Skip to main content

Designs and Implementation of Three Dimensional Nuchal Translucency

  • Chapter
  • First Online:
  • 612 Accesses

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

General principles of 3D reconstruction are composed of two steps. Firstly, the captured successive 2D image slices are arranged precisely with real spatial positions, resulting in volumetric data. This will be followed by ray casted volume rendering techniques, hybrid with semi-auto 3D segmentation and interactive virtual slider for 3D NT measurements. The methodology entails the composite function to visualize the explicit internal marker structure. 3D image diffusion is utilized as preprocessing technique before segmentation, 3D seeded growing is utilized to segment the 3D NT structure followed by its interactive measurement. Details of numerical measurement analysis shall be discussed in Chap. 4. This chapter describes the experimental design and implementation which includes research materials, data sources acquisitions and manipulation, 3D reconstruction and scanning techniques, volume rendering visualization techniques, 3D image preprocessing diffusion, semi-automated 3D segmentation designs, virtual extraction, hybrid visualization and interactive measurements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abuhamad, A. (2005). Technical aspects of nuchal translucency measurement. Seminars in Perinatology, 29(6), 376–379.

    Article  Google Scholar 

  • Altmann, K., Shen, Z. Q., Boxt, L. M., King, D. L., Gersony, W. M., Allan, L. D., et al. (1997). Comparison of three-dimensional echocardiographic assessment of volume, mass, and function in children with functionally single left ventricles with two-dimensional echocardiography and magnetic resonance imaging. American Journal of Cardiology, 80(8), 1060–1065.

    Article  Google Scholar 

  • Bekker, M. N., Twisk, J. W. R., & van Vugt, J. M. G. (2004). Reproducibility of the fetal nasal bone length measurement. Journal of Ultrasound in Medicine, 23(12), 1613–1618.

    Google Scholar 

  • Berg, S., Torp, H., Martens, D., Steen, E., Samstad, S., Hoivik, I., et al. (1999). Dynamic three-dimensional freehand echocardiography using raw digital ultrasound data. Ultrasound in Medicine and Biology, 25(5), 745–753.

    Article  Google Scholar 

  • Chen, M., Yang, X., Wang, H. F., Leung, T. Y., Borenstein, M., Nicolaides, K., et al. (2010). Learning curve in measurement of fetal frontomaxillary facial angle at 11–13 weeks of gestation. Ultrasound in Obstetrics and Gynecology, 35(5), 530–534.

    Article  Google Scholar 

  • Fenster, A., & Downey, D. B. (1996). 3-D ultrasound imaging: A review. IEEE Engineering in Medicine and Biology Magazine, 15(6), 41–51.

    Article  Google Scholar 

  • Fenster, A., & Downey, D. B. (2000). Three-dimensional ultrasound. Imaging, 2, 457–475.

    Google Scholar 

  • Thomas, F. (1994). Raycasting of nonregularly structured volume data. Computer Graphics Forum, 13(3), 293–303.

    Article  Google Scholar 

  • Gee, A., Prager, R., Treece, G., & Berman, L. (2003). Engineering a freehand 3d ultrasound system. Pattern Recognition Letters, 24(4–5), 757–777.

    Article  Google Scholar 

  • Gee, A., Prager, R., Treece, G., Cash, C., & Berman, L. (2004). Processing and visualizing three-dimensional ultrasound data. British Journal of Radiology, 77, S186–S193.

    Article  Google Scholar 

  • Gee, A. H., Housden, R. J., Hassenpflug, P., Treece, G. M., & Prager, R. W. (2006). Sensorless freehand 3d ultrasound in real tissue: speckle decorrelation without fully developed speckle. Medical Image Analysis, 10(2), 137–149.

    Article  Google Scholar 

  • Gobbi, D. G., & Peters, T. M. (2002). Interactive intra-operative 3d ultrasound reconstruction and visualization. Medical Image Computing and Computer-Assisted Intervention - MICCAI 2002. 5th International Conference. Proceedings, Part II (Lecture Notes in Computer Science vol. 2489): 156-163163.

    Google Scholar 

  • Gobbi, D. G., Comeau, R. M., & Peters, T. M. (1999). Ultrasound probe tracking for real-time ultrasound/MRI overlay and visualization of brain shift. In C. Taylor & A. Colchester (Eds.), Medical image computing and computer-assisted intervention, Miccai’99, Proceedings (Vol. 1679, pp. 920–927). Berlin: Springer.

