Skip to main content
Log in

The metabolic versatility of pseudomonads

  • Biochemistry
  • The Seventh A. J. Kluyver Memorial Lecture Delivered Before the Netherlands Society for Microbiology on November 19th, 1981, at the Universitaire Instelling Antwerpen, Wilrijk, Belgium
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Bayly, R. C., Dagley, S. and Gibson, D. T. 1966. The metabolism of cresols by species of Pseudomonas. — Biochem, J. 101: 293–301.

    Google Scholar 

  • Berry, E. K. M., Allison, N. and Skinner, A. J. 1979. Degradation of the selective herbicide 2,2-dichloropropionate (Dalapon) by a soil bacterium. — J. Gen. Microbiol. 110: 39–45.

    Google Scholar 

  • Betz, J. L. and Clarke, P. H. 1972. Selective evolution of phenylacetamide-utilizing strains of Pseudomonas aeruginosa. — J. Gen. Microbiol. 73: 161–174.

    PubMed  Google Scholar 

  • Betz, J. L. and Clarke, P. H. 1973. Growth of Pseudomonas species on phenylacetamide. — J. Gen. Microbiol. 75: 167–177.

    PubMed  Google Scholar 

  • Brown, J. E., Brown, P. R. and Clarke, P. H. 1969. Butyramide-utilizing mutants of Pseudomonas aeruginosa 8602 which produce an amidase with altered substrate specificity. — J. Gen. Microbiol. 57: 273–285.

    PubMed  Google Scholar 

  • Chakrabarty, A. M. 1976. Plasmids in Pseudomonas. — Annu. Rev. Genet. 10: 7–30.

    Article  PubMed  Google Scholar 

  • Clarke, P. H. 1972. Biochemical and immunological comparison of aliphatic amidases produced by Pseudomonas species. — J. Gen. Microbiol. 71: 241–257.

    PubMed  Google Scholar 

  • Clarke, P. H. 1978. Experiments in microbial evolution. p. 137–218. In L. N. Ornston and J. R. Sokatch (eds), The bacteria, Vol. VI. — Academic Press, New York.

    Google Scholar 

  • Clarke, P. H. and Ornston, L. N. 1875. Metabolic pathways and regulation. p. 191–340. In P. H. Clarke and M. H. Richmond (eds), Genetics and biochemistry of pseudomonads. — J. Wiley and Sons, London.

    Google Scholar 

  • Clarke, P. H., Drew, R. E., Tuberville, C., Brammar, W. J., Ambler, R. P. and Auffret, A. D. 1981. Alignment of cloned amiE gene of Pseudomonas aeruginosa with the N-terminal sequence of amidase. — Bioscience Reports, 1: 299–307.

    PubMed  Google Scholar 

  • Dagley, S. 1971. Catabolism of aromatic compounds by microorganisms. — Adv. Microb. Physiol. 6: 1–46.

    PubMed  Google Scholar 

  • Dagley, S., Evans, W. C. and Ribbons, D. W. 1960. New pathways in the oxidative metabolism of aromatic compounds by microorganisms. — Nature 188: 560–566.

    PubMed  Google Scholar 

  • Davies, J. I. and Evans, W. C. 1964. Oxidative metabolism of naphthalene by soil pseudomonads. The ring-fission mechanism. — Biochem. J. 91: 251–261.

    PubMed  Google Scholar 

  • Den Dooren De Jong, L. E. 1926. Bijdrage tot de kennis van het mineralisatie proces. — Nijgh and Van Ditmar, Rotterdam.

    Google Scholar 

  • Dorn, E. and Knackmuss, H.-J. 1978a. Chemical structure and biodegradability of halogenated aromatic compounds. Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown pseudomonad. — Biochem. J. 174: 73–84.

    PubMed  Google Scholar 

  • Dorn, E. and Knackmuss, H.-J. 1978b. Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol. — Biochem. J. 174: 85–94.

    PubMed  Google Scholar 

  • Drew, R. E., Clarke, P. H. and Brammar, W. J. 1980. The construction in vitro of derivatives of bacteriophage lambda carrying the amidase genes of Pseudomonas aeruginosa. — Molec. Gen. Genet. 177: 311–320.

    Article  PubMed  Google Scholar 

  • Dunn, N. W. and Gunsalus, I. C. 1973. Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. — J. Bacteriol. 114: 974–979.

    PubMed  Google Scholar 

  • Evans, W. C., Smith, B. W. S., Moss, P. and Fernley, H. N. 1971. Bacterial metabolism of 4-chlorophenoxyacetate. — Biochem. J. 122: 509–517.

    PubMed  Google Scholar 

  • Farin, F. and Clarke, P. H. 1978. Positive regulation of amidase synthesis in Pseudomonas aeruginosa. — J. Bacteriol. 135: 379–392.

