ~ o(s )=A for S>to, 

we may assert 3 that there exists a standard process (X~, t>0)  with transition 
function/5(t, p, F) and sample functions belonging to O. The semigroup (~, t>0)  
associated with this process is determined by 

. t J  = f f (A)+ T~f~ for p+A 
(1.6) 

( f(A) for p=A 

when f e  ~(dg~) and where f0 e Co is the restriction o f f - f  (A)to Jr 
In case we only want to study the process (X,, t > 0) up till the time it leaves ~g 
we introduce the lifetime 

~ if X~(co)eJg for all t > 0  
~(co) = (inf{t: X,(~o)= A} otherwise. 

Here 
Prob{~ >s [X  0 =q} =P(s, q, J[), 

and in particular if P(s,q, JCl)-l, that is if (T, t>0)  is conservative, we may 
assume 4 that ~ -  oo. Also, if the condition ([6] p. 91) 

1 
lira - -  sup P(t, q, B~(e, q)) = O, 
t~O t qEK 

3 [2] p. 46ff., or [6] Chapter  III. 
4 [6] p. 87. 



6 E. Jorgensen 

where B(e, q)= {p: p ~ J/l, d(p, q)< e}, is satisfied for every e > 0 and every compact 
subset K of Jg, then the sample functions of (X~, t > 0) may be assumed to be 
continuous on the interval [0, ~). 

From now on we shall mainly be working with semigroups, but at the same 
time we shall interpret our results as being results about the corresponding Markov 
processes. In this context, one of the first problems we must deal with is the follow- 

n 

ing: Given a sequence {(T, t>0)}[= 1 of Co-semigroups and a corresponding 
sequence of processes {(X} n), t > 0)}~= t (on J/d). Which conditions must be imposed 

upon the sequence {(~, t > 0)} in order to ensure the convergence 5 of the sequence 
{(X} "), t >0)} ? To find the answer to this question we take as our point of departure 
the following theorem by Stone 

Proposition 1.1. The sequence {(X} ~>, t > 0)}~= 1 converges weakly ,,,~o~ to tA r , t > O) if 
(i) the finite dimensional distributions of (X} "~, t >O) converge weakly to the 

finite dimensional distributions of(X} ~ t > 0); and 

(ii) for every e > 0 and L > 0 

lim Prob { sup [min [3(X}~ ), X}")); ~(X} "), X}~))]] >e} =0 .  
n--*oo t - - c < Z  1 < l ' <  t 2  < I ' + C  

c ~ O  O <=o < t  <t2  <=L 
o 

Let us assume that there is a Co(d//)-semigrou p (T, t > 0) such that 
n 0 

s-lira T~f= Ttf, for all f e  Co(Jg ) and t > 0, (1.7) 
n ~ o o  

o 

"X ~~ t > 0) be associated with (T, t >  0). Then we have first and let t ~ , 

Lemma 1.2. Let the initial distributions 

/~,(F) = Prob {Xt0"~er}, r e  ~(Jr 

be given and satisfy P,--+#o weakly as n-~oe ; then (1.7) implies that the finite 
dimensional distributions of the processes (X} "~, t >=O) converge weakly to the finite 
dimensional distributions of the process (X} ~ t > 0). 

To prove this we need the simple 

Lemma 1.3. Let {fn},~--1 be a sequence of functions in C(JdA) converging uni- 
formly to foe  C(JgA), and let {#0}~=1 be a sequence of probability measures on JC{~ 
converging weakly to the measure Po; then 

lim ~f,(p) a.(dp)= ~fo(P) lao(dp). 

Proof of Lemma 1.2. Define as in (1.6) C(JgA)-semigroups (~,  t>0)  by 

q f (P)=~f (A)+ ~fo(P) if peJr 
~f(A) if p =  A 

s Weak convergence as introduced in [18] and [20]. However, because we are working on a half- 
open parameter interval, 0 < r <  ~ ,  we find it convenient to use a slightly modified version of the 
standard theory. This modification has been introduced by Stone, and we refer the reader to his paper 
[22] for details. Here we shall contend ourselves with listing his convergence criterion as our Pro- 
position 1.1. 
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where as before fE C(MIA) and f0 is the restriction o f f - f  (A) to M/, then (1.7) implies 

~ o ~ 

s-lim Tt f=  T~f, for feC(Mda) and all t > 0 .  (1.8) 
n ~ a o  

We shall prove that for every Mtuple, 0 < q  < t 2 < . . .  < t  k, and every function 
g(Pl . . . . .  pk)eC(M@=C(~t~  x ... x ~ a )  is 

e {g(X 5 _ .... X,~ )} - F , ( q ) e  C(Jga) 
and 

s-lim F,(q) = Fo(q), 
n ~  oo 

where g q { ' }  denotes expectation relative to the measure 6 #(F)=Zr(q  ). This in 
conjunction with Lemma 1.3 will imply the validity of Lemma 1.2. The proof is 
carried out by induction. For  k = 1 the statement is just (1.8), so assume the state- 
ment is true for k = k o > 1, and let 

O<=s<q < ' " < t k o ,  g(q, Pl . . . . .  Pko)~C(J[~~ 
then 

with 
G,(q)=gq{g(q,  X (") X (.) ~ 

t l __S ~ �9 �9 . ~ t k o - - S / )  

provided G.( ' )eC(JgA).  To prove the latter let ~>0 be given and choose ql . . . . .  
q~e~{~ with neighborhoods 171 . . . . .  V~ such that 

0 
j = l  

and 
sup Ig(q, P~ . . . . .  Pko) -- g(q~, Pl . . . . .  Pko)[ < e. 
q ~ V i  

( P l ,  . . . ,  P k o ) e J C l , a  

Also let {q)j}~= ~ be a partition of unity 7 subordinate to V~ . . . . .  V~ then 

r 

G.(q) = ~, e q {~o~(q) g(q~, X ~") u,) , , -  . . . . . .  X, ko_)} 
i =1  

+ gq (Pi(q) [g(q, X(") (.) r i "~(n) ,~ . . . . . . .  - g t q ,  ai, . . . . . . .  X _~)] 
i 

=S~")(q)+ S(2")(q), 

where S~")( .)6 C(Jg~) according to the induction hypothesis, while 

IS~"~(q)l<g q (p~(q =~. 

Thus G,( ' )  can be approximated uniformly by functions in C(MFA) which implies 

6 )~Y is the characteristic function of the set F. 
7 That  is: q~ ~ C(M//A), supp (%) c V~, 0 < q~i < 1, and ~,,'.= ~ (p~ _-- I .  
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Applying the second part of the induction hypothesis on the S~ ") (.) next, we get 

s-~irn S~ ")(p) = S[~ 

hence 
l i m  sup [G,(q)- Go(q)[ < 2 e, 
n---~ ao q ~ J l z l  

and as the left hand side is independent of e it must be zero, that is 

s-lira G,(q)= Go(q), 
n ~  oo 

and then also 8 

s-lira T~G,(p)= T~Go(P) 
~---~ 00 

which completes the induction. Note that what we essentially have managed to 
do is to show that condition (i) in Proposition 1.1 may be replaced by (1.8), which 
is easier to verify in a given situation. There is a corresponding simplification of 
condition (ii) available: 

L e m m a  1.4. Assume the hypotheses in Lemma 1.2 are satisfied, and that further- 
more 9. 

For every e > 0  there exists an c~>0 so 

sup 1/5,(t ,  p, B](e, p))__<~, (1.9) 
pEdCA, 0<t  t 

for n sufficiently large," then the sequence {(X}"),t>0)},~l converges weakly to 
(-~(o) t=>0).  A t 

Here BA(~, p)= {q: q ~ J//~, 3(p, q)< S} and B ~ is the complement of B. 
In view of Proposition 1.1 we only need to show that (1.9) implies (ii). Now 

the quantity 

/~,"{ sup [min(b(X~), X('h',~ ,, 3~X("), t~, X~)))] >~} 
O<=tl < t 2 < t 3  < L  

t2 - - t l  < f l ,  t 3 - - t 2 < f l  

is majorized by 
g, 2 

( 4 ~ ) [  sup P , ( t , p , B ~ ( ~ , p ) ) ]  

as one may prove by combining the proofs of Lemma 6.4 and Lemma 6.6 in [5] 
(p. 129 and p. 136 resp.). Also, for given L, fl, s we may choose ~ so (1.9) holds with 
e/4 substituted for ~. Then for n large enough 

(?) [oSUp: (  ;))] 
and this proves the lemma. 

for f l ~ 0 ,  n ~ o o ,  

FI ~ G. - ~ Go II =< II ~ ( G , , -  Go)ll + II ~ Go - , Go II =< II G. - Go II + II ~ Go - ~ Go II. 

9 P,,(t, p, F) is the transition function associated with (T,, ~ _>_ 0). 
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1.3. The essential idea behind the following lemma is contained in the paper 
[9] (see [9] Lemma 4.1). 

Lemma 1.5. Let {(~, t_>0)}~= t be a sequence of Co(J/g)-semigroups satisfying 
the conditions: 

(a) For every t > O, f e  C o, and ~ > 0  there exists a compact subset K~ of ~ such 
that 

n 

I T,f(p)f < e for all n if pC K~. 

{ tf}.=, (b) For every t >0 and f e  C O the family T. oo is equicontinuous. 

(c) There exists a dense subset ~ of Co such that 

~ c  (~N.  and s - l i m A . f = A f  existsfor f e N .  
n = l  n ~ 0 0  

Here A. with domain ~n is the infinitesimal generator for (~,  t>= 0). Then there 
exists a subsequence {nk}km__l such that 

n k 

s-lim T~f= T,f 
k ~ o o  

exists for all t >= 0 a n d f e  C o. The family of operators ( T,, t > O) forms a Co-semigrou p 
whose infinitesimal generator (A, ~)  is an extension of(A, ~). 

Proof Let {f,},~__~ be dense in C o and let {tl}~= ~ be an enumeration of the 

i~. ~o satisfies tl ~,fjll < I[fjl[ positive rationals. For h,fj  fixed, the sequence { ~,fj},=l = 
so because of (b) there exists according to the Ascoli-Arzela theorem a sub- 

n k 

Z oo sequence { ,,fj},=, that converges, uniformly on compact subsets of X/, to a 
continuous function gl,j for which IIgl,jl[ < IIfj[] �9 

Next, (a) implies that the convergence is uniform on all of ~r namely, to a 
given e > 0  we may choose a compact subset K ofd/g so 

ITt,fj(p)[<~- for all n and pCK; 

hence, for k sufficiently large 

n k 

[ T,, f~(p) - gz.j(P)l < 
and 

for p e K ,  

~k ~k 8 
I rJj(p)-g~,j(p)l  ~ I rJ j(p)r  + [g,o(P)l < ~ + y :  ~ for pCK, 

which demonstrates the uniform convergence and also shows g~,je C o. It may be 
assumed that the sequence {nk} is independent of (l,j) (use the diagonal method). 
Also in order to make the remainder of the proof easier to read we shall assume 
{nk} = {n}. Thus, for every (l,j) the limit 

T,, fj = s-lim ~ f~ 
J n ~ o o  

exists, and 
T,,f~ Co, II ~,f~-II_-< Ilfjtl. 
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, ~o c{fj}[=l with s-limJi,=g. We have Now, let g e C O and choose {fs 1 k~ 

II ~ , g -  ~,gll < I1 ~,g-  ~, f,;ll + II ~ , f~-  ~,/,;il + II ~,S,;- ~,gll 
<2 IIg-/,~11 + II ~,f~- ~,f,{ll �9 

From which it follows that {~, g},~= 1 is a Cauchy sequence in the Banaeh space Co, 
and thus convergent. We set 

n 

T~,g=s-lim T,~g, geC o. 
n ~ r  

Next, i f f ~  and 0 < t t < t 

ii ~ f -  ~fil _-< il ~ f -  ~,fii + it ~ , f -  ~,fli + il ~ , f -  "?,,fli 
II ~ , f -  ~,fl l  + II ~_, , f - f l l  + I1 f, , , f- iLl. 

Moreover, for s > 0  

IIrJ-ftl  r,f)dt = T~Ak fd t  <-_ II&fll dt<s.sup IIAjfll=s.c 
0 J 

because {Akf}k~l converges. Consequently 

II '~,f- ~/11N II ~ , f  - ~,fll + 2c.  ( t - t , ) ,  

and it may be concluded that the sequence { T,f}2:, converges in C o. As before 
the limit is denoted T,f. Finally, for an arbitrary g e C o we can find a sequence 

{fk} c N converging to g, and so it follows that T~g = s-lira ~g  exists. 
t l~O0  

So far we have obtained a family (Tt, t>0 )  of bounded linear maps of C o into 
itself. It must next be shown that they constitute a C0-semigroup. First, each 

(~, t > 0) satisfies the conditions: 

~I'of=f, II~ll__<a, f_>_0 ~ Ttf>__0 

so clearly (T~, t>_0) also satisfies them. Moreover, we already know 

f e  Co 

so it only remains to verify 

(a) T~+~=T~o Z, 

Ttf e Co ; 

(b) s-lim T , f = f ,  for f e  C o. 
~ o  

To prove (b) it suffices to show that the class 

5f = {f: f e  C O and s-lira TJ=f}  
~$o  

is closed in C o and contains N. So assume 

{fj}c:DP and s-!imfs= f 
J ~OO 
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then 
[1Ttf-fl[ = il T~(f-ff111 + II T~fj- fj II + Ilfj-f][ __<2 r lf-f~ I[ + II T~fj-f j  iI, 

so 

lim [1Ttf-f[] <2[[ f - f~] [ - - ,0  for j ~ o e  
t$0 

which shows ~ is closed. Next, if g e N  

[[ T~g-gH = lira [[ ~g-g[[ =<t. sup I[A,g][ =t.c, 
n ~ c o  n 

hence ] [T~g-gl[~0 for t--~0 so g e ~ .  This takes care of (b). To prove (a), let 
f e  C O and t, s > 0 then 

~ I I ~ S -  ~ f l l  + - ~S)II + I I r . + J -  ~+Jl t  
n n n 

f _-< If T , ( T J ) -  r,(r:f)ll  + h T~f- r J l l  + II T,+.f- r,+sflt . ~ - ~  0. 

As the left hand side is independent of n it must be zero and this proves (a). 

Let for 2 > 0 Ra and t}4 be the resolvents for (T~, t > 0) and (~, t > 0) respectively. 

For f e  Co 
n Go oo 

I l e j - R J l l  = ~ e-X'(T,f- ~f)dt < f e-~'q.(t)dt 
o o 

where 

0<~0,(t)= II T~f-  ~fl[ =<2 IlfN, lim q , ( t )=  0, 
n ~ o o  

so the "bounded convergence theorem" yields 

lirn I[R~,f-/}~f[] = 0. (1.10) 

Let A with domain ~ be the infinitesimal generator of (T~, t>0). Choose f e n  
and set 

g,=f  - A J  
then 

g = s-lim g~ = f -  Af  
n ~ o ~  

exists. Also 

lif-Rlgli=i[Rig~-Rlgli<tiRl(g~-g)[[+l[Rxg-Rlgt]-~O, for n--+ oo, 
n 

because [[R 1 [[ =< 1. Thus f - -  R 1 g which in turn implies 

f e )  and f - A f - - g .  
So altogether 

f e n  ~ f e ~  and Af=Af, 
and this completes the proof of Lemma 1.5. 

Remark. In order to prove that the sequence {(~, t > 0)}~= 1 itself converges it is 
enough to prove that any two convergent subsequences have the same limit. 
Now, if (S t, t_>0) and (T t, t_>_0) are two such limits introduce the corresponding 



12 E. Jorgensen 

resolvents 
~3 O 

= S dt, = S S, f d t  
0 0 

then the uniqueness theorem for Laplace transforms yields 

o 

R~f(p)=Rzf(p) for all 2 > 0  r TJ(p)=S,f(p) for all t > 0 ,  
o 

and so it suffices to show R~f=Rzf for all 2 > 0  and f ~  C o in order to be able to 
conclude that the semigroups are the same. Define 

~ =  {g: g=(2- A) f, f ~ }  

then an argument similar to the one given in the last part of the proof of Lemma 1.5 
yields 

R~g=R~g for all g ~ .  