    Chapter  Google Scholar 

  • Gobbi, D. G., Comeau, R. M., & Peters, T. M. (2000). Ultrasound/MRI overlay with image warping for neurosurgery. In S. Delp, A. M. DiGioia, & B. Jaramaz (Eds.), Medical image computing and computer-assisted intervention—Miccai 2000 (Vol. 1935, pp. 106–114). Berlin: Springer.

    Chapter  Google Scholar 

  • Min, K.-J., & Myoung, K.-H. (2007). Image enhancing technique for high-quality visual simulation of fetal ultrasound volumes. Systems Modeling and Simulation, 337–341

    Google Scholar 

  • King, D. L., Gopal, A. S., Keller, A. M., Sapin, P. M., & Schroder, K. M. (1994). 3-Dimensional echocardiography—advances for measurement of ventricular volume and mass. Hypertension, 23(1), I172–I179.

    Article  Google Scholar 

  • Laporte, C., & Arbel, T. (2010). Measurement selection in untracked freehand 3D Ultrasound. Medical image computing and computer-assisted intervention: MICCAI. International Conference on Medical Image Computing and Computer-Assisted Intervention (13(Pt 1), pp. 127–134).

    Google Scholar 

  • Lee, Y.-B., Kim, M.-J., & Kim, M.-H. (2007). Robust Border Enhancement And Detection For Measurement Of Fetal Nuchal Translucency In Ultrasound Images. Medical & Biological Engineering & Computing, 45(11), 1143–1152.

    Article  Google Scholar 

  • Managuli, R., Karadayi, K., Canxing, X., & Yongmin, K. (2009). Volume rendering algorithms for three-dimensional ultrasound imaging: image quality and real-time performance analysis. IEEE International Ultrasonics Symposium, 2009, 2324–23272327.

    Article  Google Scholar 

  • Meairs, S., Beyer, J., & Hennerici, M. (2000). Reconstruction and visualization of irregularly sampled three- and four-dimensional ultrasound data for cerebrovascular applications. Ultrasound in Medicine and Biology, 26(2), 263–272.

    Article  Google Scholar 

  • Nelson, T. R., & Pretorius, D. H. (1998). Three-dimensional ultrasound imaging. Ultrasound in Medicine and Biology, 24(9), 1243–1270.

    Article  Google Scholar 

  • Ohbuchi, R., & Fuchs, H. (1991). Incremental volume rendering algorithm for interactive 3d-ultrasound imaging. Lecture Notes in Computer Science, 511, 486–500.

    Article  Google Scholar 

  • Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 629–639.

    Article  Google Scholar 

  • Rohling, R., Gee, A., & Berman, L. (1999). A comparison of freehand three-dimensional ultrasound reconstruction techniques. Medical Image Analysis, 3(4), 339–359.

    Article  Google Scholar 

  • Tong, S., Downey, D. B., Cardinal, H. N., & Fenster, A. (1996). A three-dimensional ultrasound prostate imaging system. Ultrasound in Medicine and Biology, 22(6), 735–746.

    Article  Google Scholar 

  • Trobaugh, J. W., Trobaugh, D. J., & Richard, W. D. (1994). 3-Dimensional imaging with stereotaxic ultrasonography. Computerized Medical Imaging and Graphics, 18(5), 315–323.

    Article  Google Scholar 

  • Wee, L. K., Chai, H. Y., & Supriyanto, E. (2011). Surface rendering of three dimensional ultrasound images using Vtk. Journal of Scientific and Industrial Research, 70(6), 421–426.

    Google Scholar 

  • Yu, Y., & Acton, S. T. (2002). Speckle reducing anisotropic diffusion. IEEE Transactions on Image Processing, 11(11), 1260–1270.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khin Wee Lai .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Lai, K.W., Supriyanto, E. (2013). Designs and Implementation of Three Dimensional Nuchal Translucency. In: Detection of Fetal Abnormalities Based on Three Dimensional Nuchal Translucency. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-4021-96-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-4021-96-8_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-4021-95-1

  • Online ISBN: 978-981-4021-96-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics