Skip to main content
Log in

On the coordination of motor output during visual flight control of flies

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

In tethered flying houseflies (Musca domestica), the yaw torque produced by the wings is accompanied by postural changes of the abdomen and hindlegs. In free flight, these body movements would jointly lead to turning manoeuvres of the animal. By recording the yaw torque together with the lateral deflections of either the abdomen or the hindlegs, it is shown that these motor output systems act in a highly synergistic way during two types of visual orientation behavior, compensatory optomotor turning reactions and orientation turns elicited by moving objects. This high degree of coordination is particularly conspicuous for the pathway activated by moving objects. Here, orientation responses either may be induced or may fail to be generated always simultaneously in all three motor output systems. This suggests that the pathway mediating orientation turns towards objects is gated before it segregates into the respective motor control systems of the wings, the abdomen and the hindlegs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arbas EA (1986) Control of hindlimb posture by wind-sensitive hairs and antennae during locust flight. J Comp Physiol A 159:849–857

    Google Scholar 

  • Baader A (1990) The posture of the abdomen during locust flight: Regulation by steering and ventilatory interneurones. J Exp Biol 151:109–131

    Google Scholar 

  • Bausenwein B, Wolf R, Heisenberg M (1986) Genetic dissection of optomotor behavior in Drosophila melanogaster. Studies on wild-type and the mutant optomotor-blind H31. J Neurogenetics 3:87–109

    Google Scholar 

  • Camhi JM (1970) Yaw-correcting postural changes in locusts. J Exp Biol 52:519–531

    Google Scholar 

  • Egelhaaf M (1985a) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. I. Behavioural constraints imposed on the neuronal network and the role of the optomotor system. Biol Cybern 52:123–140

    Google Scholar 

  • Egelhaaf M (1985b) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. II. Figure-Detection Cells, a new class of visual interneurones. Biol Cybern 52:195–209

    Google Scholar 

  • Egelhaaf M (1985c) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. III. Possible input circuitries and behavioural significance of the FD-Cells. Biol Cybern 52:267–280

    Google Scholar 

  • Egelhaaf M (1987) Dynamic properties of two control systems underlying visually guided turning in house-flies. J Comp Physiol A 161:777–783

    Google Scholar 

  • Egelhaaf M (1989) Visual afferences to flight steering muscles controlling optomotor response of the fly. J Comp Physiol A 165:719–730

    Google Scholar 

  • Egelhaaf M (1990) Spatial interactions in the fly visual system leading to selectivity for small-field motion. Naturwissenschaften 77:182–185

    Google Scholar 

  • Egelhaaf M, Borst A (1990a) Bewegungswahrnehmung und visuelle Orientierung bei Fliegen. Naturwissenschaften 77:366–377

    Google Scholar 

  • Egelhaaf M, Borst A (1991) Motion computation and visual orientation in flies. In: Barnes WJP (ed) Sensory guidance in arthropod behaviour. Manchester University Press, Manchester, in press

    Google Scholar 

  • Egelhaaf M, Hausen K, Reichardt W, Wehrhahn C (1988) Visual course control in flies relies on neuronal computation of object and background motion. Trends Neurosci 11:351–358

    Google Scholar 

  • Fermi G, Reichardt W (1963) Optomotorische Reaktionen der Fliege Musca domestica. Abhängigkeit der Reaktion von der Wellenlänge, der Geschwindigkeit, dem Kontrast und der mittleren Leuchtdichte bewegter periodischer Muster. Kybernetik 2:15–28

    Google Scholar 

  • Geiger G, Nässel DR (1982) Visual processing of moving single objects and wide-field patterns in flies: Behavioural analysis after laser-surgical removal of interneurons. Biol Cybern 44:141–149

    Google Scholar 

  • Geiger G, Poggio T (1977) On head and body movements of flying flies. Biol Cybern 25:177–180

    Google Scholar 

  • Gronenberg W, Strausfeld NJ (1990) Descending neurons supplying the neck and flight motor of Diptera: Physiological and anatomical characteristics. J Comp Neurol 302:973–991

    Google Scholar 

  • Götz KG (1964) Optomotorische Untersuchung des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2:77–92

    Google Scholar 

  • Götz KG (1983a) Genetischer Abbau der visuellen Orientierung bei Drosophila. Verh Dtsch Zool Ges 76:83–99