In particular if N~ is dense in C O 
o 

R~g=Rzg for all fEC o. (1.11) 

Now, if (1.11) holds for some 2o > 0 then it holds for all 2 > 0. To see this, consider 
first 2 satisfying 0 < 2 < 22 o. According to the resolvent equation we have for g ~ C O 

R~ g -  R~o g = (2 o -  2) R~o R~g, 
/~ /~ o o o 

z g - Zo g = (20 - 2) R~o R~ g = (20 - 2) Rzo R~ g. 

So by subtracting the second equation from the first: 
o o 

R~ g -  R~ g = (2 o -  2) R~o [R~ g -  R~g]. 

Take norms on both sides and use that IIAo Rxoll < 1 then 

R o I 2 o - 2  [ o 
[I ~ g - R ~ g l [ <  IlRzg-R~gL[, 12o-21<2o 

2o 
o 

which can hold only if R~g=Rzg. Thus we have shown that (1.11) holds for 
0 < 2 < 220 if it holds for 2 = 2 o, but then an induction argument shows that it must 
hold for all 2>0 .  So altogether we may state, that if the assumption: "For  some 
20 >0  the set ~Zo is dense in Co" is added to the assumption in Lemma 1.5 then the 

n 

sequence {(T, t > 0)}if= 1 itself converges. 
When we do have convergence, this convergence is in a certain sense uniform 

on compact t-intervals. Namely, we have 
n 

Lemma 1.6. Let {(T r, t > 0)}~= o be a sequence of Co-semigroups with generators 
{(A,, .)},= o and which satisfies 

n 0 

s-limTJ=TJ for t>O and f~Co, 
n ~  o~ 

s-limA, f=Aof  for f ~  ~ ~ 
n ~ o o  r i c O  
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with ~ dense in C o. Then for  t o > O, .re C o 

n 0 

lira sup ]]T~f-T~f[[---0. 
n ~ m  O ~ t < t o  

Proof  Let f e  Co, t o > 0, and e > 0 be given. 

Choose f ~  so 
E 

}lf-LII <-~, 

and note that 
sup IIA, LII = g <  

n 

because the sequence {A,f~},~= 1 converges to A o f~. Next, select points 

0 = S  0 < S  1 <  . . .  <Sk-=- t  0 

such that 
8 

max (s i - s i _  1 )  < 
,~i~k 12L 

and then choose G so 
0 n 

max II T~,f~- T~,f~}t < 6 ,  for n> G. 
o=<i=<k 

Now, if tel-O, to] then si<__t<_si+ I for some i, thus 

0 0 0 0 n n n 

[[ T~f- ~f[[ < II T~f- T.LII + I] T,L-  T,L[I + II T~f.- T~fll 
o . 28 o . 

< 2  Ilf-f~ll  + It T,f~ - T,f~lJ < - ~ - +  II T , f ~ -  T,f~)) 

0 0 0 n 

- 3 

2 8  8 
- <- 3 + ( t - s i )  IIAoLII +-6-+(t-s,)IIA, LII <a 

for n>  G. This proves the lemma. 

2. The  M a i n  R e s u l t s  

2.1, By now we have finished all the preliminary work and are in a position 
where we can formulate and prove the central result of the present paper. This 
result is a version of the central limit theorem where instead of considering sums 
of vector-valued random variables we consider "sums" of random geodesic 
segments in a Riemannian manifold. Such a "sum" could naturally be called a 
geodesic random walk, and what we shall do is to consider a sequence of such 
random walks where within a given time-period the number of steps taken 
increases indefinitely while at the same time the length of the individual step 
decreases to zero. In the limit we then expect to obtain a diffusion process in ~/,  
and in particular we expect to obtain the Brownian motion if we let the individual 
steps in the random walks be identically distributed. 
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However, before we give the final rigorous formulation of our problem let us 
do a little pseudo-mathematics in order to motivate this formulation. 

Assume there is defined on d g a  family lo of subprobability measures {Vp}p~U, 
where each vp is a measure on Jgp. Let z > 0  and poeM//be given and define for 
0 < t < z the random path ~'(t) starting at Po by 1 t 

~(t)=eXPpo {+ [Z #po + V~(Xpo-#po)]} 

where Xpo is a random variable with values in dgpo and distribution Vpo and 

#po = ~ X Vpo(dX ) = mean value of Xpo. 
dCpo 

Also, if Vpo(dgpo ) < 1, set 

Prob {~(t) = A for t > 0} = 1 - V~o(d/po ). 

In general "define" ~(t) by induction 

p.=~(nz), n=0,  1 . . . . .  

f t -  - 
~(t) = expp" ~ - ~  [z # p +  ]/~(Xp. 

) 

for nz<t<_(n+ 1)z. I f p .=A set ~'(t)= A for nz<t, while if p ,~s / /se t  

Prob {~(t)= A for nr < t} = 1 - vp.(~//p. ). 

Now, if there exists a stochastic process ~(t) satisfying these "definitions" it may 
serve as a reasonable mathematical model for diffusion in s//(in the limit for z ~ 0). 

The sequence {~(nr)}~= o is a Markov process with stationary transition 
probabilities 

P {~((n + 1) z) = A [t(nz) = A } = 1 

P{~((n+ 1)z)eAl~(nz)=p} 
=(1-Vp(S/lp)))~a(A)+vp{#p+z-~Eexp;'(A\{A})-z#p] }, p,A; 

while for n z < t <  (n + 1)z ~(t)is just a geodesic segment from ~'(n z) to ~((n + 1)z). 

Because the process ~(t) is a little awkward to handle we shall introduce 
another process ~(t) which in a certain sense is just as good as ~(t) and which also 
is much easier to work with. Let (n(t), 0 < t < oo) be a Poisson process independent 
of ~(t), with parameter r -~ and right-continuous sample paths. Set 

= �9 

then ~(t) is a Markov process with right-continuous paths and transition function 

oo ( t / z~k  
t / z  ~ ~" I ! D(k)/'~ P~(t, p, F) = e- 2.. ~ "~ w, F) 

k=O 

~o See Section 4.4. 
1 t "expp" denotes the exponential map in Jg. 
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where p(k)(., .) is the k-th iterate of the transit ion function 

P(p, F ) =  Prob  {~(r)EFI ~(0) = p}. 

For  t fixed the mean value of n(t) is t/~, so loosely spoken 

this is what we mean by saying ~(r) is just as good as ~(t). Also ~(t)  has the advantage 
of being a Markov  process, which makes it possible for us to define it by specifying 
its associated semigroup, thus circumventing the problem of translating the 
above statements into mathematics.  We shall show that  ~ ( - )  converges weakly 
to a diffusion process t/(.) as "c-}0, and by estimating the difference between 
~( t )=~( t )  and ~(t)  properly, we could also show that  ~ ( - ) - }  q(.) as z - } 0 ;  but  
this seems hardly  worthwhile,  and we shall not  worry  about  doing it. 

2.2. From  now on assume that  our  manifold Jr of class z r  12. Let  {v(,")}p~, 
n = 1, 2 . . . . .  be a sequence of families of subprobabil i ty  measures on the tangent  
spaces JC/p, satisfying the following condit ions for every 6 > 013 

<gO: Fo r  each n > l  is 

s-limvt"){Y: Y~JClp, II Yll > r}  = 0 .  

rg 1: s-lira n{1 - v~")(~p)} = k(p). 
n ~ o o  

cg2: s-lim nr YeJC/p, H Y]I > 6l/n} = 0 .  
n ~ o 0  P t 

cg3: s-lim ~ Yv~")(dY)=l~pedgp. 
n~oo  {l lrl l  < a V ~  

~d4: s-lim ~ 
,+~o {llrll <aV~ 

The functions k('),  #., and #c.2) defined by cg 1, 3, 4 are assumed to satisfy certain 
conditions. We require 

cg 5: For  some ~, 0 < c~ < 1, the functions k(.), #., and ]2 (2) a r e  H61der cont inuous 
of order  c~. For  each p s d/l, #~2)_ # ,  | = a~ is strictly positive definite 14. Finally 

max [ sup  k(p), sup I[/~pll, sup tl#~2)l]] = M  o < oe. (2.1) 
P P P 

It should be noted that  cg2 implies the validity of cg3 and cg4 for all 6 > 0  once 
they have been proven to hold for a part icular  6 > 0, and also that  the l imits/% 
and g<2) are independent  of the choice of 6. One may  even show (see [4] p. 188, 

az That is, satisfies both axioms sr and N in 4.3. 
~3 Recall that "'s-lira" means "uniformly on Jr We shall also use the notationf, .~oo ~f, instead 
of: s-limf. =f. 

n~oo 

~4 That is (~ | ~, a2> =0 must imply ~ =0. This condition is used only to prove the uniqueness part 
of our limit theorem. 
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Lemma 1) that there exists a sequence {6.}.~ 1 such that 

0 < . . . < 6 , < 6 , _ 1 < . - . < 6 1 < 1 ;  l/~6,Too and 6,~0 for n---~oo, 

s-]inanv~"){ Y: Yell#, H Y[I >=6.]fn} =0,  

and it follows easily that 6 may be replaced with 6. in the statements cg 3, cg 4. 

Introduce the notation 

H~(p, n)= {Y: YeJ/g v, [I YH <61fn}, 

O(p, n) = n ~. (p, n), 

k,(p)= n{1-  v(p")(d/lv)}, 

"...= I Yv~")(dY) , 
H 1 (p ,  n) 

1~2) y | yv~n)(dy). 
p,?I  ~ I H 1 (p, n) 

#v,.edgv| and from the remarks above it follows that Then #t.,.eJ/lv, (2) 

#v=s-lim#p. =s-lim S Yv~n)(dY) , 
n ~ o o  ' n ~ o o  G ( p , n )  

#~p2)=s-lim#~p2)=s-lim S Y| 
n ~  ' n ~ c c  G ( p , n )  

We may also assume that 

max [sup k.(p), sup II ~p,. II, sup #v,. (2) 1[ ] = M < oo 
p , / ~  p , n  p , n  

because of (2.1) and the uniform convergence. 

Define on B = B(J#) the operators 

T f ( P ' : ~  f (expp{lpp, .+~n(Y-#p, . )})v~" ' (dY'  

= ~ f(exppZ) ~")(dZ), 

+ 1  kn(p)f(p ) = I f(exppZ) O~")(dZ), Sf(p)=  
J,/p 

where ~7~ ~) is the distribution of 

1 1 
Z = ~ # p , n + ~ ( Y - - # p , . )  

and 
o(.") ( r )  = ~ ~"~ ( r )  + x~ (o)(1 - ~ (.")(~z.)). 

In particular, if f =  Zr with F ~  then 
n n o 

Tf (p) = P,(p, r), S f (p) = P,(p, F) 

(2.2) 
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o 
where P.(p, -) and P.(p, .) are subprobability measures on J#. Thus we may write 

Tf(p)= ~f(q) P~(p, dq); Sf(p)= ~f(q) ~(p, dq), 
Jlr 

o 
and as the notation suggests we want P. and P. to be transition functions. If we 
compare with our model from Section 2.1 P.(p, F) of course represents 

t 
o 

while the auxiliary quantities P. are introduced in order to facilitate the proofs 
of some estimates to be given later on. They correspond to the situation ~ 5 where 
v(p")(J/g.) -- 1 and thus they may be expected to behave better than the Pn" 

o 
Now, in order to get the functions P. and P. to be transition functions we must 

(") with p. Our final impose some kind of restriction upon the variation of the v v 
condition takes care of this ~ 6 

cg6: For each n limk.(p) exists. Also, there shall exist constants K > 0 ,  6o>0, 
p~oo 

and e, 0 < ~ <  1, such that for 0 < 6 < 6  o and all n>  1 

sup n I~(p~)-~")l<K6~. 
d(p,q)<~ 

We can now prove 

Lemma2.1. For each n k.(-)EC. Moreover, the operators 
into C and C o into C o. 

Proof. First, we have the estimate 

and S map 

[k.(p) - k,(q)L = n I vCp")(J/gp) - v~")(J/dq) I 

Iv, -- ~7~")1 < K [d(p, q)]~ 

whenever d(p,q)<g) o. Thus k,(') is H61der continuous of order c~. Moreover, 
limk,(p) exists per assumption, hence k, ( ' )eC.  Note that this argument in 

combination with Cgl actually shows that k(.) is H61der continuous of order 
and is contained in ~. Next, i f fE  C then we may write 

f(P) = fo(P) + b 

with f o~C  o and b constant. Thus to finish the proof of the lemma it suffices to 

show that T maps Co into itself and that TI~ C, and the second statement is 
easily proved: 

T l ( p ) = l - l k , ( p ) ,  so T I ~ .  
n 

15 If  v~")(Jlv)=- 1 then  S f =  7"f. 

16 The  no ta t ion  is exp la ined  in the appendix .  No te  tha t  we may  use the same a in <g5 and  in <g6. 

2 Z. Wahrscheinlichkeitstheorie verw. Gebiete, Bd. 32 
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To prove the first, let fG C o be given and let P0, P be a pair of points in ~?r Denote 

parallel translation along a short geodesic PoP by zp, then 

Tf(p)- Tf(po)= ~ f (exp ,  X) ~")(dX)- ~ f(exPpoZ ) ~,~)o(dZ) 
,/il p ,/r p o 

=- ~ f(expp[zpZ])(z;:~")l(dZ)- i f(exPpoZ)F~)o(dZ) 
Jl4 p o  ~ l  p o  

= ~ f(expp [z,Z])(z; 1 ~(p")- ~)o)(dZ) 
,ag p o  

+ ~ {f(expp[zpZ])-f(eXppoZ)} ~)o(dZ). 
,A lp  o 

(2.3) 

The first integral is estimated thusly 

I ~ f(expp[rpZ])(z;: ~")- ~o))(dZ)l < Ilfl] ]~")- ~o)l 
Jt/po 

< {Jill g[d(p, po)],~O for P~Po, 
n 

while the second integral is seen to tend to zero when P~Po because of the bounded 
convergence theorem and the continuity of the map 

p--+expp(zpZ) 

at Po. Thus Tf  is continuous. Next, let e > 0 be given and choose a compact set 
F c ~/~ such that 

]f(p)I<�89 for pCF, 
then 

17af(P)l =<�89 I ~/(q) P~(P, dq)l <�89 IIfll P,(P, F) 
r 

where by definition 

} 
If r > 4 M  o then 

<v~= (">{r: t lg -~ , . l l> �88  / 

__< v';~{ Y: II rfl > l r ~ }  < 2 ~ffl 

for r sufficiently large according to cg0. 
So, if we set 

Fl={q:  q ~ '  and d(q,F)<r} 
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then F 1 is compact 17 and for p~F( 

P~(P, F)<v~ ") {Y: 1[ YN >r} < ~  ~ - 
- Ilfll 

that is 
8 IYf(p)l=<T+llfN P~(p,F)<~ for p q~ F1, 

and we have thus shown Tfa  C 0. This finishes the proof of the lemma. 

Note. It is easy to show that the operators 7" and S map B into itself also, and 
that in fact they are positive contraction operators on B. In the following we shall, 
however, unless otherwise indicated think of them as being operators on C o . 

Define for p~J~, F ~ ( J 4 ) = ~  

P2 ~ (p, r )  = 4 (0) (p, r )  = zr (p) 

and for t_>- O, f e  C o 
~o (n t]k 

~ f ( p )  = e-mk~ o ~  f(q) p(k)(p, dq) 

n 0O / . x k  0 

Stf(P)=e-"k~=o~f(q)p~(k'(p, dq) 

(O)(k) (o) 
where P~ is the k-th iterate of P,. If we set 

(o) 0o n t k (o) 

P~ (t, p, F) = e -  "' ~, (n t) ~ p(k)(p, F) 
k = O  k! 

then 
r~ n O 

TJ(p )=  ~f(q) P,(t, p, dq); Stf(p)= ~f(q) P,(t, p, dq), 
dr d4 

and we have 

Proposition 2.|. The families (~, t >= O) and (St, t >= O) are Co-semigroups. Their 
infinitesimal generators are respectively 

n 0 n 

A , f = n { T f - f } ,  and A , f = n { S f - f }  

with the common domain ~ ,= C o. I f  f>=O 

o<~f<=Dj (a) 

and in general for FEs8 

(b) 
o 

P~(t, p, r)____ P~(t, p, r ) .  
n 

Proof. For the first part it suffices to work with the T t. L e t f e  C o , then according 
n 

to Lemma 2.1 Tfe C O and more generally 

~f(q) p(k)(p, dq)= Tkf(p)e Co, for k > 0 .  
d,g 

l~ Because J4 is complete. 

