Skip to main content
Log in

Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The heated boundary layer for DAY 33 of the Wangara data of southeast Australia (Clarke et al., 1971) is studied numerically with a three-dimensional model using 64000 grid points within a volume 5 km on a side and 2 km deep. Subgrid-scale transport equations were utilized in place of eddy-coefficient formulations. The rate of growth of the mixed layer is examined and parameterized, and the vertical profiles of heat flux, moisture flux and momentum fluxes are examined. The momentum boundary layer is found to coincide essentially with the mixed layer, and to grow with the latter during the hours of solar heating of the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arakawa, A.: 1966, ‘Computational Design for Long-Term Numerical Integration of the Equations of Fluid Motion: Two-dimensional Incompressible Flow, Part I’, J. Comp. Phys. 1, 119–143.

    Google Scholar 

  • Betts, A. K.: 1973, ‘Non-precipitating Cumulus Convection and its Parameterization’, Q`uart. J. Roy. Meteorol. Soc. 99, 178–196.

    Google Scholar 

  • Businger, J. A., Wyngaard, J. C, Izumi, Y., and Bradley, E. F.: 1971, ‘Flux-Profile Relationships in the Atmospheric Surface Layer’, J. Atmospheric Sci. 28, 181–189.

    Google Scholar 

  • Carson, D. J.: 1973, ‘The Development of a Dry Inversion-Capped Convectively Unstable Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 99, 450–467.

    Google Scholar 

  • Clarke, R. H., Dyer, A. J., Brook, R. R., Reid, D. G., and Troup, A. J.: 1971, The Wangara Experiment: Boundary Layer Data, CSIRO Div. of Meteorol. Phys. Tech. Paper No. 19, 340 pp.

  • Deardorff, J. W., Willis, G. E., and Lilly, D. K.: 1969, ‘Laboratory Investigation of Non-Steady Penetrative Convection’, J. Fluid Mech. 35, 7–31.

    Google Scholar 

  • Deardorff, J. W.: 1971, ‘On the Magnitude of the Subgrid Scale Eddy Coefficient’, J. Comp. Phys. 7, 120–133.

    Google Scholar 

  • Deardorff, J. W.: 1972a, ‘Numerical Investigation of Neutral and Unstable Planetary Boundary Layers’, J. Atmospheric Sci. 29, 91–115.

    Google Scholar 

  • Deardorff, J. W.: 1972b, ‘Parameterization of the Planetary Boundary Layer for Use in General Circulation Models’, Monthly Weather Rev. 100, 93–106.

    Google Scholar 

  • Deardorff, J. W.: 1973a, ‘The Use of Subgrid Transport Equations in a Three-Dimensional Model of Atmospheric Turbulence’, J. Fluids Eng. 95, 429–438.

    Google Scholar 

  • Deardorff, J. W.: 1973b, in D. A. Haugen (ed.), Three-Dimensional Numerical Modeling of the Planetary Boundary Layer, Workshop on Micrometeorology, Amer. Meteorol. Soc., Boston, 271–311.

    Google Scholar 

  • Deardorff, J. W.: 1973c, ‘An Explanation of Anomalously Large Reynolds Stresses within the Convective Planetary Boundary Layer, J. Atmospheric Sci. 30, 1070–1076.

    Google Scholar 

  • Deardorff, J. W., Willis, G. E., and Lilly, D. K.: 1973, Comment on the Paper by A. K. Betts: “Non-Precipitating Cumulus Convection and Its Parameterization”, to appear in Quart. J. Roy. Meteorol. Soc.

  • Fox, D. G. and Deardorff, J. W.: 1973, ‘Computer Methods for Simulation of Multidimensional, Nonlinear, Subsonic, Incompressible Flow’, J. Heat Transfer, 94, 337–346.

    Google Scholar 

  • Kato, H. and Phillips, O. M.: 1969, ‘On the Penetration of a Turbulent Layer into Stratified Fluid’, J. Fluid Mech. 37, 643–655.

    Google Scholar 

  • Kondratyev, K. Ya.: 1972, On the October 1970–March 1972 Complex Atmospheric Energetics Experiment (CAENEX) Results, Abridged Report to the Joint Organizing Committee of GARP.

  • Lilly, D. K.: 1965, ‘On the Computational Stability of Numerical Solutions of Time-dependent Non-linear Geophysical Fluid Dynamics Problems’, Monthly Weather Rev. 93, 11–26.

    Google Scholar 

  • Lilly, D. K.: 1967, The Representation of Small-scale Turbulence in Numerical Simulation Experiments, Proc. IBM Sci. Computing Symp. Environmental Sci., IBM Form No. 320–1951, 195–210.

  • Lilly, D. K.: 1968, ‘Models of Cloud-topped Mixed Layers under a Strong Inversion’, Quart J. Roy. Meteorol. Soc. 94, 874–884.

    Google Scholar 

  • Lundgren, T. S. and Wang, F. C: 1973, ‘Eddy Viscosity Models for Free Turbulent Flows’, Phys. Fluids 16, 174–178.

    Google Scholar 

  • Manabe, S.: 1969, ‘Climate and the Ocean Circulation, I. The Atmospheric Circulation and the Hydrology of the Earth's Surface, Monthly Weather Rev. 97, 739–805.

    Google Scholar 

  • Paulson, C. A.: 1970, ‘The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer’, J. Appl. Meteorol. 9, 857–861.

    Google Scholar 

  • Sasamori, T.: 1968, ‘The Radiative Cooling Calculation for Application to General Circulation Experiments’, J. Appl. Meteorol. 7, 721–729.

    Google Scholar 

  • Sasamori, T.: 1972, ‘A Linear Harmonic Analysis of Atmospheric Motion with Radiative Dissipation’, J. Meteorol. Soc. Japan, 50, 505–518.

    Google Scholar 

  • Smagorinsky, J.: 1963, ‘General Circulation Experiments with the Primitive Equations: 1. The Basic Experiment’, Monthly Weather Rev. 91, 90–164.

    Google Scholar 

  • Tennekes, H.: 1973, ‘A Model for the Dynamics of the Inversion above a Convective Boundary Layer’, J. Atmospheric Sci. 30, 558–567.

    Google Scholar 

  • Wilhelmson, R. and Ogura, Y.: 1972, ‘The Pressure Perturbation and the Numerical Modeling of a Cloud’, J. Atmospheric Sci. 29, 1295–1307.

    Google Scholar 

  • Williams, G. P.: 1969, ‘Numerical Integration of the Three-Dimensional Navier-Stokes Equations for Incompressible Flow’, J. Fluid Mech. 37, 727–750.

    Google Scholar 

  • Wyngaard, J. C.: 1973, in D. A. Haugen (ed.), On Surface Layer Turbulence, Workshop on Micrometeorology, Amer. Meteorol. Soc., Boston, 101–149.

    Google Scholar 

  • Zilitinkevich, S. S.: 1970, Dynamics of the Atmospheric Boundary Layer, Hydrometeorological Publishing House, Leningrad.

    Google Scholar 

  • Zilitinkevich, S. S.: 1972, ‘On the Determination of the Height of the Ekman Boundary Layer’, Boundary-Layer Meteorol. 3, 141–145.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deardorff, J.W. Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer. Boundary-Layer Meteorol 7, 81–106 (1974). https://doi.org/10.1007/BF00224974

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00224974

Keywords

Navigation