    Google Scholar 

  • Götz KG (1983b) Bewegungssehen und Flugsteuerung bei der Fliege Drosophila. In: Nachtigall W (ed) BIONA report. Akademie Wissenschaften Literatur Mainz, G Fischer, Mainz Stuttgart New York, pp 21–34

    Google Scholar 

  • Götz KG, Hengstenberg B, Biesinger R (1979) Optomotor control of wing beat and body posture in Drosophila. Biol Cybern 35:101–112

    Google Scholar 

  • Hausen K (1982a) Motion sensitive interneurons in the optomotor system of the fly. I. The Horizontal Cells: Structure and signals. Biol Cybern 45:143–156

    Google Scholar 

  • Hausen K (1982b) Motion sensitive interneurons in the optomotor system of (the fly). II. The Horizontal Cells: Receptive field organization and response characteristics. Biol Cybern 46:67–79

    Google Scholar 

  • Hausen K, Wehrhahn C (1990) Neural circuits mediating visual flight in flies. II. Separation of two control systems by microsurgical brain lesions. J Neurosci 10:351–360

    Google Scholar 

  • Heide G (1971) Die Funktion der nicht-fibrillären Flugmuskeln von Calliphora. Teil II: Muskuläre Mechanismen der Flugsteuerung und ihre nervöse Kontrolle. Zool Jb Physiol 76:99–137

    Google Scholar 

  • Heide G (1974) The influence of wingbeat synchronous feedback on the motor output systems in flies. Z Naturforsch 29c:739–744

    Google Scholar 

  • Heide G (1975) Properties of a motor output system involved in the optomotor response in flies. Biol Cybern 20:99–112

    Google Scholar 

  • Heide G (1983) Neural mechanisms of flight control in Diptera. In: Nachtigall W (ed) BIONA report. Akad Wissenschaften Literatur Mainz. G Fischer, Mainz Stuttgart New York, pp 35–52

    Google Scholar 

  • Heisenberg M, Wolf R (1984) Vision in Drosophila. Springer, Berlin Heidelberg New York, Tokyo

    Google Scholar 

  • Milde JJ, Strausfeld NJ (1990) Cluster organization and response characterictics of the giant fiber pathway of the blowfly Calliphora erythrocephala. J Comp Neurol 294:59–75

    Google Scholar 

  • Reichardt W, Egelhaaf M, Guo A (1989) Processing of figure and background motion in the visual system of the fly. Biol Cybern 61:327–345

    Google Scholar 

  • Reichert H, Rowell CHF (1985) Integration of nonphaselocked exteroceptive information in the control of rhythmic flight in the locust. J Neurophysiol 53:1201–1218

    Google Scholar 

  • Reichert H, Rowell CHF, Griss C (1985) Course correction circuitry translates feature detection into behavioural action in locusts. Nature 315:142–144

    Google Scholar 

  • Rowell CHF (1988) Mechanisms of flight steering in locusts. Experientia 44:389–395

    Google Scholar 

  • Strausfeld NJ (1989) Beneath the compound eye: Neuroanatomical analysis and physiological correlates in the study of insect vision. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Berlin Heidelberg New York, pp 317–359

    Google Scholar 

  • Strausfeld NJ, Gronenberg W (1990) Descending neurons supplying the neck and flight motor of Diptera: Organization and neuroanatomical relationships with visual pathways. J Comp Neurol 302:954–972

    Google Scholar 

  • Zanker JM (1988) How does lateral abdomen deflection contribute to flight control of Drosophila melanogaster? J Comp Physiol A 162:581–588

    Google Scholar 

  • Zanker JM (1990) The wing beat of Drosophila melanogaster III. Control. Phil Trans R Soc Lond B 327:45–64

    Google Scholar 

  • Zanker JM, Götz KG (1990) The wing beat of Drosophila melanogaster II. Dynamics. Phil Trans R Soc Lond B 327:19–44

    Google Scholar 

  • Zanker JM, Quenzer T (1988) Abdominal deflections elicited by stripe movement. In: Elsner N, Barth FG (eds) Sense organs: Interfaces between environment and behaviour. G Thieme, Stuttgart New York, pp 132

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanker, J.M., Egelhaaf, M. & Warzecha, AK. On the coordination of motor output during visual flight control of flies. J Comp Physiol A 169, 127–134 (1991). https://doi.org/10.1007/BF00215860

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00215860

Key words

Navigation