2* 
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Also II TkfN < Iif[I so the series defining ~ f  converges uniformly on J#, and this 
n 

implies at once that Ttf~ Co. It is also easy to see that 

II fll IISII, 
that ~ is a positive operator, and that (~,  t>O) is a semigroup. Finally 

o z  (nt~k 
II T , f - f l l  ~(1 -e " ' ) I l f l l  + e " '  ~ ' - "  Ilfll =2 llfll (1 - e " ' )  

k=l k! 
so n 

s-lira TJ= f, 
t$o 

thus (T~, t=O) is a Co-semigrou p. Next, fo r f~  C O 

+ [ ~ f - f J - A , f  

e- k~=oV[T f - - f ] - -n[Tf  -- f ]  

e-"' (nt)k-' TS(TfijO - ( I - e - ' )  n[Tf - f ]  
k=2 k! nj 
oo k - 1  

J - n t  ~'~ ( n t )  n 

- e  k__2..2 ( k -  1) ! t ln(Tf - f ) l l+(1-e-"gl ln(Tf - f ) l l  
n 

= 2 ( 1 - e  -"~) Iln(Tf-jOlt--+O for t$O 
n 

which shows A, with domain @,= C O is the infinitesimal generator for (Tt, t____O). 

To prove the second part of the proposition, note that i f feB, f>O then 

O<=~Ff<=~Ff + l  k, f = S f ,  

and in general for l>  1 

~ ' 7  = ' f ' /- l('-iFf) ~_~ "ff'-I(DJ0 ~_~""" <s'u, 

which immediately yields 
n n 

T J =  S J ,  for f >  0 

and this proves (a). As (b) is a special case of (a) this completes the proof of the 
proposition. In the passing, one might note that in order to infer the validity of 
(b) from that of (a) one only has to know that (a) is true fo r fe  C o . 

Our goal is now to demonstrate that the semigroups (~,  t>0)  and (St, t_>0) 
converge as n---, oe to Co-semigroups (T~, t>0)  and (St, t>0). To carry out this 
demonstration, we first make use of Lemma 1.5 to show the existence of convergent 
subsequences, and then we show that the limits hereby obtained are independent 
of the particular subsequences that have been chosen. 

First, let us verify that condition (b) from Lemma 1.5 is satisfied. This is a 
consequence of 

n n 
Z ~o Proposition 2.2. I f  f ~ C  and t>O then the families { ~f},=l and {Stf}.~=l are 

equicontinuous. 
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Proof. We start with a few estimates. Define 

~ . = 2 s u p  "~"){Z: ZGJ~, ,  []Z[I >1} ,  
p ~ d /  

then according to qf2 

(a) lim n~ .=O.  
n ~ o o  

Next, for some r/> 0 and all p, n 

{Y: r e d / . ,  II#.,.+lfi(Y-~,.)ll __<n} c {Y: Y ~ ' . ,  Y <~/]/n}, 

so ~ 4  implies 

~. [IZll2~")(dZ) = (. l (l~p,.+l/n(Y-#p,.)) 2r 
{tlZll <J} {llup,.+~(r-up..)ll <n} 

< 1  y 'I 

112 ,] < - -  M +  ~ Y | Yv~")(dY) < 
F/ (y  < ~/i/~ } 

for some constant  Co, that  is independent of p and n. Thus 

(b) ~ IIZll ~ ~)(dZ)~ c~ 
/IIZN <1} n 

Let ~ be a constant  satisfying 0<~<__ 1, and let p,q be points in ~/~ with d(p,q)= 
6<min(1 ,  r then from (b) and axiom ~19 

(c) (. [d(exppZ, expqzp~Z)]~pn)(dZ) < ~  S [l+clIZilE]~n~(dZ) 
{llZll <t} {llZlI <l} 

--<~ + = ~ / L .  
/,/ 

Now, if f e  C and satisfies the Lipschitz condit ion 

If(qO-f(qe)] <ad(ql,  q2); q~, q2eJ~,  (2.4) 

then, using the expression (2.3), we obtain 

I Tf(P) - Tf(q) I _-< II f l I" [~(p~) - ~")1 + I ~ [f(expp Zq p Z) - f(exp~ Z)] ~")(dZ)l 
d4q 

5 [I f l} ~(") - "in) -(") �9 [Iv~ v. 1+2v~ {llZll>l}] 

+ ~ ad(exppzqpZ, expqZ)~'~ 
{llZll _-<1} 

according to qf 6, (c), and the definition of G.  

:8 60 comes from (g6. 
: 9 As usual zpq denotes parallel translation along a short geodesic segment ~'-~. 
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Next, estimate ~,2f 

I TEf(p) - T2f(q)  I 

_-< II g'f II �9 [K--- <~'+ ~<.] + S lrf(expp~q,Z)-7"f(exp~Z)lr,~"'(dZ) 
(l lZll _<s} 

- -  [6 (1 + c il zII2)]= V~">(dZ)] + a 6 f12 _-<llfll. [K6~+2=.+ K 
{tlZll =<l} n j 

provided 6 ft. < 1. 
Iterating this procedure  we get 

IUf  (p)- 7"'J'(q)[ < ]If It' | la .+--6" Z fli| +ab ff. 
k n j=o J 

for l =  I, 2, . . . ,  nL provided ~ fl~L< I. But 

so it suffices to demand 

Also 

/ CC \ n L  

= d(p, q) < e-L~r176 

1 -1  n L eLc co 

f t . -  < n - -  

j=o f t . - 1  - cc o 
and consequently 

(d) I;F~f(p)-7"~f(q)l<llfl f. nLa.+ 6 ~ +a6e Lcc~ 
CC o 

if 
6-=d(p,q)<min(1,6o, e-Lc~~ O<l<_nL. 

n 
The operators  S are estimated in a similar fashion. 

First  

I S f ( P ) -  Sf(q)l < ITf(P) - Tf(q)l + 1  Ik . (p ) -  k.(q)l I f(P)l + 1  Ik.(q)[ If(P)-f(q)l 
n n 

< 17~f(P) - 7~/(q) I + ~ If(P) - f (q)  l + II f N K [d (p, q)]% 
n n 

for d(p, q)< 6 0 . So proceeding as before we get 

r z-l/ M\' 2 K ~-1/ M\Jl ( M)' 
[Slf(p)-Slf(q)l<llfll .  ] a . Z [ l + - -  ] + 6" Z [ f l . + - - l l + a 6  fln+~-- 

k j = o \  n ! n j = o \  n / J  
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1 M \.L 
forO<-l<-nL provided6 {fi,+-~-) __<l. Moreover 

nL-l! M \  ~_ n t i l  --]M~nL y', / l + - - / < - -  _<n 
j=o \ n I M + n i  

and 

so altogether 

(e) 

if 

e ML 

M ' 

Mt.i nL-l( cc~ M f ~Yl e(CC~ 

n CCo+M 

IS/f (p)-S'f(q)l  _-< e@C~ M [llfll(na"+2K6~)+afM] 

6=d(p, q)<=e -@~~ O<_l<_nL. 

Comparing (d) and (e) we see that they are essentially equivalent. It will be 

demonstrated below that (d) implies the equicontinuity of the family {~f}~=l ,  
and it is then clear that (e) in a similar fashion implies the equicontinuity of the 

family {St f}~=,. 
Let t o >0  and e o >0  be given. From Chebyshev's inequality applied to the 

Poisson variable ~ with parameter n t o we get for L = 2 + [to] 

e -"~~ ~ ( n t ~  
k=,L+l k! 

< n t o <to .  
= (nL + l -n to )  z n 

Choose n o such that for n > n o 

6to 11/[1 
- - < e o  and 3Nftl{2+to}na.< % 

n 

then (d) yields for n>n o and 3=d(p, q)<e -(2+t~176 

[ oo ~ n  t ~k 
" -,,,o ,,,=~n~(,~kf(p)___ ,iT-'kf(q)) I ~ o f ( P ) -  T'o f ( q ) l = e  = �9 

V nL (n t ~l -] 
<_e -"t~ [ ~ l r  f(p)-TZf(q)l+2llfll �9 ~ (nt~ l - -  L I = 0  " l = n L + l  l[ 

=<~-+ltfll [Lnanh KeLCC~ o �9 6 ~']] + a ,5 e Lc~~ 

2eo . 
~ t  ~ [d(p, q)]~ < ~o 

if d(p, q)<(/(-1 ~o)~, where the cons tant / (  is independent of p, q and n. 

Now, each of the functions ~o f is contained in C; hence there exists a 7 > 0 
so for 0<n<__n o 

d (p, q) < 7 ~ I ~o f(P) - ~o f(q)[ < eo, 

and this in conjunction with the result above gives 
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For every e > 0 there exists a 6 > 0 such that 

(f) I~o T if d (p, q) < ft. f (p ) -  to f (q ) [<e  

The class s of functions in ~ which satisfy condition (2.4) is dense in C, so if 
g e C  and e > 0  are given we can first find feL~ ~ so 

8 
IIf -glI < ~ ,  

and then choose 6 > 0 so 

d(p, q)<6 ~ I~o f ( P ) -  Tto f(q)l < 3 

for all n. Then we obtain for d(p, q)<6 

" ~  n n 

ITtog(p)-~og(q)l=lT~og(p) T. + I ~o f ( p ) -  Tto - to f(P)l f(q)l + l ~ o  f(q)- Tto g(q)l 

<21]g-f ] [  T ~of (q ) [<e  +l to f (P)-  
n 7:. oo for all n, which shows that the family { tog},=1 is equicontinuous and thus 

finishes the proof of Proposition 2.2. 

Next, we turn our attention to condition (c) of Lemma 1.5. Here we have z~ 

Proposition 2.3. Let f ~ C ~2" ~) c~ C r then the following relations hold 

(a) s-lim A, f = d f =  �89 <D2f, a 2 > + (D f, #> - k. f 

o o 1 

(b) s- limA, f =  d f = ~  <D2f, a2> + (Dr,, ~>. 
n ~ c o  

Proposition 2.3 clearly implies condition (c) because the class of C ~ functions 
with compact support is dense in C o and is contained in C (2'~). To prove the 
proposition note first that (b) is a special case of (a) so it suffices to show (a), Next 

and 

A,f(p)=n{~F f (p ) -  f(p)} 

= n ~ [f(expp Y) - f ( p ) ]  ~")(dY)- n [1 - ~p") (J//p)] f(p) 
U/gp 

(2.5) 

n [ 1  - = k . ( p )  k (p ) ,  (2.53 

according to ~ 1, thus we only have to worry about the integral. Here we follow 
the well-known recipe: First truncate appropriately, then substitute for the 
difference f(expp Y)-f(p)  the first two terms of its Taylor expansion and take 
limits. So assume f is a given function in C (2' ~) n Cr, then according to Lemma 4.3, 
for p ~ / / / a n d  YoE~'p 

f(expp Yo)-f(p)= <D f, Yo>p+�89 Yo | Yo>p+ R(p, Yo) 
where 

IR(p, Yo)I<KJIYoll 2+~, K constant. 

20 C~2,~ is defined in Section 4.2. 
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Insert 1 1 
. + ~ - n  ( Y -  #p' ") Y o = n  #p, 

F 

then 

n [ f ( e x p p { l # p , . + ~ ( Y - # p , n ) } ) - f ( P ) ]  

= (Dr ,  I~p,.) + ] / n ( O f ,  Y -  #p, . )  - -  (2.6) 

+�89 (Y-I~p,n) | ( Y -  #p,n)) + ~ n n  (D2f, #p,. | (Y-#p,.)) 

This quantity has to be integrated over s/dp. Write 21 sC/p = G(p, n)t.)G(p, n) c and 
integrate over each of these sets separately. First 

=<2ll fjj nv~'~ n)C)~--~--~ O 

according to (2.2). Next, break the integral over G(p, n) up in accordance with 
the decomposit ion (2.6) and estimate each term individually. 

Note that because f has compact  support 

L = sup [max (11 (Of)pll, [I (O2f)pll)] < oo. 
P 

(D f, Y)pv~"l(dY)=(Df Pp, n)p 
H 1 (p, n) 

N o w  

consequently 

(a) I S v n ( D f  , Y-Pp,.)pv~")(dY)] 
G(p, n) 

=]/nl-  ~ (D f, Y)pv(pn)(dY)+(Df, Pp, n)p. ( 1 -  v~")(G(p, n))) i 
HI(p, n) \ G (p, n) 

<l/~ [ll(D/)pll 1/-n v(,n)(G (P, n)C)+ II(D/)pll ]lpp,.[I (l -v~n)(G(p, n)))] 

__-<Z [ ( l q - ~ n n  M ) nv(p")(a(p, n)c)+;Mn(1-v(pn)(J~p))] ~-y~--~O 

because of (2) and the boundedness of k(p). 

1 D2 ' q_ 2~_n (D2f  ~ n)p} Cpn)(dy) (b) ~ . ~ (  f.#p,,| (Y-#p,n))p Pp,. | #p, 
O(p,n) t. v n 

because fin,L 0 as n ~ oe. 

21 The sets G(p, n) and Hi(p, n) are defined in the beginning of this section. 
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(c) riG(p! .)R (p, l l j p , . + ~ n  (Y-#p,~)) v(~)(dY) 

<nK I l # p ,  1 [I 2+~ a(p,.) n , + ~ ( Y - # v . . )  v(p ",(dY) 

1 ~ ~ 1 _ _ 1  y 2v~,)(dy) 

<~, ~ (M+I[YII2)v~")(dY), 
H l(p, n) 

where lim e, = 0. 
n~oo 

Also because of (4.7) 

]ly][2v~.)(dy)<]/-~ H]Ap, n l l ( 2 , - ~ < ] ~ M  
H 1 (p, n) 

so altogether 

s- lim nm! ,.)R ( , 
1 Cpn)(dY) , + ~ - ~  (Y-/~p,,)) =0  

(d) ~ (Dr, #p,.)p v(p ")(dr) = (Of  pp, n)p" v(p ")(G (p, n)) .Yoo, (Dr #)p. 
a(p, n) 

(e) �89 ~ (Dzf(Y-#p,,)| 
G (p, n) 

1 --3 ~ (D2f Y|  Y-#p,,,| Y-Y|174 (p,n) 
H 1 (p, n) 

- ! / D ~ C  (~) ~ [1- �89 -2,, J, Itp,,>p-( n f, /~v,, |  v~")(HI(p,n))]+P(P ,n), 

where 

It) Co, n)l _-<�89 L [llup,.ll +l /n]  2" v(~")(G(P, n)~)<-_La nr n)~) .~--~-~ O. 

Moreover 
s- lira v(p ") (H 1 (p, n)) = 1 

n~oo 

so all in all the above expression has the limit 

1 D 2 L / o 2 f 2 \  J,/'*H(2) - -  # @ ]2~>p = 2  ( f~ O'2)p 

uniformly in p as n ~ oo. 

Combining (2.5), (2.51) with (a)-(e) we obtain 

s- l i m a ,  f = �89 (DZ f ~2) + (Dr I ~) - k . f 
B---~ OO 

whenever f ~  C (z' ~/c~ C K, and this finishes the proof of Proposition 2.3. 

Let K be a compact subset of ~ / a n d  let e > 0 be given. According to axiom d 
there exists a C ~ function f with compact support such that 

XK < f----< Xv, F = supp (f)  
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and 
8 

sup [-max {[[ (Df)p[l, N(D2f)p[[ }] < 
v~a~ = 4 M  

So it follows from Proposition 2.1 (b) when peF  c, t_>O: 

0 < P, (t, p, K) < ~ (t, p, K) <= Sr f(P) = St f(P) - f(P) 

= S ~ A . f d s  (p)<= S ~ A . f d s  <=tllA. f ] [<=t{ l [d fH+l[A . f -  N} 

_-< t {sup [�89 I[(DZf)v N" ][ a~ [[ + ][ (Df)p][. [l#p N] + [[ A. f -  ~ f  [[} 
P 

Also Proposition 2.3 tells us we can choose n. so 

ll;.:-. ill <j- 
hence we have 

Lemma 2.2. For every compact subset K of Jig and every e>0  there exists a 
compact subset F of  d/l and an integer n~ such that K c F  and 

o 

0<_<_ P,(t, p, K)<=P,(t, p, K)<= te 

for n>=n~, p~F c, and all t>=O. 