    PubMed  Google Scholar 

  • Feist, C. F. and Hegeman, G. D. 1969. Phenol and benzoate metabolism by Pseudomonas putida: regulation of tangential pathways. — J. Bacteriol. 100: 869–877.

    PubMed  Google Scholar 

  • Fewson, C. A. 1981. Biodegradation of aromatics with industrial relevance. In R. Hütter and T. Leisinger (eds), Microbial degradation of xenobiotics and related compounds. — Academic Press, London.

    Google Scholar 

  • Goldman, P. 1965. The enzymatic cleavage of the carbon-fluorine bond in fluoroacetate. — J. Biol. Chem. 240: 3434–3438.

    PubMed  Google Scholar 

  • Goldman, P., Milne, G. W. A. and Keister, D. B. 1968. Carbon-halogen bond cleavage. III. Studies on bacterial halidohydrolases. — J. Biol. Chem. 243: 428–434.

    PubMed  Google Scholar 

  • Hardman, D. J. and Slater, J. H. 1981. Dehalogenases in soil bacteria. — J. Gen. Microbiol. 123: 117–128.

    Google Scholar 

  • Hegeman, G. D. 1966. Synthesis of enzymes of the mandelate pathway by Pseudomonas putida. I. Synthesis of enzymes of the wild type. — J. Bacteriol. 91: 1140–1154.

    PubMed  Google Scholar 

  • Holloway, B. W. 1978. Isolation and characterization of an R′ plasmid in Pseudomonas aeruginosa. — J. Bacteriol. 133: 1078–1082.

    PubMed  Google Scholar 

  • Holloway, B. W., Krishnapillai, V. and Morgan, A. F. 1979. Chromosomal genetics of Pseudomonas. — Microbiol. Rev. 43: 73–102.

    PubMed  Google Scholar 

  • Kearney, P. C., Kaufman, D. D. and Beall, M. L. 1964. Enzymatic dehalogenation of 2,2′-dichloropropionate. — Biochem. Biophys. Res. Commun. 14: 29–33.

    PubMed  Google Scholar 

  • Kluyver, A. J. 1931. In The chemical activities of microorganisms. — University of London Press.

  • Knackmuss, H.-J. 1981. Degradation of halogenated and sulfonated hydrocarbons. p. 000–000. In R. Hütter and T. Leisinger (eds), Microbial degradation of xenobiotics and related compounds. — Academic Press, London.

    Google Scholar 

  • Kunz, D. A. and Chapman, P. J. 1981. Catabolism of pseudocumene and 3-ethyltoluene by Pseudomonas putida (arvilla) mt-2: Evidence for new functions of the TOL (pWWO) plasmid. — J. Bacteriol. 146: 179–191.

    PubMed  Google Scholar 

  • Little, M. and Williams, P. A. 1971. A bacterial halidohydrolase. Its purification, some properties and its modification by specific amino acid reagents. — Eur. J. Biochem. 21: 99–109.

    PubMed  Google Scholar 

  • Morgan, A. F. 1982. Isolation and characterization of Pseudomonas aeruginosa R′ plasmids constructed by means of interspecific mating. — J. Bacteriol. (in press).

  • Mylroie, J. T., Friello, D. A., Siemens, T. V. and Chakrabarty, A. M. 1977. Mapping of Pseudomonas putida chromosomal genes with a recombinant sex-factor plasmid. — Molec. Gen. Genet. 157: 231–237.

    Article  Google Scholar 

  • Ornston, L. N. 1966. The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida. II. Enzymes of the protocatechuate pathway. III. Enzymes of the catechol pathway. IV. Regulation. — J. Biol. Chem. 241: II, 3787–3794; III, 3795–3799; IV, 3800–3810.

    PubMed  Google Scholar 

  • Ornston, L. N. 1970. Regulation of catabolic pathways in Pseudomonas. — Bacterial Rev. 35: 87–116.

    Google Scholar 

  • Ornston, L. N. and Parke, D. 1977. The evolution of induction mechanisms in bacteria: Insights derived from the study of the β-ketoadipate pathway. — Curr. Top. Cell. Regul. 12: 209–262.

    PubMed  Google Scholar 

  • Ornston, L. N. and Stanier, R. Y. 1966. The conversion of catechol and protocatchuate to β-ketoadipate by Pseudomonas putida. I. Biochemistry. — J. Biol. Chem. 241: 3776–3786.

    PubMed  Google Scholar 

  • Palleroni, N. J. and Stanier, R. Y. 1964. Regulatory mechanisms governing synthesis of the enzymes for tryptophan oxidation by Pseudomonas fluorescens. — J. Gen. Microbiol. 35: 319–334.

