
CHAPTER 10 

FIRST-ORDER MODELING 

This chapter opens the last part of the monograph, which is more speci­
fically dedicated to an engineering audience. It begins with a general presen­
tation and discussion of prediction methods for turbulent flows, based on 
statistical - or Reynolds - averaged Navier-Stokes equations (RANS). 
Then, the incidence of density changes and the incorporation of variable­
density and compressibility effects in first-order closure models are analyzed 
with respect to (i) "modifications" to incompressible schemes and (ii) intro­
duction of additional "specific contributions" to non-constant density flows. 
At last} some zero-, one-, two- and three-equation models are reviewed. 

10.1. Introduction 

The ultimate objective of this third part of the monograph is to discuss 
tractable models that have been developed to calculate quantities of interest 
and practical relevance in turbulent flows of variable density fluid. Turbu­
lence is considered here as a moderate-to-high Reynolds number flow, pro­
duced by unsteady, non-linearly interacting instabilities generating a large 
dynamic range of 3-D velocity and vorticity fluctuations in space and time. 
It is assumed that the motion is governed by the Navier-Stokes equations, 
along with the continuity equation, the first law of thermodynamics and 
the equation of state, as detailed in Chapter 4. For practical applications, 
several predictive methods! are available at the present time: 

- Large Eddy Simulations (LES), in which the motion equations are 
solved for a filtered velocity field, which is representative of the large 
scale turbulent motion. Hence, a model is required for the smaller-scale 
motions which are not represented; 
Probability Density Function methods (PDF), in which a model trans­
port equation is solved for a probability density function of the fluctu­
ating velocity and other single or joined scalar fluctuations; 
Single point modeling of Reynolds Averaged Navier-Stokes equations, 
the so called RANS approach, in which closure schemes are introduced 
to provide a set of statistical equations governing one point moments. 

Only the last approach will be addressed hereafter. 

1 At present, Direct Numerical Simulation (DNS) is not considered as a predictive 
method for industrial applications. 
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The conventional hierarchy of such turbulence closure approaches is 
well known. It is mainly based upon a simple division between first, second 
and other higher order closure levels. In first-order models, turbulence 
or Reynolds stresses are directly coupled with the mean flow, using an 
eddy-viscosity concept or more generally linear or non-linear constitutive 
schemes. Now, since turbulence is not a fluid property but depends on 
the motion itself, the eddy-viscosity is to be prescribed as a function of 
some flow characteristics. This can be achieved algebraically, yielding zero­
equation models, or by solving one or more additional transport equations, 
producing one-equation, two-equation ... turbulence models. 
In second-order models2 , transport equations are solved for the Reynolds 
stress tensor and all other second-order moments, yielding Reynolds Stress 
(transport) Equations models (RSE). 

10.2. Synopsis of one-point turbulence modeling status 

10.2.1. CONSTANT DENSITY FLOWS 

Historically, since the late 60's, two groups have mainly contributed to the 
development of one-point modeling under the leadership of B.E. Launder, 
now at UMIST and J.1. Lumley, now at Cornell University. Since then, a 
wide amount of literature has been published on the topic by many other 
authors. Up to date reviews of first and second-order closure schemes for 
incompressible turbulent flows can be found in Schiestel [421], Chen & Jaw 
[89], Piquet [366], Pope [370], and Chassaing [84]. 

It is commonly agreed that eddy-viscosity models: 

- perform quite satisfactorily in quasi-parallel, equilibrium, 2-D, wall­
attached and free flows; 

- are relatively numerically 'robust'. 

On the other hand, the generic problems associated with linear eddy­
viscosity models have been known for many years and include the inability 
to: 

- track rapid, inviscidly induced mean flow alterations; 
- predict counter-gradient fluxes; 
- predict negative production zones; 
- generate turbulence induced secondary flows. 

With RSE modeling, such flaws are not present and significant improve­
ments have been obtained, concerning the representation of: 

2 Algebraic stress models (ASM) should also be mentioned. They implicitly determine 
the local Reynolds stresses as a function of the turbulence kinetic energy, its dissipation 
rate, and mean velocity gradients. Due to the approximations they involved, they are 
simpler but less general and accurate than RSE. They are not considered here. 
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- pressure-strain correlations; 
- low-Reynolds number effects; 
- anisotropy in the near-wall region. 

Nevertheless, some problems are still present with this type of models. They 
concern: 

- the dissipation (or length-scale) equation(s); 
- the gradient diffusion (turbulent transport) assumptions. 