Now, we can verify (a) of Lemma 1.5. Namely, if this condition were not 
satisfied then there would exist f c  Co, e > 0, t > 0, and sequences n k T ~ ,  Pk --> ~ 
SO for all k 

n k 

I T,f(Pk)l >~, 

where we may assume f_>_ 0. Set 

K = {p: peal/l, 2 f (p)>e},  

then K is compact because f ~  C o. Moreover 

n k  ~ . 

e<<_ Ttf(Pk)= S f(q)P~(t, pg, dq)<_<_ []f][ . p,k(t,p~, K)q 2 ' 
J l  

so for all k 
O< 2 ~ < = P ~ ( t ,  pk, K). 

On the other hand, according to Lemma 2.2 there is a compact F c J// and an 
integer n o such that 

P , ( s , p , K ) < s - -  
4tHfN 

for n>no,  pEF ~ and all s>0.  Now, for k sufficiently large nk>n o and pkeU so 
for such k 

e 1 
O<P,~(t, pk, K ) < t  4t][f[] < 2  P"k(t'pk' K) 
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which is absurd. Consequently, the sequence {(~, t~0)}~= 1 (and by a similar 

argument also the sequence {(St, t > 0)},~ 1) must satisfy condition (a). 
m Qo n ~ From Lemma 1.5 it now follows that every subsequence { l}l=l of { },=1 

n oo has a further subsequence { k}k=l such that for every f ~ C  o and t > 0  the limits 
n k n k  

T t f = s- lim T t f ;  S t f = s- lim S t f (2.7) 

exist. The families (Tt, t>0)  and (St, t>0)  are Co-semigroups with generators A 

and A whose domains contain ~ = C ~z' ~) n C r and which satisfy 

AT= d f ,  AT= ~ f  when f 6  ~ ,  

where d and ~ are the differential operators defined by (a) and (b) in Propo- 
sition 2.3. So in particular we have shown the existence of Coo-Semigroups whose 

generators, when properly restricted, coincide with d and d without assuming 
that a 2 be strictly positive definite. However, the limits obtained might depend 
upon the subsequences chosen and in particular the original sequences might 
not themselves converge. To show that this unpleasant situation does not occur 
we need the extra condition upon a z, which, as will be shown below, implies 
that the limits we get are independent of the particular subsequences from which 
they are derived. 

An elementary argument based upon this observation then yields the result 
that for every f ~ C  o and t > 0  

n 

s - l i m T J = T t f ;  s - l imS t f=S , f .  
n --* o ~  n ~ o o  

However, before we can prove this we need several auxiliary results concerning 

the behavior of the operators A and A and of the sequences 
n k n k 

{(Tt, t>0)}k~ 1 and {(S,,t>0)}ff= 1. 
First 

Lemma 2.3. For arbitrary f~  C o, f>O, t >O, F~(J/g) ,  pEd/l the following 
inequalities hold 

(a) O<Tt f  < S t f  
0 

(b) P(t, p, r )  < l,(t, p, r) .  

Here P and /~ are the transition functions corresponding to (T~, t>0)  resp. 
(St, t > 0). The proof of the lemma is simple. Namely, (a) is a consequence of (a) 
in Proposition 2.1 while (b) follows from (a) of the present lemma. One might 
note, that intuitively this result and its counterpart in Proposition 2.1 are obvious 

n 

because the process corresponding to (T~, t>0)  has a positive probability of 
n 

being "killed" while the process corresponding to (S t, t>0)  is conservative. In 
0 

this connection also note that although we know P,(t, p, J / ) =  1 for all n we do 
O 

not yet have a similar result for P(t, p, .l/g). 
In the following let B(e, p) denote the ball in ~t' with center p and radius e, 

and let B~(e, p) denote its complement (in d//) then 
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Proposition 2.4. For every compact set F c J{  and every pair of positive 
numbers (e, tl) there exists an integer k o and a number 7 > 0 such that 

(a) sup 1 { 1  -~k( t ,  p, B(~, p))} =<t/ 
O<t=<~ t 

p~F 

1 
(b) sup -;- P,~ (t, p, Be(e, p)) <=t 1 

O<t_<~ L 
peF 

when k > k o . 

Corollary. For every compact set F c y E  and every pair of positive numbers 
(5, tl) there exists a number 7 > 0 such that 

(c) sup 1 {1 - P ( t ,  p, B(e, p))} <q. 
o<t_-<7 t 

p~F 

1 
(d) o ~P  t P ( t ,  p, Be(e, p))<= t I. 

pElT 

Proof of Corollary. If F c d g  is compact then (2.7) implies 
0 O 

lim P,~ (t, p, F) < P (t, p, f ) .  
k ~ o o  

Hence 
o 

P(t, p, B~(e, p))<__P(t, p, B~(~, p)) 

<=l-P(t,p,B(e,p))<=l t,p, ,p 

o (, t) { ( ( ,p,B T , p  = l i m  1 - ~  t ,p ,B 2 ,  p , 
k ~ o o  

and an application of Proposition 2.4(a) immediately yields the desired result. 
In order to prove Proposition 2.4 note first that statement (b) follows from 

statement (a) and Lemma 2.3 (b), so it suffices to prove (a)22. N O W ,  if (a) were not 
true, there would exist a compact subset F o of ~/, numbers ~0 > 0, t/o > 0, and 
sequences n)-~. o% tj,~O, {qj}~=lcFo so for all j 

o 

1 --P,)(tj, qj, B(eo, qj))> tj qo. 

Because of the compactness of F 0 it may be assumed that qj-+qoeFo for j - ->~.  
Hence, for j sufficiently large 

B(�89 qo) = B(eo, q)) 
and thus for such j 

1 --~)(tj, qj, B (�89 o, qo))> tj qo. 

22 The idea behind the proof is from [6] (p. 93-95). 
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Choose next f e  Cff such that 

then 

SO 

Also 

Zm+,o, qo) < f --< Zm~o, ~ol 

0 0 

Stj f(p) = ~ f(q) P~) (tj, p, dq) < P~j (tj, p, B (�89 ~o, qo)), 

-J -J 
tj rlo < 1 - S,j f(qj) = 1 - Stj f(qj) + St~ f ( q j ) -  Stj f ( @ .  

0 =Af (qo)= l im- -1  [S t f (qo)- f (qo)]  
t lo t 

= lim 1 [St~ f (qj )_  f(qj)] = lim 1 [Stj f (qj )_  1-1, 
~ t i j ~  t~ 

1 o 

because - -  [St f - f ]  converges uniformly to A f; thus for j sufficiently large 
t 

t~ rio <= 2 [Stj f (q j ) -  ~tj f(q~)l. (2.8) 

Let z =max tj and choose 23 Jl so for j>__jl 
J 

nj o o 
sup IIS~(Af)-S~(Af)[[ <~t/0, 

0 < s < r  

and next choose j2>Jl so for J>J2 

then if j > J2 

~j = tj,~,, ds [[Stjf-Stjf l[ ~ [ , j f - A f ] + [ S ~ - S ~ ] ( ~ t f ) ]  
0 n~ 0 0 

<t j  IIA,j f - ~ t f l l  +tj.  sup IIS~(Af)-S~(Af)H <�88 
0_<s_<r 

which in connection with (2.8) yields, when j is sufficiently large, 
.j n~ 

�89 tj tlo <= IStj f ( q j ) -  Stj f(qj)l---- II Stj f -  Stj f II <�88 t~ t/o . 

This is a contradiction and consequently we may conclude that (a) is true. 
n 

Note, that once it has been shown that {(Tt, t>__0)}ff= 1 rather than the sub- 
n k  0 

sequence {(Tt, t>0)}~__1o converges then (a) and (b) become valid for the P,, P. 

rather than for the P,~, P.~. 

Next we shall look a little more closely at the operators A and ~1 z4. Recall 
the remark following the proof of Lemma 1.5 according to which the actual 

convergence of the sequence {(~, t>0)},~=l would follow from what we already 

23 Use Lemma 1.6. 
2,* On the next few pages we shall work only with the operators T~, A, ,~r The results we obtain will of 

course correspond to similar results relating to the operators St, A, ~ .  
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know by now provided it is true that the set 

N = { f :  f~Co, f = g - A g  for some g e ~ }  

is dense in C o. Also when g e ~  then Ag=s~g, so essentially we are faced with 
the problem of having to solve the differential equation f - - g - s ~ g ,  and to show 
that the solution g is contained in N for f ranging within a dense subset of C o. 
For general manifolds ~/~ we cannot handle this problem directly. So instead we 
proceed by solving the equation locally first, and then use the known properties 
of the generator A in order to glue the local solutions together. The method is 
lengthy and will be broken into several parts each of which will be formulated 
as a lemma. First we prove A is a local operator. 

Lemma 2.4. I f  f e~A, gff~A and f - g  on a neighborhood of the point Po then 

A f (Po)= A g(Po). 

Here ~A denotes the domain of A. To prove the lemma, let h ~  A with h(p)=O 
for peB(r, Po), then 

[ah(Po)l= l i m +  [~  h(q) P (t, po, dq)-  h(Po) ] 
t$0 

1 
P(t, Po, dq) <IIh i = limz~o t Bo~,.,po~ h(q) [llim,~o P(t'p~176 

according to the corollary to Proposition 2.4. By setting h = f - g  we obtain the 
statement of the lemma. 

t-(2, ~) then for each p 6 ~  Lemma 2.5. I f  f ~ ~ a c~ ~1o~ 

A f(p)=~d f(p). 

Proof. Let f e~A C~ ~1o~r~(2'~) and let po ~ JCd. Then, according to Lemma 4.2, there 
is a function foeC(E'~)r~ C K such that fo(p)=f(p) for psB(ro,Po ) for some ro>0 , 
and because f o S ~  c ~  A Lemma 2.4 yields 

Af(Po) = Afo (Po) = d f o  (Po) = df(Po). 

Because A is a local operator it makes sense to talk about A f  even when f 
is not defined everywhere on ~ ' .  To be specific, let N be an open subset of ~/~ 
and let f be a function which is bounded and continuous on N. If now, for every 
point p e n  we can find a neighborhood Vp ofp with VpcN and a function g ~ A  
such that g - f  on Vp then we may set 

A f(p) = A g (p). 

We denote the class of such functions f by the symbol ~ .  In case ~ is compact 
~ a = ~ f ,  but in general ~a is a proper subset of ~a  ~. Note, that if f ~ a  ~ and 
p ~ ff then 1{ 

Af(p) =lim t ~ f(q) P(t, p, dq)-f(p)}. 

This follows immediately from the proof of Lemma 2.4. 
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Lemma 2.6. Let N c j /g  be open and let f be a bounded continuous function on 
N which (on ~ )  belongs to class ~z ,  ~) Then ~loc  " 

f e N ~  and A f ( p ) = d f ( p )  for p e g .  

Proof Let f be given and satisfy the conditions of the lemma, and let poe~f. 
As in the proof of Lemma 2.5 we can find a function fo with compact support 
in N such that fo e C (z' ") and fo (P) - f(P) on a neighborhood of Po; but then 

fo e @a and Afo (Po) = d f o  (Po), 

which proves the lemma. 

Lemma 2.7. Let N be a bounded 25 open subset of ~ t  and let f be a function 
which is continuous on N w ON and whose restriction to N is contained in ~ .  I f  for 
some 2 > O, f satisfies the equation 

2 f = A f  on ~,  f = 0  on 0N, 

then f = 0 on N u ON. 

Proof If f does not vanish identically on N it either has a positive maximum 
or a negative minimum. Assume the former, and choose Po e ~q so f(Po) is maximum 
then 

Af(P~ it {J f (q)  P(t, Po, d q ) -  f(Po)} <0 

0 = :, f(Po) - Af(po) >-- 2 f(Po) > O, 

which is a contradiction; thus f < 0. But the assumption that f has a negative 
minimum also leads to a contradiction (consider - f )  consequently we must 
have f = 0. 

Let (Rz, 2 > 0) be the resolvent of the semigroup (Tt, t >0). Then 

Lemma 2.8. Let f e C o be H61der continuous of order ~, then 

Rx f e  ['~(2, a) _ ~loc i" ~ ~ A  
when 2 > O. 

Proof 26. Let /~>0 and poeJg be given. Choose a coordinate system 
(V, q~)(V = J  g,  ~o: V ~  E N) on a neighborhood V of Po so the following conditions 
are satisfied 

(a) F ( ~ ) = f o  ~o-l(~) is H61der continuous of order ~ on q~(V)= U. 

(b) The coefficients in the coordinate expression for the operator .~r 

s~t G( ~)= aid (2) O, Oj G(2) + bk(N) 0 k G (~) + c (~) G (2) 

are H61der continuous of order e. 

Let B be a ball (Euclidean metric) contained in U and with center q0 (Po), and 
consider the differential equation 

(2 -~ ] )  G(X)=F(X) for ~eB,  

G(~)=(R~f)( tp- l (2))  for 2e~B. 
25 T h a t  is, ~ is compact .  
26 See also [6] p. 158. 
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According to the general theory 27 of such equations, there is a uniquely deter- 
mined solution G(2) which is continuous on B and of class C (2' ~) on B. Set g(p)= 
G((p(p)), then g is of class C (z'~) on q~-l(B)= Vo C V and continuous on Vo. Also 

(2--d)g(p)=f(p)  for P~Vo, 

g(p)=R~f(p) for p~OV o. 
Next, Lemma 2.6 yields 

ge~Vo and d g = A g  on Vo, 
hence 

f(p) = (2 - d )  g (p) = (2 - A) g (p), p ~ V o . 

On the other hand, if h is the restriction of R z f to V o then 

h 6 ~  ~ and (2 -A)h (p )=(2-A)Ra f (p )=f (p )  

for pc  V o, which by Lemma 2.7 implies h(p)=g(p)  on V o. 

Thus Rz f agrees on V o with a function in C (2, ~) and consequently R z f ~  r-(2, ~) ~loc  " 

Now we can finally complete the proof  of the convergence theorem. Let 
n/r n~t 

{(T~, t > 0)} and {(T~, t >0)} be two convergent subsequences for our original se- 
quence with limits (Tt, t>=0) resp. (T[, t~0) ,  the corresponding generators and 
resolvents being denoted by A, A' resp. Ra, R~. Choose a function f ~  C O which 
is H61der continuous of order 0~, then according to Lemma 2.8 and Lemma 2.5 
we have for 2 > 0 

R~. f ~  ~1o~(2" ~) "-" ~'A6~ and AR a f = d R  a f ,  

R~af~t"(z'~)'-'5~a , ,  and A'R'zf=z~CR'~f. 
Hence 

o r  

moreover  

( 2 -  ~r Rz f =  ( 2 -  A) R z f = f =  (2 - A') R~ f =  ( 2 -  d )  R~ f 

( 2 -  d ) ( R z  f -  R] f ) =  0; 

lim Ra f (p)  = lim R~ f(p)  = 0 
p ~ c o  p ~ c O  

and these two results taken together imply 2s R z f = R ' z f  In other words, we 
have shown 

Ra f =R' z f ,  

for 2 > 0 and f ranging within a dense subset of C o. But this in turn implies 

T~f=T/ f ,  for t_>_0 and f~Co,  

so whenever a subsequence {(T,, t > 0)}~= 1 converges it must converge to (T,, t > 0). 
n k  

On the other hand, we know already that any prescribed sequence {(Tt, t > 0)}k~ 1 
has a convergent subsequence. Combining these results we may then conclude 

rl 

that the original sequence {(Tt, t>=0)},~=l itself converges to (Tt, t_>_0). Thus we 
have 

27 [17]  p. 167, T h e o r e m  36 IV. 
zs A r g u e  as  in the  p r o o f  of  L e m m a  2.7. 

