Skip to main content
Log in

How is tracking and fixation accomplished in the nervous system of the fly?

A behavioural analysis based on short time stimulation

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The optomotor yaw torque response of fixed flying female houseflies, Musca domestica to three different types of visual stimuli is analyzed. In contrast to most previous investigations, the stimuli were displayed for short time intervals only in order to approximate transiently occuring visual stimuli, which mainly govern the torque generation during free flight. Monocular stimulation with a periodic pattern moving in different positions in the equatorial plane of the compound eyes reveals that (1) flight torque responses are mainly induced by progressive (front to back) motion; regressively moving stimuli are significantly less effective. (2) the strength of the response to motion in the horizontal direction depends on the position of the stimulus and (3) vertical motions do not elicit flight torque responses. Correspondingly the response to a single vertical black stripe moving clockwise in a cylindrical panorama centered around the fly is small if the stripe is in the visual field of the left eye but becomes large and strongly depending on position if the stripe enters the visual field of the right eye. The response to counterclockwise motion of the stripe is small if the stripe is in the visual field of the right eye but becomes large and strongly depending on position if the stripe enters the visual field of the left eye. Torque responses to two adjacent stripes whose intensities are modulated in time with a rectangular function can be elicited if apparent motion is generated by means of a phase difference between the intensity modulations of the two stripes. Apparent progressive motion elicits strong torque responses, apparent regressive motion is less effective. Synchronous flicker of both stripes does not elicit torque responses. The extraction of positional information from the incoming visual signals has been considered to play an important role in the orientation behaviour, and especially in the tracking behaviour of flies. The results of the experiments indicate, that under transient stimulation the evaluation of positional information is in general not mediated by formerly postulated flicker detectors but is bound to the computation of motion. These findings are implemented in a model, describing the free flight tracking behaviour of a female fly on the horizontal plane. It is shown that tracking can be achieved by a mechanism whose sensitivity to motion is parametrized in the stimulus position as outlined above. The results of the behavioural experiments are interpreted in view of electrophysiological and anatomical data on giant interneurons in the third optic ganglion of the fly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beersma, D.G.M., Stavenga, D.G., Kuiper, J.W.: Organization of visual axes in the compound eye of the fly Musca domestica L., and behavioural consequences. J. Comp. Physiol. 102, 305–320 (1975)

    Google Scholar 

  • Braitenberg, V.: Periodic structures and structural gradients in the visual ganglia of the fly. In: Information processing in the visual system of arthopods. Wehner, R. (ed.). Berlin, Heidelberg, New York: Springer 1972

    Google Scholar 

  • Bülthoff, H.: Orientation behaviour of walking Drosophila melanogaster. Doctoral Thesis, Eberhard-Karls-Universität Tübingen 1980

  • Dvorak, D., Bishop, L.G., Eckert, H.E.: On the identification of movement detectors in the fly optic lobe. J. Comp. Physiol. 100, 5–23 (1975)

    Google Scholar 

  • Eckert, H., Bishop, L.G.: Anatomical and physiological properties of the vertical cells in the third optic ganglion of Phaenicia sericata (Diptera, Calliphoridae). J. Comp. Physiol. 126, 57–86 (1978)

    Google Scholar 

  • Eckert, H.: Functional properties of the H-neuron in the third optic ganglion of the blowfly, Phaenicia. J. Comp. Physiol. 135, 29–39 (1980)

    Google Scholar 

  • Fermi, G., Reichardt, W.: Optomotorische Reaktionen der Fliege Musca domestica. Kybernetik 2, 15–28 (1963)

    Google Scholar 

  • Franceschini, N., Kirschfeld, K.: Les phenomenes de pseudopupille dans l'oeil compose de Drosophila. Kybernetik 9, 159–182 (1971)

    Google Scholar 

  • Geiger, G.: Optomotor response of the fly Musca d. to transient stimuli of edges and stripes. Kybernetik 16, 37–43 (1974)

    Google Scholar 

  • Geiger, G., Poggio, T.: The orientation of flies towards visual patterns: on the search for the underlying functional interactions. Biol. Cybernetics 19, 39–54 (1975)

    Google Scholar 

  • Geiger, G., Poggio, T.: On mead and body movements of flying flies. Biol. Cybernetics 25, 177–180 (1977)

    Google Scholar 

  • Götz, K.G.: Optomotorische Untersuchung des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2, 77–92 (1964)