    PubMed  Google Scholar 

  • Paterson, A. and Clarke, P. H. 1979. Molecular basis of altered enzyme specificities in a family of mutant amidases from Pseudomonas aeruginosa. — J. Gen. Microbiol. 114: 75–85.

    PubMed  Google Scholar 

  • Pemberton, J. M. and Fisher, P. R. 1977. 2,4-D plasmids and persistence. — Nature 268: 732–733.

    PubMed  Google Scholar 

  • Rheinwald, J. G., Chakrabarty, A. M. and Gunsalus, I. C. 1973. A transmissible plasmid controlling camphor oxidation in Pseudomonas putida. — Proc. Natl. Acad. Sci. U.S.A. 70: 885–889.

    PubMed  Google Scholar 

  • Royle, P. L., Matsumoto, H. and Holloway, B. W. 1981. Genetic circularity of the Pseudomonas aeruginosa PAO chromosome. — J. Bacteriol. 145: 145–155.

    PubMed  Google Scholar 

  • Sala-Trepat, J. M., Murray, K. and Williams, P. A. 1972. The metabolic divergence in the meta cleavage of catechols by Pseudomonas putida NCIB 10015. — Eur. J. Biochem. 28: 347–356.

    PubMed  Google Scholar 

  • Schmidt, E. and Knackmuss, H.-J. 1980. Chemical structure and biodegradability of halogenated aromatic compounds. Conversion of chlorinated muconic acids into maleoylacetic acid. — Biochem. J. 192: 339–347.

    PubMed  Google Scholar 

  • Senior, E., Bull, A. T. and Slater, J. H. 1976. Enzyme evolution in a microbial community growing on the herbicide Dalapon. — Nature 263: 476–479.

    PubMed  Google Scholar 

  • Slater, J. H., Lovatt, D., Weightman, A. J., Senior, C. and Bull, A. T. 1979. The growth of Pseudomonas putida on chlorinated aliphatic acids and its dehalogenase activity. — J. Gen. Microbiol. 114: 125–136.

    Google Scholar 

  • Stanier, R. Y. and Ornston, L. N. 1973. The β-ketoadipate pathway. — Adv. Microb. Physiol. 9: 89–151.

    PubMed  Google Scholar 

  • Stanier, R. Y., Palleroni, N. J. and Doudoroff, M. 1966. The aerobic pseudomonads: a taxonomic study. — J. Gen. Microbiol. 43: 159–271.

    PubMed  Google Scholar 

  • Stephenson, M. 1947. Some aspects of hydrogen transfer. — Antonie van Leeuwenhoek 12: 33–48.

    Google Scholar 

  • Stephenson, M. 1949. p. 184–192. In Bacterial metabolism. 3rd Ed. — Longmans, London.

    Google Scholar 

  • Turberville, C. and Clarke, P. H. 1981. A mutant of Pseudomonas aeruginosa PAC with an altered amidase inducible by the novel substrate. — FEMS Microbiol. Lett. 10: 87–90.

    Article  Google Scholar 

  • Watson, J. M. and Holloway, B. W. 1978. Chromosome mapping in Pseudomonas aeruginosa PAT. — J. Bacteriol. 133: 1113–1125.

    PubMed  Google Scholar 

  • Weightman, A. J., Slater, J. H. and Bull, A. T. 1979. The partial purification of two dehalogenases from Pseudomonas putida PP3. — FEMS Microbiol. Lett. 6: 231–234.

    Article  Google Scholar 

  • Weightman, A. J., Weightman, A. L. and Slater, J. H. 1982. Stereospecificity of 2-monochloro-propionate dehalogenation by the dehalogenases of Pseudomonas putida PP3: Evidence of two different dehalogenation mechanisms. — J. Gen. Microbiol. 128: (in press).

  • Wigmore, G. J. and Ribbons, D. W. 1981. Selective enrichment of Pseudomonas spp. defective in catabolism after exposure to halogenated substrates. — J. Bacteriol. 146: 920–927.

    PubMed  Google Scholar 

  • Williams, P. A. and Murray, K. 1974. Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: Evidence for the existence of a TOL plasmid. — J. Bacteriol. 120: 416–423.

    PubMed  Google Scholar 

  • Worsey, M. J. and Williams, P. A. 1975. Metabolism of toluene and xylenes by Pseudomonas putida (arvilla) mt-2: Evidence for a new function of the TOL plasmid. — J. Bacteriol. 124: 7–13.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, P.H. The metabolic versatility of pseudomonads. Antonie van Leeuwenhoek 48, 105–130 (1982). https://doi.org/10.1007/BF00405197

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00405197

Keywords

Navigation