3 Z. W a h r s c h e i n l i c h k e i t s t h e o r i e  verw.  Geb ie te ,  Bd.  32 
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T h e o r e m  2.1. Let Jg be a complete Riemannian manifold of class s r  and let 
(n) co {(vp )p~}n=~ be a sequence of families of subprobability measures on the tangent 

spaces J/gp satisfying conditions cs O-Cg 6. Then the corresponding Co-semigroups 

(Tt, t >O) and (St, t >O) satisfy for f ~Co, t >O 
n n 

s-lim T t f = T t f ,  s-lira St f =  S t f ,  
n ~ 3  n ~ 3  

where (T t, t > O) and (S t, t > O) are Co-semigroups whose generators A and ~t when 
applied to a function f in C ~2' ~) ~ C K are determined by 

A f =  sO f= �89  < D  2 f , ,  0"2> + (D f, #> - k- f ,  

~ l f =  ~ f = � 8 9  f, a2> + (D f, #>. 

The corresponding transition functions satisfy the inequality 
o 

P(t ,p,r)<=P(t ,p,r)  for (t,p,F)e(E1) + x d / x  ~(J{) .  

Remark. On basis of Lemma 1.6 we  can make the apparently stronger state- 
ments, that for f ~  C o and t o > 0 

(a) lim sup I lTt f -T~fI l=O 
n~oo O<_t<=to 

n 

(b) lim sup tlS, f - S J I l = O .  
n ~  O < _ t < _ t o  

Corollary. Let the conditions of Theorem 2.1 be satisfied and let { ,},=~ be a 
sequence of integers for which 

lim 1 ~, = t > 0. 
n ~ 3  n 

Then for f e C o 
s-liln 7"-f = T, f, s-lim S"f = S t f .  

Recall that 
n 

Tf(p) = ~ f(q)Pn(P, dq); 

The corollary states that the iterates 

Sf(p) = ~ f(q) ~ (p, dq). 
dl  

o 

P,t~")(p,') and P,(")(p,.) 
o 

converge vaguely to the measures P(t,p, .) and P(t,p, .) respectively. For the 

proof it suffices to consider the (3) only. So let the sequence {a,},~=l with 

lim 1 a, = t 
n ~  n 

be given, and let f r  C O . If 0 < e < 1 we have 

(n t) k n t 1 

e-"t ~ k! ~ 82(nt)~-- e2nt 
I k -n t ]  > ent  
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according to Chebyshev's inequality, hence 

n n o o  k n n 

I l T ~ . f - T t f l l < e  -"' 3" (nt) I k~----~._~ I T="f - Z~f  II 

< 2Hfl[ + e - " '  (nt)k " 

t~ -~1<- -~ 

Now, if l>k 
n l n k  n k  l - k - 1  n . ~ 1 n k l - k - 1  n . 

thus 
- 1 - k  

II T ' f  - T~f l l  < - - l l A ~ f l l  
n 

(2.9) 

which after insertion in (2.9) yields 

hence 

. _ _  (nt)klc~ ~ k [  
[]T~.f_T, f l [< 211fl[ +t]lA.f]le_.~ ~ k! 

= gznt II_~)<=~ nt nt  

- -  n n _ _  

lim [[ T ~ f  - T, fl[ <e tlim IIAJII. 

Also, the left-hand side is independent of e, thus it must be zero whenever the right- 
hand term is finite, in particular it must be zero when f e N .  

But ~ = C~ ~ C ~2'~ is dense in C O and so we may conclude 

n n 

lim II T~"f - Ttftl =0  
n ~ o o  

for all f e  C o. This immediately implies the statement of the corollary. 

Theorem 2.2. Assume the conditions listed in Theorem 2.1 are satisfied, and let 
(X} "), t > 0), (X} ~ t > O) be standard processes on/r associated with the semigroups 

n 

(T~, t>O) resp. (T t, t>0 )  and satisfying: weak-li~ X~o")=Xg~; then the sequence of 

processes {(X~ "~, t > 0)}[= 1 converges weakly to the process (X~ ~ t> 0). 

In order to prove this theorem we need according to Lemma 1.4 only show 
that for every g > 0 there exists an a > 0 and an integer n, so 

1 
sup P,(t,p,B~a(e,p))<=c~, for n>n~, 

peJ~lzl  T 
0 < t  

where B~(e, p) is the complement (in Jr of the ball 

(2.10) 

BA(~, p)= {q: qe/g~, a(p, q)< e}. 
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Also we retain the notation B(e, p) for the ball 

B(e, p)= {q: q e J//, d(p, q)<~},  

and let Be(e, p) denote the complement in Jg  of B(~, p). 

The proof of (2.10) will be based upon the following 

Lemma 2.9. For every compact subset F of ~ and every e > 0  there exists 
constants a, b such that for all t > 0 

sup sup(1 - P,(t, p, J{)) < a t, (2.11) 
n pEF 

lim sup P.(t, p, Be(e, p))< b t. (2.12) 
n ~ o o  pEF 

Proof of Lemma. According to Proposition 2.4(b) there exists an integer n o 
and a number 7 > 0 so 

sup/',(t, p, Bct~, p))__< 1. t 
peF 

when n __> n o and 0 _  t ~< 7. Set b = max ( 1 ,  1) then b t > 1 for t _>_ 7, consequently 

sup P.(t, p, B~(~, p))_-< b t 
p~F 

for n => n o and all t. This proves (2.12). Next, choose Po ~ J t  and define the sequence 

F.={p:p~J/g,d(po,p)<n }, n=  1, 2, .... 

Each F, is closed and bounded, hence compact. Also F, Td//as nT ~ .  Select func- 
tions f , e  C~(Jg) which satisfy 

Zr < f , <  1; sup I-II(Df)pl I + I[(D2f)fi] =< 1, 
p ~,/g/ 

this can be done according to axiom ~r Write K, for the support of f, ,  then K, 
is compact and F, = K,. Also, because F is compact, there exists an n o such that 
F c F ,  o. Then, for p~F we have 

l 
1 -P~(t, p, J//)<= 1 -Pt(t, p, K,o)<f,o(p)- Ttf, o(p ) 

= - (r~Azf,  o)ds ( p ) < t .  IIAzf, oll_-<t-{IIAN, oll + IIAzf, o - A f ,  oll} 

< t ,  {spupl-II~ II + II~pll] + Ilkll + IIAzf, o-Af ,  oll} <__at, 

with a independent o fp  and l, and this proves (2.11). 
As an immediate consequence of the above proof we also obtain 

Corollary. 
1 

sup ~ {1 -P( t ,  p, ~ ' ) } <  m. 
p e r  t 
o < t  
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To see this, let pe~g//and choose n o so peF, o, then 

1 -P( t ,  p,/r 1 -P( t ,  p, K.o ) 

< 1 - lira P~(t, p, K.o) = lim [1 - Pz(t, p, K.o)] 
l--r o9 l~ao  

<t-{llkl[ + sup [-]l~rq211 + I[#qll-1}_-< ao t, 
q~,/d 

where ao does not depend upon p, thus 

1 
s u p -  {1 - P ( t ,  p, Jr < a o . 
p e ~  t 
O < t  

Now, we are able to prove (2.10). Let 5>0  be given and define 

= A > 2 ~ )  e 

These sets are compact in J/g and 

F t c in te r ior  (F2); 

also we may assume that e is so small that F~ is non-empty. If peF2 c and qeB~(e, p) 
then 

2e 
6(q, A ) > 6 ( q , p ) - 6 ( A , p ) > e - ~ =  3 

so q e F  1 and consequently 

sup ~(t, p, B~(e, p))=< sup ~(t, p, F0= sup P,(t, p, F1). 

Choose f ~  C~(~ ' )  such that 

Zrl <-- f <-<- )@2 
then for p ~ F2 c 

P~(t, p, F0__< Ttf(p)= Ttf(p ) - f ( p ) =  T~A, f d s  (p) 

<t .  rlA, f l l<ct ,  with c=suplrAJII ,  
n 

thus 
sup!5,(t,p,B~A(e,p))<=ct, for all n,t>O. 
p a F2c 

(2.13) 

Next, according to Lemma 1.1, there exists a p >0  so for all p 6 ~ '  

B(p, p) c Ba(e , p) 

and this in conjunction with (2.12) yields 

sup P,(t, p, B~(e, p))< sup P,(t, p, Be(p, p)) < b t 
p e F  2 pEF2 
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for n__> n~ and all t > 0; hence 

~ c supP.(t ,p,B~(e,p))+sup[1-P.(t ,p,J//)] sup P.(t, p, B~(~, p/) _-< 
peF2 peF2 peF2 

(2.14) 
<=(a+b)t, for n>=n~ and all t > 0 .  

Combining (2.13) and (2.14) we obtain (2.10), and this completes the proof of 
Theorem 2.2. 

Corollary. Almost all sample-paths of the process (X~ ~ t>_-0) are continuous 
on the interval [0, ~), 

Proof Immediate from the corollary of Proposition 2.4. 

Remarks. (I) It should be noted that the real difficulty in the proof of Theo- 
rem 2.1 is to establish that the graph of the differential operator ( d ,  ~), ~ =  
C~2,~) ~, ~ is dense in the graph of(A, ~A)" To see that this result is a consequence 

l o c  ' ' ~ A  ~ 

of our proof let Jo ~ ~a  and let e > O. Set 

g o = f o -  Afo 

and choose a g ~  C o which is H61der continuous of order ~ and satisfies 

Then according to Lemma 2.8 

s o  

ltgo-g~ll < 3 

f~=R1 g , ~ ,  

[Ifo-fA = I le l (g0-  g~)ll ~ IIg0-g~ll < 7 '  

and consequently 

I1 (fo, Afo) - (f~; df~)I1 = [1 fo -f~ 1] + II Afo - d f~ II 

= Ilfo-f~LI + H(fo-go)-(f~-g,)][ < 2  Ilfo-f,/I + [Igo-g~[I <e  

which proves our statement. 

(II) We know already that C ~~ n C K c @a, but by using the fact that thc weak 
and the strong generators for a Co-semigrou p coincide we may even prove 

Lemma 2.10. I f  f ~ C  2 n CK then f e ~ A  and 

Af= ~f .  

Proof Recall (I-6] p. 20) that if { f,}ff= 1 is a sequence of functions in C o such that 

f (p)=lirnf , (p)  exists for every p ~ J / ,  and sup IILli < 
n 

then {f,},~= 1 is said to converge weakly to f. We denote this by 

f .  w , f  for n--, oe. 

The weak infinitesimal generator A of the semigroup (T. t>0)  is then defined by 
referring to this type of convergence rather than to uniform convergence. How- 
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ever, because (T t, t>_0) is a Co-semigroup: A = A, and also A is a closed operator; 
thus we have: 

I f { f , } L l ~ A  and f~ w , f ,  A f ,  W , g ~ C  o 
(2.15) 

for n--+ ~ ,  then f ~  ~A and A f  = g. 

Now, l e t f ~  C 2 c~ C K then there exists 29 a sequence { f,}[= 1 ~ C~ ~ CK such that 

f ,  ~ , f  and ~ f ,  ~ , d f  for n ~ o o .  
But for each n 

L E ~  A and A f , = s J f , ,  

so from (2.15) we may conclude 

f e ~ A  and A f = ~ 4 f .  

We remark that we by now have shown that our limit process (X} ~ t > 0) is a 
diffusion process in the sense of: [6] Section 5.18. 

(III) Next, let us look a little more closely at the function P(t, p, JCL)="the 
probability that the process starting from p at time zero is still alive at time t". Set 

Q(t, p)=P(t ,  p, J{) 
then 

Q(t + s, p) = ~ P(t, q, JCL) n(s, p, dq) < Q(s, p) 

so for p fixed Q(t, p) is a nonnegative decreasing function with (see the corollary 
to Lemma 2.9) 

Q(0, p) = 1 -- s-lim Q(t, p). 
t ~ 0  

Let us first show 

~?Q (0, p)= - k(p). & 

To see this, let F c J N  be compact and let e>0,  define 

C= {p: d(p, r)__<~} 

(2.16) 

then F~ is a compact neighborhood of E Let t /> 0, then according to the corollary 
to Proposition 2.4 there is a 7 > 0  such that 

1 
sup - -  P(t, p, Be(e, p))<t 1 

psF, O<t< 7 t 

29 This is the approach used in [6] (p. 165). The existence of the sequence {f,},~l is also shownthere in 
the case ~ = E  N. To take care of our situation it suffices to cover the support, F, of f with coordinate 
balls {V~}~_ 1 and then select functions ~oiE C a satisfying 0 < q h <  1 with supp(cp~) being compact and 
contained in V~, and such that 

~ (Pi(P)= 1 for peF. 
i = i  

We can then find sequences [{fl,},~=l]f=l of C ~ functions with compact  support  so 

fin w , (p . f ,  ~f~,  w__~d((01.f ) for n---,oo, l<_i<_L. 

Setf ,  = ~ =  lJi,, then {fn}.~_ t has the desired properties. 
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and then also 
1 

sup _2_ P(t, p, Fj)<=~ 7. 
p~F,O~tN) '  t 

Thus, i f f  is any bounded measurable function 

lim sup [ + ~ f  (q) P(t,p, dq)] ,~r 

Now, choose f e  C ~176 c~ C K with ;(ro < f <  1, then for pcF 

= lira 1 {P(t, p 0 / ~ ) -  1 - ~ (1 -f(q)) P(t, p, dq)) 
~o t rg 

L 
{Q(t, p)- O(o, p)) = ~  (o, p), =lira 

t,~o t 

and this proves (2.16). 

Next, according to the corollary to Lemma 2.9 the function 

1 
- -  {1-  Q(t, p)}, t>0, p ~ ' ,  
t 

is bounded. Hence we have 

~t 

SO 

(t, p) = lira 1 hlo -h {O(t +h,p)-Q(t,p)} 

--limhlo ~ h [Q(h'q)-l]P(t 'p'dq) 

= f ~[(O,q)P(t,p, dq), 
d,t 

a+Q 
Ot (t, p)= - f k(q) P(t, p, dq). (2.17) 

~g 

Set ;t = sup k(p), then (2.17) yields 
p~,at/ 

- -  (t, p ) >  - 2 .  Q(t, p). 

Assume for a moment that we know Q(., p) is left continuous, then this result 
in conjunction with Q(O, p) = 1 gives 

Q(t, p) ~ e- ~t, 

and in particular if k-~0 we obtain P(t,p,~()-~l so in this case the process 
(X~ ~ t>0)  considered as a process on J//, is conservative. 
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Finally, the left continuity of Q(', p) follows from the inequalities (h > 0) 

0 <= Q(t - h, p) - Q(t, p)= ~ [1 - Q(h, q)] P ( t -  h, p, dq) 

= h . ~  h [ 1 - Q ( h , q ) ] P ( t - h , p ,  dq)<=h.K, 

where 
K = sup @ [1 - Q(t, p)] < oo. 

pc,de 
O<t 

We can make a similar construction for each of the processes (x~(") t > 0), that is 
if we set co 

Q.(t, p) = P.(t, p, JZ) = e- "' ~ (n t) J ,~, .. 
j-  o ~ V  r ~z), 

then 
k.(p) = n [1 - v~")(JG)] 

aQ. 
at (t, p)= - S k,(q) P,(t, p, dq), (2.17') 

as one easily shows. If now k(') is contained in C O rather than in (~ we may use 
(2.17) and (2.17') to show 

s- lim ~ f =  Ttf for all f e  C. 
n~oo 

To do this, it apparently suffices to verify 

s-Jim P,(t, p, J/I)=P(t, p, J[) (2.18) 

because every f e  C is of the form f0 + c where fo E C O and c is a constant. But 

sup IP(t, p, ~ ) - P . ( t ,  p, Jr =sup [Q(t, p ) -  Q.(t, p)l 
p P 

t Ot ds i a+Q r a G  --supp u , ~ ( s ' p ) d s - ~  (s,p) 

" " d =  --sup { k.(p)-T=k(p)+T=k(p)-T=k(p)} 
p 6 

i i" < IIk.-klI ds+ IIr=k-r=kll ds 
0 0 

< t [ l l k , - k l l +  sup I l r s k - r = k l l ] ~ 0  
O<_s<_t 

and so (2.18) follows. 
(") are all genuine In  particular we may now claim, that if the measures v v 

probability measures, that is if 

~"~(~)-1 or k.(p)~O, 
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then all the processes t~tX(")t , t_> 0)},~- - 0 may be taken to be conservative processes 
on ~/~ rather than on ~ .  Also, referring to the corollary of Theorem 2.1, for each 
p e J g  the sequence {P~t~")(p, }co ") ,=x of probability measures on N(Jg) converges 
weakly to the probability measure P(t, p, ") when c~, ~ n t. 