    Google Scholar 

  • Götz, K.G.: Flight control in Drosophila by visual perception of motion. Kybernetik 4, 199–208 (1968)

    Google Scholar 

  • Götz, K.G.: The optomotor equilibrium of the Drosophila naviation system. J. Comp. Physiol. 99, 187–210 (1975)

    Google Scholar 

  • Götz, K.G., Wenking, H.: Visual control of locomotion in the walking fruitfly Drosophila m. J. Comp. Physiol. 85, 235–266 (1973)

    Google Scholar 

  • Götz, K.G., Hengstenberg, B., Biesinger, R.: Optomotor control of the wing beat and body posture in Drosophila. Biol. Cybernetics 35, 101–112 (1979)

    Google Scholar 

  • Hausen, K.: Struktur, Funktion und Konnektivität bewegungsempfindlicher Interneurone im dritten optischen Neuropil der Schmeißfliege Calliphora erythrocephala, Dissertation, Eberhards-Karls-Universität Tübingen 1976a

  • Hausen, K.: Functional characterization and anatomical identification of motion sensitive neurons in the lobula plate of the blowfly Calliphora erythrocephala. Z. Naturforsch., Teil C 31, 629–633 (1976b)

    Google Scholar 

  • Hausen, K.: Signal processing in the insect eye. In: Function and formation of nervous systems. Stent, G.S. (ed.). Berlin: Abakon Verlagsges. 1977

    Google Scholar 

  • Hausen, K.: Neuronal circuitry of visual orientation behavior in flies: structure and function of the lobula-complex. Invest. Ophthalmol. Visual Sci. 18, [Suppl. 109] (1979)

  • Hausen, K., Wolburg-Buchholz, K., Ribi, W.A.: The synaptic organization of visual interneurons in the lobula complex of flies. Cell Tissue Res. (in press) (1980)

  • Hausen, K., Wehrhahn, Ch.: The role of the horizontal cells in visually induced yaw torque response (in preparation) (1980)

  • Heisenberg, M., Wonneberger, R., Wolf, R.: Optomotor-bling — a Drosophila mutant of the lobula plate giant neurons. J. Comp. Physiol. 124, 287–296 (1978)

    Google Scholar 

  • Hengstenberg, R.: Spike responses of “non-spiking” visual interneurones. Nature (London) 270, 338–340 (1977)

    Google Scholar 

  • Hengstenberg, R.: Drehspezifitat von Vertikalzellen in der Lobula plate. Verh. Dtsch. Zool. Ges. (in press) (1980)

  • Land, M.F.: Head movements of flies during visually guided flight. Nature (London) 243, 299 (1973)

    Google Scholar 

  • Land, M.F., Collet, T.S.: Chasing behaviour of houseflies (Fannia canicularis). J. Comp. Physiol. 89, 331–357 (1974)

    Google Scholar 

  • Liske, E.: The influence of head position on the flight behaviour of the fly, Calliphora erythrocephala. J. Insect Physiol 23, 375–379 (1977)

    Google Scholar 

  • Liske, E.: Der Einfluß gerichteter Kopfbewegungen auf das Flugverhalten der Fliege Calliphora erythrocephala. Verh. Dtsch. Zool. Ges. 288 (1979)

  • Mastebroek, H.A.K., Zaagman, W.H., Lentig, B.P.M.: Movement detection: performance of a wide field element in the visual system of the blowfly. Vision Res. 20, 467–474 (1980)

    Google Scholar 

  • McCann, G.D., Foster, S.F.: Binocular interactions of motion detection fibres in the optic lobes of flies. Kybernetik 8, 193–203 (1971)

    Google Scholar 

  • Pick, B.: Visual flicker induces orientation behaviour in the fly Musca. Z. Naturforsch., Teil C 29, 310–312 (1974)

    Google Scholar 

  • Pick, B.: Visual pattern discrimination as an element of the fly's orientation behaviour. Biol. Cybernetics 23, 171–180 (1976)

    Google Scholar 

  • Pick, B., Buchner, E.: Visual movement detection under light- and dark-adaptation in the fly, Musca domestica. J. Comp. Physiol. 134, 45–54 (1979)

