Skip to main content
Log in

Metabolic integration between symbiotic cyanobacteria and sponges: a possible mechanism

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Metabolic relationships between symbiotic cyanobacteria and host sponge have been investigated in the marine species Chondrilla nucula and Petrosia ficiformis (collected in the Ligurian Sea in 1992). DNA, RNA, total protein, cytosolic protein, total sugar, cytosolic sugar, total lipid, nonprotein sulfhydryl groups, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were assayed in cortex-free sponge tissue, where cyanobacteria are all but absent. For both species, biochemical parameters were determined in specimens living in illuminated habitats and in dark caves, where sponges are virtually aposymbiotic for cyanobacteria. As C. nucula is unable to colonize dark sites, specimens of this species were artificially transferred to a cave and maintained in dark conditions for 6 mo. Results showed that in the absence of light (i.e., in the absence of cyanobacteria) C. nucula undergo metabolic collapse and thiol depletion. In contrast, P. ficiformis activates heterotrophic metabolism and mechanisms which balance the loss of cell reducing power. This suggests that cyanobacteria effectively participate in controlling the redox potential of the host cells by the transfer of reducing equivalents. Only P. ficiformis is capable of counteracting, by means of heterotrophic metabolism, the loss of the contribution from symbionts which is caused by dark conditions. This explains the differences in the ecological requirements of the two species. Because cyanobacterial symbionts release fixed carbon in the form of glycerol and other small organic phosphate (Wilkinson 1979), a model based on the glycerol 3-phosphate shuttle (typically occurring in chloroplasts and mitochondria) is suggested. The mechanism proposed appears to be an ancient biochemical adaptation which arose among ancestral symbiotic systems, and further developed in the relationships between endosymbiotic organelles and cytoplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Bavestrello, G., Sarà, M. (1992). Morphological and genetic differences in ecologically distinct populations of Petrosia (Porifera, Demospongiae). Biol. J. Linn. Soc. 47: 49–60

    Google Scholar 

  • Bligh, E. G., Dyer, W. J. (1959). A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917

    Google Scholar 

  • Bond, C. (1992). Continuous cell movements rearrange anatomical structures in intact sponges. J. exp. Zool. 263: 284–302

    Google Scholar 

  • Buckley, L. J. (1979). Relationships between RNA-DNA ratio, prey density and growth rate in Atlantic cod (Gadus morhua) larvae. J. Fish. Res. Bd Can. 36: 1497–1502

    Google Scholar 

  • Buckley, L. J. (1984). RNA-DNA ratio: an index of larval fish growth in the sea. Mar. Biol. 80: 291–298

    Google Scholar 

  • Burton, K. (1956). A study of the conditions and mechanisms of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J. 62: 315–323

    Google Scholar 

  • Cook, C. B. (1983). Metabolic interchance in algae-invertebrate symbiosis. In: Jeon, K. W. (ed.) Intracellular Simbiosis. Int. Rev. Cytol. (suppl. 14), Academic Press, New York, p. 177–210

    Google Scholar 

  • Dagg, M. J., Littlepage, J. L. (1972). Relationships between growth rate and RNA, DNA, protein and dry weight in Artemia salina and Euchaeta elongata. Mar. Biol. 17: 162–170

    Google Scholar 

  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analyt. Chem. 28: 350–356

    Google Scholar 

  • Gaino, E., Pansini, M., Pronzato, R. (1976). Osservazioni sull'associazione tra una cianoficea croococcale e la demospongia Chondrilla nucula. Arch. Oceanogr. Limnol. (Suppl. 18) 3: 545–552

    Google Scholar 

  • Gaino, E., Pansini, M., Pronzato, R. (1977). Aspetti dell'associazione tra Chondrilla nucula (Schmidt) (Demospongiae) e microorganismi simbionti (batteri e cianoficee) in condizioni naturali e sperimentali. Cah. Biol. mar. 18: 303–310

    Google Scholar 

  • Heber, U. (1974). Metabolite exchange between chloroplasts and cytoplasm. A. Rev. Pl. Physiol. 25: 393–421