3. Brownian Motions 

3.1. Consider for a moment the situation where our manifold ~ is N-dimen- 
sional Euclidean space E N. Ordinary random walks in E N may then be visualized 
as being a special kind of geodesic random walks, namely, as being geodesic 
random walks with identically distributed steps. Also, the corresponding limit 
processes (obtained as in Section 2) may be thought of as making up a special 
class of processes canonically associated with the geometric structure of E N. We 
shall call these processes Brownian motions in E N. 

On basis of this point of view we now proceed to define the concept of a 
Brownian motion in an arbitrary Riemannian manifold ~g. Namely, we define: 
a Brownian motion in Jg is a diffusion process which may be obtained as the 
limit process 3o for a sequence of geodesic random walks with "identically distrib- 
uted steps." Here we say that a random walk has identically distributed steps if it 
is constructed on basis of a family of probability measures {Vp}p~ on the ~ p  
with the property that for every p, q in 

Vq ~ 72pq Vp 

where Zpq denotes parallel translation along any broken C ~~ curve joining p and q. 

Consequently, if 1 D 2 df=~( f, •2)+(Ds #> (3.1) 

is the differential generator of a Brownian motion then the tensorfields # and ~2 
are invariant under parallel translations. 

That is, if zpq is defined as above then 

2_  2 and #v=#q. (3.2) "~pq O'p - -  O'q "Cpq 

On the other hand, if we are given tensorfields # and cr 2 satisfying (3.2) and also 
#veJClp, trp2eJlp| aq 2 is symmetric and strictly positive definite; then there 
exists a Brownian motion in ~ with differential generator given by (3.1). 

To see this, fix poSJg, let {ei}~= 1 be an orthonormal basis for Jgpo such that 

N 

2 = ~ 2 2  el| 0<21_-<22_--<'"_--<)~N, O-po 
i=1 

and let Vpo be the measure on ~gpo corresponding to a uniform mass distribution 
of total mass 1 on the ellipsoid Npo with center #po and principal axes along the e i 
with lengths li= c~2 i, where the value of the constant ~ will be determined later. 
First, we show that if ? is a broken C OO curve starting and ending at Po and z 
denotes parallel translation along V then 

T,O-r , and consequently VVvo = v;o. 

ao In the sense of Sect ion 2. 
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So let X~Nvo. This means  

X = #po + ~ x ei, where < e2, 
i = l  i = 1  

and we mus t  show zXegpo, that  is 

% with < ~2 zX=#po+ ~ i 
i=1  i = 1  

But "C]Apo =-Ppo per a s sumpt ion  so 

where 

Z ,l~po+ xiei =#po + E x i T ,  ei=#po+ E~iei 
i = 1  i=1  i = 1  

thus it remains  to prove  

N N 

"C ei  ~-~- E j ~ i  i fli ej, Z xj fir, 
j = l  1=1 

1 i=1  k i j = l  

To do this, let 2 be the co lumn vector  (x~), and introduce the matr ices 

(3.3) 

where 
A = {2u}, B = {bu} 

2 u = 2 i ' 6 i j  and bi i= fl~, 

then the sum in (3.3) equals:  

][A-1Bx]] 2 = x *  B* A-2By~. 

The fact that  z is an isometry  implies that  the matr ix  B is or thogonal .  Fur thermore ,  
according to (3.2) 

N N 

T Gpo - -  r i  r'i e j  @ e k 
i = l  i , j , k = l  

s o  

"~ k 2 j  )"~ flJ fli = for j = k 
i=1 0 for j~=k 

which means  

and consequent ly  
A2=BA2B *, 

A-Z=B*A-2B.  
Altogether  

x j = ][A-a Bffll2 = [[A-aN[[ xi)2 _~g 2 
i = 1  i j = l  

and this proves  (3.3). 
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We have thus shown that for every parallel translation, ~, around a closed 
circuit starting and ending at Po it holds 

 epoCepo 
and this implies 

%o=Go 
as claimed. 

Next, we may define vp for arbitrary p ~ J / b y  setting 

1)p = "[POP V Po 

where Zpo p denotes parallel translation along any broken C ~ curve 7 joining 
Po and p. 

What we have just shown implies that the definition is independent of the 
choice of 7. Moreover, it is clear that 

2 (3.4) 
d4p ,Alp 

if this just holds at p = Po. So let us prove that by computing the integrals at p = P0. 
Let E be the ellipsoid in E N centered at the origin and with axes in the directions 

of the coordinate axes and with lengths l~, so 

~=~ ( x ~ 2 <  

We can then identify E and o~po via the map 

N 

X - - ~  ]dpo-[- 2 X i e i. 
i=1 

If V denotes the volume of E and dff Lebesgue measure in E N we may then write 

XVpo(dX):l~po+ ~ [ l ~ x ,  dff] e,=#po, 
i = 1  ,/tlpo 

f X N X v p o ( d x ) - ~ . o N U p o =  I (x-~po)N(X-Upo)Vpo(dX) 
,/[/I po ~[/t po 

= ~ x i x j d~2 ei| ej=T//-.~J'v I f (xq dye) ei | ei 
i , j = l  - -  i = 1  E 

1 N xi 2 
=V-i--~I ( !  ( ~ ) d ~ 2 )  22e~| 

Set 3x y~ 2~ ~ = x i then in these coordinates 

E ~-, {y: y = (y~) ~ E N, ~', y~ < 1 } = S 
S 0  

31 N o  s u m m a t i o n !  
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with D=(21 .. . . .  2N). ~N+2, and 

1 N 
S (yi) E 
s DI i--1 

1 !])[2 d~= K 

where K only depends upon N. Altogether 

and as V is proportional to c~ N while D-,~ a N+ z we may choose ~ such that K D =  V. 
This proves (3.4). Now set v(v")= ve for all n>  1, p ~ ' ,  then it is easily verified that 
the sequence (") oo {(vv )e~} ,= l  satisfies conditions cg0-~6, and consequently the 
sequence of random walks constructed from these measures converges weakly 
to a diffusion process in ~ '  with differential generator d given by (3.1). 

Moreover, this diffusion process is a Brownian motion because the corre- 
sponding random walks have identically distributed steps. We have thus shown 

Proposition 3.1. The operator 

1 D 2 d f = g (  f, a2) + (Df,/z) 

is the differential generator of a Brownian motion if and only if l~ and a 2 are constant. 

"constant" here means "invariant under parallel translations", and it is of 
course still assumed that o 2 is strictly positive definite. 

e N Example. For each p e J t  choose an orthonormal basis { i(P)}i=l, and then 
set (sum over repeated indices) 

~zv = 0, av 2 = ei(p)Nei(p), (3.5) 

then these fields satisfy (3.2). What # is concerned this is obvious, and it is also 
2 is the covariance 32 of a uniform clear from the above computations that ap 

distribution on a sphere in ~r centered at 0, and thus is invariant under rotations 
of~/p about 0. But parallel translation around a closed loop starting and ending at 
p is such a rotation, and consequently o -2 satisfies (3.2). 

It thus follows, that there always exists at least one Brownian motion in ~ ' ,  
namely, the one 33 whose differential generator is 

__1 2 2 d f - g ( D  f, a ) 

with a 2 determined by (3.5). We shall call this process the Wiener process in J//. 

The differential generator d of the Wiener process is �89 V 2, which may be seen 
as follows. For pe~d let as before {ei(P)ff=l be an orthonormal basis for Jge and 
let {d(p)}}v=l he the corresponding dual basis for J/*.  Then 

a2 = ei(P) | ei(P), gv "= ~J(P) | '~J(P) 

32 Which in the present setting is contravariant. 
33 Processes whose generators are proportional to each other will not be considered as being essentially 
different. It is of course assumed J / i s  complete and of class ~r 
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where gv is the metric tensor "evaluated" at p. Using the definition of V 2 (see 4.1) 
we now have 

(D2f try) = (gv, GZf) = (V2f)(p) 

for f 6  C 2, and this proves our claim. 
The transition function W(t, p, F) of the Wiener process is the natural counter- 

part to the normal distribution N(t, ,2, ~) dy in E N, where 

N I1~-~11 ~ 
N(t,X,y)=(2nt) 2 .e  2t , 

and just as N(t, ~, Y) is invariant under rotations and translations of E N so 
W(t, p, F) is invariant under isometrics of ~gg, i.e., if q)" ~ / ~  J/{ is an isometry then 

W (t, p, F)=  W(t, qo- l(p), ~o- I(F)). (3.6) 

To see this, set for t>0 ,  pe JCL, F ~ ( J r  

Q(t, p, F)= W(t, (p- l(p), (p- I(F)) ' 

then Q is a transition function. The corresponding semigroup (St, t>O) is easily 
seen to be a C0-semigrou p, and if (Tt, t_>_0) is the semigroup associated with W 
then we have, for f 6  C o and t >_ 0 

q~*(Stf ) = Tt(q~*f) (3.7) 
where 

((o'f)(p) =f(~p(p)). 

Let the operator A with domain ~ c C O be the infinitesimal generator of (Tt, t => 0), 
and correspondingly let ( A I , ~ )  be the infinitesimal generator of (St, t>O), 
then (3.7) yields 

( o * f ~  ~ f ~  and (p*(Alf)=A((p*f). 

Now, if f 6  C 2 c~ C K then also (p*fE C 2 c~ C K c ~ ,  so 

A1 f (p) = ((p- 1).o A(tp*f)(p) = �89 1).o V 2((p.f) (p) = �89 V 2f(p) = Af  (p), 

from which we may conclude (see Remark I at the end of Section 2) that 

=~1  and A f = A  s f  f o r f ~ ,  
and then also 

Tt f=St f  for all f ~ C  o and t>_0. 

This in conjunction with 
Q(t, p, Jg)= W(t, 99-1(p), Jg)= 1 

implies 
Q(t, p, F)= W(t, p, F) 

which is the statement (3.6). 
In case the class of isometries of d / i s  "large", (3.6) apparently imposes strong 

restrictions upon the possible behavior of W(t, p, F), and might even in some 
cases be expected to characterize W(t, p, F) uniquely. This point of view has been 
taken by Yosida in several of his papers ([24, 25] and also [26] p. 398 ft.). Specifically, 
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he has considered the situation where J/Z is a homogeneous space and has defined 
a Brownian motion on such a space to be a temporally homogeneous Markov 
process whose transition function P(t, p, F) satisfies (3.6) and the condition 34- 

lim 1 P(t, p, V;) = 0 
t~o t 

for all p~//{ and all neighborhoods Vp of p. On basis of this, he proves that the 
corresponding semigroup is a C-semigroup 35 whose infinitesimal generator, A, 
in local coordinates is given by the expression 

1 "ij,-" 82f  i,_, 8f  
A f ( Y Q = ~ o  t x ) ~ + a t x ) ~  -, for f ~ c Z c ~ a ,  

where the "infinitesimal drift" and "variance" are determined by 

a'(Y~o) = lira 1 ~ (x ~-  x~) P(t, Y~o, d~) 
t],O t d(.~,~o)<e 

b~2(~o) = l i m  ~ (. (x ~ - X~o)(x J -  XJo) P(t, ~o, dX) 
t~O t d(~,~o)<e 

the integrals being independent of the choice of e > 0. Now, (3.6) implies 

Ao ~0" =q0*oA, o n  C 2 0 ~ A  , 

(3.8) 

whenever 9) is an isometry of ~ ,  and this relation may be used to set up differential 
equations which must be satisfied by the a i and b ij. From this Yosida proved ([24]) 
that there is essentially only one Brownian motion on S 2, namely, the Wiener 
process with generator �89 V 2. 

It should be pointed out, that in general "invariance under isometrics" is not 
the same as "invariance under parallel translations." Thus, our definition of a 
Brownian motion is not the same as the usual one, but nevertheless the Wiener 
process is a Brownian motion according to both definitions. In terms of the 
infinitesimal characteristics # and o -2, where as usual 

d , e _  1 / D Z f  , - ~ \ . .  a 2 ) + ( D r # ) ,  

the difference between the two definitions shows up as follows. It follows from 
Proposition 3.1, that the process with generator d is a Brownian motion according 
to our definition if 

2 2 Zpq ~rp = ~q, Zpq #p = #q, for all p, q; 

while it is a Brownian motion according to Yosida's definition if 

~0.(~p)=#q, ~o.(o-2)=~r 2, for all p, q, 

whenever (p is an isometry mapping p into q, and q~. denotes the differential of~o. 

34 Lindeberg's condition. Compare with the corollary of our Proposition 2.4. 
a5 It is assumed that P(t, p ,~)= 1. 
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In order to prove this statement we first give an invariant interpretation of 
(3.8). Let pe~g//be given, then there exists a ball Bp in J//p centered at 0, and a 
ball B'p in Jr at p such that the map 

t expp: B p  Bp  

is a diffeomorphism. Define for Borel sets F ~ Bp 

mp(t, F)= P(t, p, expp F), 

then for each t>O rap(t, ") is a subprobability measure o n  Bp,  and for f bounded 
and measurable 

S f(q) P(t, p, dq)= ~ f(exppX) rap(t, dX). 
B~ Bp 

Thus, i f f  agrees on B'p with a function in ~a  the Lindeberg condition implies 

Af(p) = lim 1 [ ~ f(exppX) %(t, dX)-f(p)]. 
t,LO t Bp 

Now, let coe~/* and define the function f on B'p by 

f (expp X) = co (X). 

It is no restriction to assume (see [-26] the proof given on p. 400-403) t h a t f  agrees 
! on a neighborhood, which we may assume is Bp, of p with a function in C 2 ~ NA" 

Consequently 

1 
oJ(X)mp(t, dX)-O]=co (lim ~1 ~ Xmp(t, dX)). Af(p)= +v t [  \t.lo t Bp 

! To find Af (p )=df (p )  introduce normal coordinates on Bp. That is, the point 
expp(e / ei) where {ei}~= 1 is some fixed orthonormal basis for ~///p, gets coordinates 
(cd . . . . .  aN). Then we may write 

1 ij [_ O)f. Of Of 

where 
.... -f(expp(C~ ei))=co(0~ ei)=e co(el). 

Because of the choice of coordinate system, the Christoffel symbols vanish at p 
hence 

d f (p ) = #J o)( e j) = co~p) 

36 

36 For  each set (ill . . . . .  flN)eE~ the  curve  

2( t )=( t  fl 1 . . . . .  t f l n )~exp , ( t  fl%~) 

is a geodesic.  Consequen t ly  for 1 -- k_< N 

d2 xk k dxl dXj k �9 �9 
0 = ~ -  + G~ (s ~ -  ~ -  = F~ (s (t)) fl' fl J, 

so for t = 0  and  all i,j, k 
r,~(p)/~/~J=0 so r,~(p)=0. 
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which taken together with the result above yields 

S x nap(t, dx)) 

and thus because e)~Jg* was arbitrary 

#p = lim 1 ~ X rap(t, dX). 
t+O t Bu 

A similar argument, using the function 

f (exppX) = ( o |  X |  
gives 

2 = lim 1 ~ X | X mp(t, dX). 
tTp t,~O t Bp 

Now, let ~o: ~r ~/Z" be an isometry with q=  q)(p) and put 

(3.8i) 

(3.8ii) 

(p,(Bp) = Bq, cp(B'p) = B'q, 
then the map 

q0 o expp = expq o qo, 

is a diffeomorphism sending Bp onto B'q. So, constructing the measure mq(t, .) 
on Bq the same way as we constructed nap(t, ") on Bp, and using that P(t, p, F) per 
assumption is invariant under q) we obtain 

nap(t, F)=naq(t, (p,(F)), for r~J)(Bp). 

Finally, this result combined with (3.8 i + ii) is easily seen to imply 

2 0-2 %(%)= q 

which is what we wanted to prove. 

3.2. After this detour, we return to our original definition of a Brownian 
motion as being a diffusion process in Jg that may be obtained as the limit of a 
sequence of geodesic random walks with identically distributed steps. As shown 
in Proposition 3.1, such a process is essentially characterized by the requirement 
that it must satisfy (3.2), and consequently we may classify Brownian motions by 
classifying the corresponding tensorfields # and 0.2. We shall in the following use 
this approach to obtain a description of which Brownian motions there may 
exist in a given manifold ~ .  Our motivation for considering this type of problem 
has been the result by Yosida mentioned above, that the Wiener process is the 
only Brownian motion in S 2. We shall prove a corresponding result for general 
manifolds. 