    Google Scholar 

  • Poggio, T.: On control systems for fixation and tracking. Memo 1980

  • Poggio, T., Reichardt, W.: A theory of the pattern induced flight orientation in the fly Musca domestica. Kybernetik 12, 185–203 (1973a)

    Google Scholar 

  • Poggio, T., Reichardt, W.: Considerations on models of movement detection. Kybernetik 13, 223–227 (1973b)

    Google Scholar 

  • Poggio, T., Reichardt, W.: Visual control of orientation behaviour in the fly. II. Towards the underlying neural interactions. Q. Rev. Biophys. 9, 348–375 (1976)

    Google Scholar 

  • Reichardt, W.: Autokorrelations-Auswertung als Funktionsprinzip des ZNS (bei der optischen Wahrnehmung eines Insekts). Z. Naturforsch. Teil B 12, 448–457 (1957)

    Google Scholar 

  • Reichardt, W.: Movement perception in insects. In: Processing of optical data by organisms and by machines. Rendiconti S.I.F. XLIII, Reichardt, W. (ed.), London, New York: Academic Press 1969

    Google Scholar 

  • Reichardt, W.: Musterinduzierte Flugorientierung. Naturwissenschaften 60, 122–138 (1973)

    Google Scholar 

  • Reichardt, W.: Functional characterization of neural interactions through an analysis of behaviour. In: The neurosciences, Fourth Study Program. Schmitt, F.O., Worden, F.G. (eds.), p. 81. Cambridge, MA, London: M.I.T. Press 1979

    Google Scholar 

  • Reichardt, W., Poggio, T.: Visual control of orientation behaviour in the fly. I. A quantitative analysis. Q. Rev. Biophys. 9, 311–346 (1976)

    Google Scholar 

  • Reichardt, W., Poggio, T.: Visual control of flight in flies. In: Recent theoretical developments in neurobiology. Cambridge, MA: MIT Press 1980

    Google Scholar 

  • Soohoo, S.L., Bishop, L.G.: Intensity and motion responses of giant vertical neurons of the fly eye. J. Neurobiol 11, 159–177 (1980)

    Google Scholar 

  • Spüler, M.: Optomotorische Reaktionen von Musca und Calliphora in komplexen visuellen Reizsituationen. Verh. Dtsch. Zool. Ges. (in press) (1980)

  • Strasfeld, N.J.: Mosaic organizations, layers, and visual pathways in the insect brain. In: Neural principles in vision. Zettler, F., Weiler, R. (eds.). Berlin, Heidelberg, New York: Springer 1976

    Google Scholar 

  • Taddei Feretti, C., Fernandez-Perez de Talens, A., Chilleni, S., Contuguo, A.: Landing reaction of Musca domestica. Observations on kinematics of prelanding behaviour. Monit. Zool. Ital. 11, 155–171 (1977)

    Google Scholar 

  • Virsik, R.: Verhaltens-Studie der visuellen Detektion und Fixierung bewegter Objekte durch die Fliege, Musca domestica. Dissertation, Eberhard-Karls-Universität Tübingen 1974

  • Wagner, H.: Diplomarbeit 1980

  • Wehrhahn, C.: Flight torque and lift responses of the housefly (Musca domestica) to a single stripe moving in different parts of the visual field. Biol. Cybernetics 29, 237–247 (1978)

    Google Scholar 

  • Wehrhahn, C.: Sex-specific differences in the chasing behaviour of houseflies (Musca). Biol. Cybernetics 32, 239–241 (1979)

    Google Scholar 

  • Wehrhahn, C.: Visual fixation and tracking in flies. In: Mathematical models in molecular and cellular biology. Segel, L.A. (ed.). Cambridge: Univ. Press 1980

    Google Scholar 

  • Zaagman, W.H., Mastebroek, H.A.K., Buyse, T., Kuiper, J.W.: Receptive field characteristics of a directionally selective movement detector in the visual system of the blowfly. J. Comp. Physiol. 116, 39–50 (1977)

    Google Scholar 

  • Zimmermann, G.: Der Einfluß stehender und bewegter Musteranteile auf die optomotorische Reaktion der Fliege Drosophila. Dissertation, Eberhard-Karls-Universität Tübingen 1973

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wehrhahn, C., Hausen, K. How is tracking and fixation accomplished in the nervous system of the fly?. Biol. Cybernetics. 38, 179–186 (1980). https://doi.org/10.1007/BF00337407

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00337407

Keywords

Navigation