    Google Scholar 

  • Keppler, D., Decker, K. (1974). Glycogen. Determination with amyloglucosidase. In: Bergmeyer, H. U. (ed.) Methods of enzymatic analysis, Vol. 3. Verlag Chemie, Academic Press, New York, p. 1127–1131

    Google Scholar 

  • King, J. (1974). 6-Phosphogluconate dehydrogenase. In: Bergmeyer, H. U. (ed.) Methods of enzymatic analysis, Vol. 2. Verlag Chemie, Academic Press, New York, p. 632–635

    Google Scholar 

  • Löhr, G. W., Waller, H. D. (1974) Glucose-6-phosphate dehydrogenase. In: Bergmeyer, H. U. (ed.) Methods of enzymatic analysis, Vol. 2. Verlag Chemie, Academic Press, New York, p. 636–643

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. (1951). Protein measurement with Folin phenol reagent. J. biol. Chem. 193: 265–275

    Google Scholar 

  • Marsh, J. H., Weinstein, D. B. (1966). A simple charring method for determination of lipids. J. Lipid Res. 7: 574–576

    Google Scholar 

  • Munro, H. N., Fleck, A. (1966). Recent developments in the measurement of nucleic acids in biological materials. Analyst Lond. 91: 78–88

    Google Scholar 

  • Muscatine, L. (1967). Glycerol excretion by symbiotic algae from corals and Tridacna and its control by the host. Science, N.Y. 156: 516–519

    Google Scholar 

  • Sarà, M. (1971). Ultrastructural aspects of the symbiosis between two species of the genus Aphanocapsa (Cyanophyceae) and Ircinia variabilis (Demospongiae). Mar. Biol. 11: 214–221

    Google Scholar 

  • Sarà, M., Liaci, L. (1964). Associazione tra la cianoficea Aphanocapsa feldmanni e alcune demosponge marine. Boll. Zool. 31: 55–65

    Google Scholar 

  • Sarà, M., Vacelet, J. (1973). Ecologie des Démosponges. In: Grassé P. P. (ed.) Traitè de Zoologie, Tome III. Spongiaires. Masson, Paris, p. 462–576

    Google Scholar 

  • Sedlak, J., Lindsay, R. H. (1968). Estimation of total, proteinbound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Analyt. Biochem. 25: 192–205

    Google Scholar 

  • Vacelet, J. (1971). Etude en microscopie électronique de l'association entre une cyanophycée chroococcale et une éponge du genre Verongia. J. Microscopie 12: 363–380

    Google Scholar 

  • Vacelet, J., Donadey, C. (1977). Electron microscopy study of the association between some sponge and bacteria. J. exp. mar. Biol. Ecol. 30: 301–314

    Google Scholar 

  • Wright, D. A., Hetzel, E. W. (1985). Use of RNA:DNA ratios as an indicator of nutritional stress in the American oyster Crassostrea virginica. Mar. Ecol. Prog. Ser. 25: 199–206

    Google Scholar 

  • Wilkinson, C. (1978). Microbial associations in sponges. I. Ecology, physiology and microbial populations of coral reef sponges. Mar. Biol. 49: 161–167

    Google Scholar 

  • Wilkinson, C. (1979). Nutrient translocation from symbiotic cyanobacteria to coral reef sponges. In: Levi, C., Boury-Esnault, N. (eds) Biologie des spongiaires. Colloques Internationaux du CNRS, No 291, Editions du CNRS, Paris, p. 373–380

    Google Scholar 

  • Wilkinson, C., Fay, P. (1979). Nitrogen fixation in coral reef sponges with symbiotic cyanobacteria. Nature, Lond. 279: 527–529

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arillo, A., Bavestrello, G., Burlando, B. et al. Metabolic integration between symbiotic cyanobacteria and sponges: a possible mechanism. Marine Biology 117, 159–162 (1993). https://doi.org/10.1007/BF00346438

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00346438

Keywords

Navigation