Because of the way things have been set up, our results will follow rather easily 
from certain standard theorems from differential geometry 37. Consequently, we 
have omitted the proofs and tried to keep the exposition as brief as possible. 

37 Our  basic  reference here  is [14]. 

4 z. Wahrscheinlichkeitstheorie verw. Gebiete, Bd. 32 
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If p is an arbitrary point of J/g and ? is a closed curve starting and ending at p, 
then parallel translation along V induces an automorphism of ~p.  One defines 
7J(p), the homogeneous holonomy group at p, to be the group of automorphisms 
of ~/gp that may be obtained by such parallel translations. The connectedness 
of Jg  implies that for any pair of points, (p, q), ~(p) and ~g(q) are isomorphic, and 
consequently we may speak of the holonomy group 7/(= kU(p)= ~U(q)) of Jg  
without referring to any particular point p. 

Now, if JV is a subspace of Jgp which is invariant under the action of 7 j and 
which contains no proper ~-invariant subspace then JV" is said to be irreducible, 
and, in particular, if ~/v is irreducible we say that the manifold itself is irreducible. 
Generally, ~/v can be written as a direct sum 

J//p = J / ~  | J/~ e --" 0 d//~ (3.9) 

of mutually orthogonal %invariant subspaces where J//~, ..., ~ '~  are irreducible 
and 

J/{~ = {X: Xe,//gp and "cX=X for all z~ 7J(p)}. 

It may of course happen that j//o = {0}. 

(3.9) is a so-called canonical decomposition of ~/v, and it is unique up to a 
reordering of the ~ ]  if ~ is simply connected. A basis {ei}/N=l for Jgp with the 
property that 

e I . . . . .  ekl6~o;  e~1+1 . . . . .  ek,+,,2~d//~p;...;ek~+...+,,L,...,eNeV/gp L 

will be said to be adapted to the given decomposition. 

Recall that the concept of parallelism is defined in terms of the Riemannian 
connexion 17 rather than in terms of the metric tensor g. Consequently, if g and 
are metric tensors generating the same affine connexion then one would expect 
that canonical decompositions relative to these metrics could be chosen so as to be 
closely related. And indeed, using elementary linear algebra one may prove. 

Lemma 3.1. Let g and ~ be two metric tensors on J/d which generate the same 
affine connexion 17, then for each p6JCd there exists a decomposition 

which is canonical relative to both metrics, invariant under parallel translations, 
and satisfies 

(I) For each i, 1 < i< L, there is a constant 2 i > 0 such that 

(a) ~p(X, Y)=2/gp(X, Y),/br X, Y+d/tip. 

(II) jgo  may be written as a direct sum 

of mutually orthogonal subspaces such that 

(b) ~,p(X, Y) = lj gp(X, Y),for X, Y 6 ~ J  for some constants lj > O, 1 <=j <= K. 
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On the other hand, let (3.9) be a given g-canonical ss decomposition of J/gpo, 
pond/t, and let 

�9 

where the 2,~pio are g-orthogonal. Define for each p e Jg a corresponding decomposition 
of Jlp by parallel transport of the given decomposition from Po to p. Choose positive 
numbers 21 . . . . .  2 L, 11 . . . . .  l K and define ~ by conditions (a) and (b) together with the 
conditions that ~,(X, Y) must be linear in X and Y and that the spaces ~ a  . . . . .  4fpK, 
~ ,  ..., Jg~ must be ~-orthogonal. Then ~, is a metric tensor which is invariant under 
parallel translations, and thus the connexion generated by ~, is V. 

We are now ready to describe the different Brownian motions in Jg" on basis 
of the requirement that a 2 and # must be "constant". The two terms are independent 
of each other so we may treat them separately. First, the remarks above imply 
immediately 

Proposition 3.2. There exists Brownian motions with nonzero drift, p, on #Yt 
if and only if the holonomy group T(p) at any point p leaves fixed some nonzero 
element of Jgp. Conversely, every such element Xp can be used to define a drift term 
p by setting pq = zpq Xp. zpq denoting parallel translation from p to q. 

Specifically, the proposition says that if we consider a canonical decomposition 
(3.9) of J~p then the condition for the existence of a nonzero drift term # is that 

Jz~ 

Next, consider the tensorfield a 2. It is a symmetric and strictly positive definite 
tensorfield of type (2, 0) satisfying condition (3.2), and we shall use this to define 
a new metric tensor ~ on rig. First, for p e J g  define the map 

F: JZp - .Z 7 
by 

{F(X), Y> = gp(X, Y) 

for all X, Y in d{p. Then set 

~p(X, Y)= (av 2, F( X) |  

for X, Y in ~ v  (we are "lowering indices"). It is straightforward to check that this 
defines ~ as a metric tensor on sg, which is invariant under parallel translations, 
and consequently Lemma 3.1 applies. Using the notation introduced in that 
lemma we thus have, for p ~ Jr 

these spaces being mutually orthogonal relative to both metrics, and 

~p(X, Y)=2 i gp(X, Y), 

~,p(X, Y)= Ij gp(X, Y), 

3s T h a t  is, c a n o n i c a l  re la t ive  to  the  me t r i c  g. 

4* 

for X, Y i n ~ p ,  l<_i<_L; 
(3.1o) 

for X, Yin ~J .  
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It is clearly no restriction to assume that the NF, j are one-dimensional, so this we 
shall do also. Now, choose for each ped/{ a basis {e~(p)}/N= t for JC/p which !s adapted 
to the given decomposition, and such that, for 1 <- i <- K, el(P) spans ~ ' .  We may 
assume that this basis is orthonormal relative to the metric g and orthogonal 
relative to the metric ~. Set for 1 ___ i < K 

(sZ, )i = ei(p ) | ei(P), 

and if ek,+l(p), ...,%+,(p) are those vectors among the el(p) which span Jg~, 
l <_i<_L, set 

ki+l 
(s2)i= ~ ej(p)| 

j = k i +  l 

The (s2) i and (s.Z)j are symmetric contravariant tensorfields that are invariant under 
parallel translations, and for each p~CL we have the decomposition 

K L 

2_ Z l,. (s~)~+ ~ 2,. (s~)'. (3.11) O ' p - -  

i=1  i=1  

If, in particular, ~ is irreducible there is only One term, i.e., 

N 

a 2 =2  ~ ei(P)| 
i=1  

and this means {compare with (3.5)) that the corresponding Brownian motion 
has differential generator 

2 "~ [72 sJ.f=�89 a ) = y  f ,  

so it is (essentially) the Wiener process. 

In the general case we derive from (3.11): 

Proposition 3.3. Let J/g be a complete Riemannian manifold of class d Y2. 
(I) I f  Jg is irreducible there exists only one Brownian motion on Jg, namely the 

Wiener process. 
(II) In case Jg is reducible, the Brownian motions on Jg may be classified as 

follows. Let poeJ/g and let 

be a canonical decomposition of Jg;o" Also, let {ei}~= 1 be an orthonormal basis for 
JClpo adapted to this decomposition with 

e x . . . .  ,ekleJgOo ; ekl+a,...,ek2eJ/g~o etc., 

let 11,..., Ikl, )~1, "'"2L be positive numbers and let •a . . . . .  O~kl be arbitrary real 
numbers. Set 

kl k 1 L r ki + 1 ] 

1 O'po - -  
j = l  j = l  i= L j =  l 

2 __ 2 qeJ/t,  
# q  ~ "Cpo q #po~ 17q - -  Tpo q O'po ~ 
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where Zpo q denotes parallel translation along any C ~ curve joining Po and q. Then 
there exists a Brownian motion on Jg with differential generator 

d f =  1 /D2(  7,, 3, or2) + <Df,#) .  (3.12) 

Moreover, every Brownian motion on ~ may be obtained in this fashion. 

The geometric content of this result is perhaps most easily comprehended if 
one compares with what happens if M/I = E  N. A Brownian motion on E N has 
generator 

t32f 0f  
see f =  a is ~x i ~x s + b k Ox k 

with constant coefficients. Here it may be assumed that the matrix {a is} has zero 
entries outside the diagonal, and thus the process may be viewed as being a "sum" 
of one-dimensional motions along the coordinate axes. Now, Proposition 3.3 
expresses the corresponding result for a general manifold Me', namely, that locally 
a Brownian motion on Jr may be thought of as being the "sum" of certain basic 
Brownian motions which cannot themselves be further reduced. If .//r is simply 
connected we can obtain a complete analogy with the case J t  = E N by using the 
de Rham decomposition theorem 39 according to which J/l is isometric to a 
direct product 

~ o  x# / /1  x - . -  x j///L 

where j / /0=  E r, K = dim d//p ~ ____ 0, and M/t 1, ..., d//L are simply connected, complete, 
irreducible Riemannian manifolds, each one being of class d r1 6 2  (because J///itself 
is assumed to be of class t iN) .  Identifying • and ./~o x ... x M/t L we get 

the point being that ~/#~ = (J/lY)p for each j, where as usual the J///i are given by (3.9). 
Let Xo(t ) . . . . .  Xr(t  ) be independent Brownian motions in d//~ . . . . .  ~/#L with 
generators 

doS o-- o% 1 
s=l OxSOxS t-c~s ~xs J 

resp. 
. ~ V~ f~, for l<_i<_L, 

where G2denotes the Laplace operator in j#i. 

Then the process 
x ( t ) = ( X o ( t )  . . . .  , x , ( t ) )  

is the Brownian motion in J///whose differential generator is given by (3.12). 

The general version of the theorem by Yosida mentioned earlier now follows 
from Proposition 3.3 : 

Corollary. Let ~ be a 2-dimensional complete Riemannian manifold of class 
s J N  and with nonvanishing Gaussian curvature K, then there exists only one 
Brownian motion on J/t, namely, the Wiener process. 

39 1-14] p. 192, Theorem 6.2. 
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Proof The restricted 40 holonomy group ~o of Jr' is a closed connected sub- 
group of SO(2) so either it contains only the identity map or it is all of SO(2). 
Now, the existence of a point p at which the curvature is different from zero 
implies (use the Gauss-Bonnet formula) that hV~ {identity map} and con- 
sequently ~ o =  SO(2), which means J / i s  irreducible. 

The result now follows from (I) of Proposition 3.3. 

4. Appendix 

The purpose of the present section is to establish the general notation relating 
to some basic concepts from differential geometry 41 which are being used through- 
out this paper. 

4.1. d/l will always denote a fixed N-dimensional complete Riemannian 
manifold with metric tensor g and associated Riemannian connexion V. In 
particular, ~/~ is assumed to be connected and separable. For p E ~ '  the tangent 
and cotangent spaces at p are denoted ~'v resp. J~*, and in general we write (~p): 
for the space of tensors of type (r, s) over ~p .  Occasionally we shall need to view 
an object T~(J~p)~ either as being a linear functional on the space 

r t(mes stimes 

or as being an (r + s)-linear functional on the space 

In both cases we write 

• . . .  • : g , ,  • • . . .  • : g , .  

(T ,S)  or (S ,T )  
for the action of T on S. 

An inner product and a corresponding norm is defined on (s///p)~ in the following 
fashion. Choose an orthonormal basis {ei}f=l for Jgp and let {aJ}Jv= t be the corre- 
sponding dual basis for Jg*; then the collection 

{eil @'" @ % | e; 1 | | e;s} 1 <Jr < N 
l <=ik <=N 

forms a basis for (~/pg which now is taken to be orthonormal. This yields the 
desired inner product, and we obtain the counterpart of Schwarz's inequality 

[(Z,  S)l  _-< II r l l .  IlSll �9 

Let fbe  a real valued differentiable function on J4. Wi thfwe  associate two tensor- 
fields, namely, (1) D f =  the differential o f f  and (2) DZfwhich is defined as follows 4z. 

4o This is defined in the same way as kg but referring only to parallel translations along nullhomotopic 
curves. 
41 Our basic references on this subject are the books: [8] and [14]. In order to avoid misunderstandings 
we remark that the word "differentiable" here means "of  class C oo" unless otherwise indicated. 
42 In general we defne tensorfields Tby exhibiting for each pe,A/the "value" Tve(Jgv) ~ ' of Tat  p. The 
degree of smoothness of T then depends upon the smoothness of this assignment and is found by 
expressing the definition in terms of local coordinates. 
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Let pc/C/, X e J l p ,  Y e l p .  Choose a curve 7(0, 0 < t <  1, with 

7(0)=p; 7,(0)=tangent  to 7(') at 0 = X ,  

and define the vectorfield Yt along 7(0 by requiring 

go = Y, v,,~,~ Y~= 0, 

i.e., Yt is the parallel translate of Yalong 7('). Finally set 

qo(t) = ((Df),~ o , II,,) ; 

then D2fis defined at p by the conditions 

(D2f)v e 0/Z'p) ~ ((D2f)p, X | Y) = 4o'(0). 

To see that this definition is independent of 7(') introduce a local coordinate 
system (V, ~)43 around p and set 

~(p)=(x~), ~i _ i -  X = g o 0  i, Y-- t loO i, 

~(~(t)) =(xi(t)), Y, = ~i(t)~,. 
Then 44 

~(7(o))=(x~), ~,,,(0)= ' ~o8i, 

drl k 4_ Fi~rl i dx2 dt ~ - = 0 ,  for 1 N k N N  

so  

((D f ) ,  r Ytt) = tlk(t) Okf(7 (t)), 

<(D2f~,, X | Y> = [~  '1~(0 e~f(~'(O)],= o = L~i [dnk e k f + " ' ( ~ i ~ J f )  dr-J,= o d X i  l 
k i j = (Di 0j f -  ~j ~kf) ~/o ~o" 

Thus, the coordinate expressions are 

D f =  (Oif) d x  i 
(4.1) 

D2 f = (c~ i 0 S -  Fi~ C~kf) dx  i | dx  ~ , 

from which one sees that D2f  is symmetric. 

If we write f o r f an d  h differentiable 

2 (DJ') (D h) = (Dr) | (D h) + (D h) | (DJ) 

43 V c J#, c~: V--+ EN= N-dimensional Euclidean space. We describe points in E ~r by the letters ~ = (x ~) 
and differentiation in the coordinate directions by 

~if  = ~ ( f  oo:-x). 

The 0~ are viewed as being tangent vectors to ,#,  and form at each point p a basis for J~'v whose corre- 
sponding dual basis is {dxl}~=l . 
44 The ~ are the Christoffel symbols: 

where repetition of the index k means: sum over k, 1 -< k_< N. 
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we obtain the useful formalism 

D O C h ) = f D h + h D f ,  

D2( fh)= fD2  h + 2 (Df ) (Dh)+ h D 2 f  . 

The Laplace operator V 2 may now be defined in the following invariant fashion. 
If lp(., .) denotes inner product on (Jgp)~ define (GZf)v~(d//p) 2 by 

Iv((G2f)p, X | Y)= ((D2f)v, X @ Y) 

for all X, Y in ~p .  Then we can set 

(V2f)(p) = (gv, (G2f)v) 

where gv is the metric tensor evaluated at p, andfas  usual is a differentiable function 
on ~ .  

In coordinates this reads 

VXf  = gr S(ar as f - -  F~ks 3W0 = Igl -~ ~k (Ig[ ~ gk~ #~f), 
where 

g = giidx i | dx  j, 

{gij} is the inverse of the matrix {&j}, and Igl is the determinant of {glj}. 

4.2. The distance between a pair of points p, q in ~g will be denoted d(p, q). 
There is always a geodesic segment ?(t), a < t < b, joining p and q for which 

length of 7 = I~1 = d(p, q). 

Such a segment will be called a short geodesic segment and denoted ~-~. Although 
in general the choice of ? is not unique unless p and q are close together this con- 
vention will not cause any difficulties in the following. We can now define the 
concept of H61der continuity of a tensorfield: 

Definition 4.1. Let  O<a=< 1. A tensorfield T of  type (r, s) defined on all/ is said 
to be H6Ider continuous of order ~ if there exists a constant K > 0 so 

sup [l( T~, z vqO) - ( Tv, O)[ : OE(~*fs ,  HO[l < l ] <= K d~(p, q), (4.2) 

for all p, q in ~ .  

Here zpq denotes parallel translation along any short geodesic segment fi-~, 
and part of the requirement is that the inequality must hold for every choice of ~ .  
If we are dealing with a functionfrather than a tensorfield we substitute the condi- 
tion 

If(P)- f(q)[ < K d ~ (p, q) (4.3) 

for (4.2). In case every point Po has a neighborhood Vvo such that (4.2)(or (4.3)) 
holds with K = K(Vpo ) we say that T (or f) is locally HSlder continuous of order a. 
The situation that will concern us the most is the one wherefis twice continuously 
differentiable 0ce C 2) and D2f  is HSlder continuous of order ~. We then write 
f e  C (2'~ or f e  Cl21 ~ depending upon whether this holds globally or locally. The 
following lemmas are easily proved 
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Lemma 4.1. The function f ~ C 2 is contained in ~1oc/'-'(2' ~) if and only if every point Po 
in ./d is contained in a coordinate neighborhood V 0 such that 45 

It3~ c3j(.2) - 0~ c~J(Y)l = K .  I ~ -  Yl = 

for some constant K, 1 < i, j < N, and all ~, y in fl(Vo), where fl denotes the coordinate 
map: Vo ~ E N. 

Lemma 4.2. Let fECl2g ~) and let poEJg. Then there exists a neighborhood V 
of Po and a function fo with compact support such that fo ~ C~2' ~) and fo (P) = f(P) for 
p~V. 

Lemma 4.3. Let 0 < ~ < 1 and let f e C t2, ~) and have compact support. Then there 
exists a constant K so 

[f (exppX)- f (p)- ((Df)p, X )  - �89 ( (D2 f)p, X Q X )  ] < K . HX[[ 2+" 

for all p ~ ~r and X ~ J~p. 

Here "expp" is the exponential map: ~ p ~  rig, and the estimate in Lemma 4.3 
is obtained from the Taylor expansion of the function 

q~(t) =f(expp tX), - o9 < t< ~ ,  
about t = 0. 

4.3. In this section we shall take a look at the "good" property of Riemannian 
manifolds on which the proof of our main theorem (Theorem (2.1)) is based. Let 
p~Jg  and let X, YEJ//p, s e t  

?(t,O)=expp(tX), - o o < t < ~ ,  

and let z, denote parallel translation along 7(', 0) from p=?(0,  0) to pt=?(t ,  0), 
then define 7(t, s)= expp,(s, z t Y), - oo < s < m. 

The problem 46 to be considered is that of finding an upper bound for the distance 
between the points 7(0, 1) and 7(1, 1) in terms of X and Y. We shall prove 

Lemma 4.4. To every point p~Jg and every compact neighborhood V of p there 
exists a constant c>O such that for q~V  and X,  Y ~ g q  with IlXll <1 and IlYll __<1 
we have 

d(7(0, 1), 7(1, 1))__< IlXll. (1 + c II YII 2). 

In order to prove the lemma we need a few results concerning the geometry of 
the tangent bundle J-J/ /of  ~/g. These we list first, referring the reader to the paper: 
[ 19] for proofs and further information. 

Let (V, ~), c~: V ~  U c E  s, be a coordinate system on Jg and let TV= Up~w/gp 
be the part of Y-~/g lying above V. TV is identified with U x E N by letting a pair 
(p, X), pc V and X~JA/p, correspond to a pair (if, ~) where ~=a(p) and X,,~viOi. 
This makes TV into a coordinate patch in ~--Jg~ If y(t), a N t < b ,  is a curve in V 
with 7(a)=q and X is an element of J/q, then the lift ~ of 7 to (q, X) is the curve in 

45 I x - y l  2 = ~,,~= 1 (xl-Y~) 2, where  ~ = ( x  I) and  ~ =(yl). 

46 See also [3] p. 247ff. 
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~-d4 ~ which satisfies 

~(a)=(q,X) ,  

dvi(t) 

dt 

o ~(t) = 7(t), a-< t -< b, 
dxJ(t) 

where we have written in coordinates  

7(t) "" if(t) = (x i (t)); ~(t) ~ (2(t), ~(t)), 

and where ~z: ~--J/t ~ Jr  the projection map, i.e., re(p, X ) = p .  By piecing together 
this definition extends to all of Jr so it makes sense to talk about  the lift of an 
arbi t rary curve in rig. Note  that  ~ may be visualized as consisting of a pair (7('), X.) 
where 7( ')  is a curve in Jg  and X. is a parallel vectorfield along 7. In particular, if 
? has the proper ty  that  

~(t)=(?(t), 7,(t)) for all t 

which in coordinates  reads 

dx  i dv i 
= v i, = - Fj~ v j v k (4.4) 

dt dt 

then ? is a geodesic. Let P =(p, X)e  3--d/ then there exists a unique integral curve 
�9 (t, P), - oo < t < 0% of the system (4.4) satisfying 

qs(O, P) = P.  

~ ( . ,  P) is the lift to P of the geodesic zEo ~( . ,  p), and for all t, s 

q~(t+s, P ) =  (//(t, ~(s, P)). 

Considered as a function: E 1 x Y ~ ' - - , ~ - J g  ~b(., .) is of class C% while for t 
fixed the map 

Tt: P - *  TtP=rb( t ,P)  

is a diffeomorphism of Y-~/r and as one easily sees the family (T~, - o o  < t < m) 
constitutes a one-parameter  group of diffeomorphisms of ,~g{, the so-called 
geodesic flow. For  p c / d ,  X e ~ ' p  the geodesic ? with 

7(0)=p,  7 , ( 0 ) = X  
is now given by 

? ( t ) = e x p p ( t X ) = n o  TtP, P=.(p, X) ,  

and in part icular  we get the exponential  map factored 

exppX = 7~o T(P), P=(p ,  X) ,  

where we have set T = T 1. 
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Finally, let P=(p, X)e~-J/I and let Y ~ p .  The horizontal lift W~(Y) of Y 
to P is then defined to be the tangent at P to the lift ~ to P of any curve ? with 

7(0) =p ,  y.(0)= Y, (4.5) 
thus 

-~v (Y) = ~. (0) e (J-dg)p, 

this definition being independent of the choice of y satisfying (4.5). 

We now have the tools needed for the proof of Lemma 4.4. Let p e J d  and let 
Xo, YofJgp with IIXoH = 1[ Yol[ = 1. For -oo<u,v<oo set 

c(t, u)= exp p(t u Xo)= no cb( t, (p, u Xo) ) 

and let G(.;u, v) denote the lift of c(. ;u) to the point (p, v Yo) in ~--J/g. The curve 
?(t, 1) corresponding to 47 the vectors X = u X o and Y= v Yo is then 

7(t, 1)=~o roG(t; u,v) 
and consequently 

d(?(O, 1), y(1, 1))< ~ II?,(t, 1)It dt< I[?,(t, 1)112 dt 
0 

with 4s 

and 

The integral 

7,(t, 1) =~z, o T, oG,(t; u, v) 

G ( t ;  u, = x % ; , , v # , ( t ;  

1 
E(u, v) = ~ II?.(t, 1)1 ] 2 dt 

0 

is a C ~ function of the variables (p, X0, Y0, u, v). For the moment we shall keep 
(P, Xo, Yo) fixed and expand E(u, v) in terms of u and v. To this end note first that 
c(t;u)=c(ut; 1) so 

thus 

and 

Set 

then 

c,(t;u)--uc,(ut;1); G(t; u,v)=G(ut;1, v) 

H?,(t. 1)112 =u  2 tier, o T,o~G(.t; ~. ~)(c,(ut; 1))ll 2 

11 

o 

x , , , - - [ u _ 2 E ( u , l ; )  

for u=O 

for u=kO 

1 

v)= 11 ,o T, o 1,o#,(ut; 1))IL dr, 
0 

*v In the notat ion of the lemma. 
48 For a map ~v ~p, denotes the differential of ~V. The functions c(- ; u), G(- ; u, v) etc. are thought  of as 

8 
being functions oft  parametrized by u, v. So for instance, c,(t ;  u) means ~ -  c(t; u). 
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so F is of class C a in the variables (p, Xo, Yo, u, v), and the same can then also be 
said about the function 

1 0 2 F  
D(u, v)= ~ (1 - O) ~2v2 (u, Or) dO 

0 

which is the remainder in the expansion 

F(u, v) = F(u, O) + v ~ v  (u, O) + v 2 D(u, v). 

On the other hand, it will be shown in a moment that 

OF 
F(u, O) = 1, -~v (u, O) - O. 

Consequently 

(4.6) 

E(u, v)= u 2 [1 + v 2 D(u, v)] 

and the conclusion of the lemma follows (u 2,-~ [IX[[ 2 and v2~ [t y[[2). So it only 
remains to prove (4.6). First 

ToG(t; u, O)=, G(t; u, O) 
SO 

no To G(t; u, O) = no G(t; u, O) = c(t; u), 

that is for v = 0 
[[7, (t, 1)[[ 2= [[c,(t; U)[J2 = U 2 [[Xo[I 2 = u  2, 

hence 
1 

F(u, O)=u-2E(u,  0)=u -2 ~ [[7,(t, 1)[[ 2 dt = 1, 
o 

which proves the first part of (4.6). To prove the second part it obviously suffices 
to show 

0 
Ov II~,,(t, 1)ll~[v=o=O. 

So consider for u fixed the expression 

7(t, 1)=~o ToG(t; u, v) 

as a map from the (t, v)-plane into Jg. Letting V denote covariant differentiation 
we have (with slight abuse of notation) 

0 07 0~ 0y 0y 0y 

07 
Moreover, for v = 0, the vectorfield ~-v is parallel along the curve 

and consequently 
n o To G(t; u, O) = expp(tuXo),  

: ~  
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Inserting this in the above equation we obtain 

~v 117,(t, 1)112[v=o=0, 

as claimed. This finishes the proof  of the lemma. 

It will at times be necessary to assume that the manifold J / p o s s e s s e s  certain 
extra properties besides those already mentioned. These we have listed below as 
axioms d and ~ .  A manifold satisfying axiom d ,  or axiom ~ ,  or both will be 
referred to as being of class d ,  or class ~ ,  or class ~4~ respectively. 

A x i o m d .  For every compact set K c dg and every e>O there exists a C ~ 
function f with compact support, so 

0=<f_=l, f ( p ) = l  for p ~K,  
and 

sup [max { [l(Df)pll, [[(D2j0p H }] N 8. p~, 

In the formulation of the next axiom the notation is the one introduced in 
connection with Lemma 4.4: 

Axiom ~ .  There exists a constant c >=0 such that for pc ~ ,  X e Jgp, Y~ ~ v  with 
IlXlt <1  and IIYIl__<l we have 

d(7(0, 1), 7(1, 1))< IIXtl (1 +c[I Yll2), 
where 

7(t, O)= expp(tX)=pt  , 7( t, s) = exppt(s Yt), 

Yt being the parallel translate of Y along V (., 0). 

We should like to point out that it is possible that every complete manifold 
is of class d .  At least we do not know of any counterexample. Under  any circum- 
stances, both axioms are satisfied in the following important  special cases: 

(I) ~ / =  N-dimensional Euclidean space, 

(II) J g  is compact.  

Here (I) is obvious, while (II) is a consequence of Lemma 4.4. N is also satisfied 
if J g  is a homogeneous space. This follows in a similar fashion from Lemma 4.4. 

4.4. Let U be an N-dimensional real vector space furnished with an inner 
product  I( . , . ) ,  and let v be a Borel measure 49 on U with v(U)< 1. Such a measure 
will be called a subprobabili ty measure on U. For m > 1, the m-th absolute moment  
I~1 (") o f  v is defined by 

I~l(m)= J" Ilvllmv(dv), 
U 

where Ilvtl 2= I(v, v), and also if I~l(m)< oo we define, #(m), the m-th moment  of v, 
to be the element of U |  | U (m times) which satisfies 

<]../(m), 01 @...@0m>= US [ f i  <~,oj> ] v(dv) 
L j  = 1 _t 

49 U is furnished with the topology associated with the metric induced by I(., .). In the following 
"measurable" means "Borel measurable." 
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for all (01, ..., 0") in U* x ... x U*. Here U* is the dual of U. Clearly 

(v, ~ II0~11 �9 Ilvtl"~=llOX|174 �9 livll m 
j=l  

SO the integral is well-defined and also 

[(~(m) 01 | 1 7 4  0%[ ~ I~1 (m)" tlO* @"" | O'~ll �9 

We use the nota t ion 
~(m) = ~ V|174 vv(dv), 

U 

and also if A c U is measurable  

I v | 1 7 4  vv(dv)= I vN.. .Nv~(dv) 
A U 

with ~ given by:  ~ ( B ) = v ( A B ) .  If {ei}~= 1 is a basis for U then 

v = v ie~, v |  | v = v i l . . .  v im eil | 1 7 4  el, " 

and if follows that 

I v |  | v v ( d v ) =  [ ~ v '1... v'mv(dv)] e,, |  | e , , .  
A A 

In particular, if the basis is o r thonorma l  

lily| | 2= E [ I v "  Cmv(dOy 
A il . . . . .  im  A 

from which one easily obtains 

it~(~)Ii 2 __< 1~<2)[ __<1/~ ii~(~)[i __<1/~ i~1(~). (4.7) 
If V is another  real vector space and �9 is a linear map  from U to V then ~ induces 
in a natural  way a linear map,  which will be denoted by z also, f rom the space 
U |  | U to the space V@..-  @ V, namely, 

z(a ;1 "";~ u j, |  | uy~)= a i' "4~ (~ uj,) |  | (~ u;~). 

Moreover ,  the measure v on U induces a measure zv on V 

"cv (A)=v(~ - I (A ) ) ,  

and '~ (k) . (k) 11 #~ and t~,~ are the k-th moments  of v resp. zv we have the formula 

#(k) _ ~,,(k) (4.8) 
~v - -  ,'*v " 

Let us now return to our  manifold Jr  Assume there is defined for each pe~/~ a 
subprobabi l i ty  measure v, on J//v satisfying 

5 Ilvll2vv(dv) < oo; 
J C p  

then we may  construct  tensorfields #,/,(2) and a 2 by setting 

(~),= ~vv,(dv); (~(~)),= Iv| a ~ = ~ ( 2 ) - ~ |  
X,/p ,~ /p  
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These  tensorf ie lds  need  of  course  n o t  exhib i t  a n y  k i n d  of r egu la r i ty  in  their  
d e p e n d e n c e  u p o n  p un less  fur ther  c o n d i t i o n s  are  i m p o s e d  u p o n  the  vp. Such  
c o n d i t i o n s  will  be set up  next.  

T o  this  end,  recal l  tha t  for measu re s  ml ,  m2 def ined  o n  the  s ame  space U the  
q u a n t i t y  5o 

[m 1 - m 2 ]  = s u p  [] S f ( v ) ( m ~ ( d v ) - m z ( d v ) ) l : f ~  C(U),  Itfll _-< 1] (4.9) 
u 

is used  to m e a s u r e  the d e v i a t i o n  be tween  rnt a n d  m E. N o w ,  in ou r  case, the measu re s  
vp are  def ined  on  different  spaces a n d  thus  c a n n o t  be  c o m p a r e d  di rec t ly  by  the  
use of (4.9). But ,  by  i n t r o d u c i n g  ce r ta in  i s o m o r p h i s m s  zpq be tween  the spaces 
J/Zp a n d  Jg'q we can  ins tead  c o m p a r e  vq a n d  ZpqVp. So fix p a n d  q in  J//{ a n d  let "Cpq 
d e n o t e  para l le l  t r a n s l a t i o n  a l o n g  a shor t  geodesic  P-0. T h e n  define [Vp-vq[ to be  51 

the  s u p r e m u m  of the n u m b e r s  Ivq-  "CpqVp[ t a k e n  over  all such riO- W e  can  n o w  ta lk  
a b o u t  c o n t i n u i t y  of  the  m a p  p ~ vp a n d  in  pa r t i cu l a r  we can  def ine H61der  c o n t i n u i t y  
of o rde r  ~ by  the  c o n d i t i o n  tha t  there  shall  exist a c o n s t a n t  K so for every p, q 
in J g  

[v p -  v ql < K . d~(p, q). (4.10) 

Here  Iv v -  vql < 2, so it suffices to verify (4.10) for d(p, q)__< some  posi t ive  cons tan t .  
Loca l  H d l d e r  c o n t i n u i t y  is def ined  in  a s imi lar  fashion.  
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