In constant density flows, some of the dominant physical processes of 
the turbulent regime can be captured with statistical, single point, closure 
models. However, such a modeling approach is neither sufficiently develo­
ped nor intrinsically adapted to account for all turbulence features, such 
as coherent structures and free flow intermittency, or energy cascade and 
small-scale intermittency. 
In simple free shear layers, for instance, many observations reveal the pre­
sence of large (coherent) structures which are specific to each type of flow 
(plane or round jet, wakes, mixing layers). Such evidence, in turn, suggests 
that the energy-containing lower wave number portion of the turbulence 
spectrum should be flow-dependent. Hence the problem of turbulence mode­
ling cannot simply be reduced to how reflecting modifications to a common 
basic state, mainly according to Kolmogorov's ideas. As suggested by Bush­
nell [65], "this is one of the root causes of the variable constants required 
thus far for all modeling approaches". 
Another incidence of such large scale motions on the physics of turbulence 
is the irregular and intermittent behavior at the edge of free flows, with 
direct consequences on the mixing process, entrainment and expansion. 
Many proposals have been made to account for free flow intermittency, but 
at the present time, none of them is actually involved in practical predicting 
tools for engineering applications. 

10.2.2. VARIABLE DENSITY FLOWS 

An increasing number of what is considered as variable density effects has 
been now identified from experimental investigations, theoretical analysis 
such as stability analysis and Rapid Distortion Theory, or direct numerical 
simulations. As briefly presented in Chapter 2, the influence of variable 
density and compressibility on a turbulent flow is manifold and may results 
m: 

- mean temperature/concentration effects; 
- mean flow bulk dilatation/compression effects; 
- additional baroclinic torque generation/destruction; 
- additional instability mechanisms; 
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- alterations of turbulent eddies interactions and energy cascade; 
- shock-induced modifications; 
- dilatational contributions to turbulence; 
- variation of the physical coefficients and bulk viscosity effects. 

During 1975-85 decade, an important effort was dedicated by Ha Minh­
Chassaing and co-workers, [80], [87], [193], [195], [85], [194], [473], [197], 
[332], [199] to the extension of constant density first and second-order 
closure schemes to variable density turbulent flows, in low and high speed 
fluid motions. The contributions due to Launder's and Lumley's groups in 
low-speed modeling for scalar fields were also extended to heterogeneous 
flows, considering the equations governing concentration or temperature 
correlations. 
At that time and using density weighted averages, the main question, as 
pointed out by Janicka and Lumley [232] in 1980, was to know to what 
extent "model assumptions which are developed for constant density flows 
can be adopted for closure of density-weighted moments for variable density 
flows." 

Later on, a serious attempt to extend RSE closure to super/hypersonic 
flows was promoted by Speziale-Sarkar et al. [443] at NASA Langley. Since 
then, there have been many proposals to model new compressibility effects 
in high-speed flows, by (i) adding "corrections" to the model "constants" 
via terms depending on a turbulence Mach number, (ii) introducing "extra­
compressibility terms" accounting for dilatational effects (compressible or 
dilatational dissipation, pressure dilatation correlation). Both procedures 
are reviewed in the present chapter, as far as they deal with first-order 
closure schemes. 

A second point emerged, giving rise to a slightly different discussion in 
variable and constant density situations. It directly addresses the choice 
of the closure level. For "theoretical" reasons, which will become clear in 
the next chapter, second-order level appears to be particularly suitable in 
modeling variable density flows. Thus, when reviewing first-order closure 
schemes, it is worth keeping in mind the following statement by Fulachier et 
at. [173] in 1989 "The improvements obtained by a second-order modeling 
are so evident, and the ability of this type of modeling to predict the effects 
of density differences in complex flows so clear, that it is to be recommended 
that such model be used even for industrial purposes." 

10.3. The first-order modeling issue 

When deriving closure schemes for the mean motion equations of variable 
density fluids, one is faced with a three-fold challenge: 
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- selecting the intrinsic mechanisms which are actually responsible for 
the dominant variable density effects that are observed in a given flow 
configuration; 

- identifying, in the open set of equations, the corresponding terms that 
can be handled at a given closure level; 

- deriving proper closure schemes to such terms, capturing the correct 
underlying physics. 

Although present in the modeling issue for constant density fluid flows, the 
challenge is even more crucial in variable density situations. Let us now 
give some examples. 

Identification of intrinsic mechanisms. The search for the explana­
tion of the reduction in the mixing layer growth rate through compressibility 
can be considered as an illustrative example of the difficulty in identifying 
intrinsic mechanisms of turbulence in modeling variable density fluid mo­
tions. 
After the discovery by Passot and Pouquet [359] in 1987, from numerical 
simulations, of the distinct possibility of random shock-like structures to 
appear in the flow domain, even when the turbulence or r.m.s. Mach number 
Mt is subsonic, the presence of "shocklets" was taken as one of a plausible 
explanation of the phenomenon. However, by the same time, a new contro­
versy about the actual mechanism responsible for the Mach number stabili­
zing effect to be introduced in turbulence modeling was opened. 

- In 1990, Zeman [495] proposed the dilatation dissipation concept to 
account for such an effect. 

- In 1989, to improve the modeling of shock wave/boundary layer inter­
action in flows over compression ramps, Grasso & Speziale [187] argued 
that the pressure-dilatation correlation3 p' auj / ax j and the turbulent mass 

flux coupled with the mean pressure gradient (p'ui!75)(aP/aXi) play an 
important role in this situation. 

- In 1990, Nichols [346], addressing the same flow configuration, sugges­
ted that a turbulent "velocity-density" dissipation term Ui p'U'j (aUd ax j + 
aUj / aXi) has to be introduced in the modeling of compressibility effects in 
that case. 
A similar lack of consensus can also observed in the choice of the additio­
nal functions which are used as arguments in the various closure schemes 
accounting for density/compressibility effects. The example of the (k -E) 
model is particularly illustrative in this respect. Several proposals have been 
made to extend the incompressible version of this model to compressible 
situations, generally adopting the turbulence Mach number Mt = -I2k/c, 

3 f' denotes a Reynolds fluctuation. 
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Figure 10.1. Spectrum of the solenoidal velocity fluctuations in a decaying homogeneous 
isotropic supersonic turbulence, adapted from Pouquet [371]. 

where c is the mean speed of sound, as the parameter accounting for 
compressibility effects. Some of them are reviewed in the present chapter. 
However such straightforward extensions have revealed to be not entirely 
satisfactory, and the need for additional functions has been investigated. 
Various candidates have been suggested and will be examined in §10.12. 

The underlying physics. In modeling constant density fluid turbulence, 
single point closure of mean transport equations in fully developed, high 
Reynolds number flows may be addressed first. Far from the walls or in 
free turbulent flows, this leads to consider that turbulence can reach some 
equilibrium state, depending on the boundary conditions, but with only 
a limited memory of its past state. Accordingly, the energetic process is 
statistically depicted as obeying the Kolmogorov cascade, and large scale 
organization effects, if present, are not explicitly taken into consideration. 
To transpose "incompressible" closure schemes to variable density fluid 
turbulence, it is (generally implicitly) assumed that compressibility effects 
do not radically change the physics, so that most of the incompressible 
closure schemes can be adapted to compressible turbulence. 
Although not always justified, this procedure will be adopted in the follo­
wing presentation, in which, from a "practical" modeling point of view, 
compressibility effects are considered as (i) modifying existing incompres­
sible schemes and (ii) introducing new additional terms into the incompres-
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sible closure formulation. 
However, it is worth recalling that this attitude corresponds to a reduction 
in the physics. Let us give an illustration of this point. Direct 3-D numerical 
simulations of supersonic homogeneous and isotropic turbulence by Pouquet 
[371] (see Fig.IO.I) reveal a double scaling of the spectrum Es of the 
solenoidal part of the velocity fluctuations: (i) as ",-5/3 for the energetic 
wave number range", < "'t, where "'t is the Taylor wave number, and (ii) as 
",-1, for the small scale structures "'t < '" < "'1)' where "'1) is the Kolmogorov 
wave number. To the author's knowledge, such a feature has not yet been 
included in turbulence modeling. 

10.4. The open set of equations and the closure issue 

Regarding the instantaneous equations governing various types of turbulent 
motion of a variable density fluid, several approximate models to the full 
variable-density Navier-Stokes equations can be derived. This question has 
been addressed in Chapter 3, where such approximate models have been 
presented, depending on various physical assumptions concerning the domi­
nant mechanisms driving density variations. 
With respect to the general objective of the monograph, closure schemes4 

that have been developed for such simplified situations will not be conside­
red here. Hence, due to the wide variety of variable density turbulent flows, 
the full set of N avier-Stokes equations is adopted (see Chapter 4). 

The non-linearities present in these equations generate unknown mo­
ments in any finite set of averaged equations deduced from the instanta­
neous ones. When deriving "modeled equations", one basically aims at 
producing a closed set of equations by recovering only that part of informa­
tion, lost from the averaging procedure, which is required at a given level of 
statistical description. As far as first-order closure is concerned, this level of 
description simply refers to the "mean motion equations" . These equations 
have been detailed in Chapter 5, adopting either conventional or density 

4Such models are largely restricted to the situation for which they have been 
derived. For example, Boussinesq's approximations, or more generally weak compressible 
assumptions, yield simplification of the pressure role and make the modeling issue 
relatively easily tractable as an extension from the isovolume/incompressible regime. As 
a direct consequence, the density variance can be readily deduced from the temperature 
or concentration variance, as solution to a modeled transport equation for a quasi-passive 
contaminant. 
On the other hand, in compressible turbulent flows, even within the limit of linear 
Kovasznay's modes decomposition (see Chapter 3), density fluctuations are included in 
both acoustic (p' ::/; 0, p' ::/; 0, and 8' = w' = 0) and entropy (8' ::/; 0, p' ::/; 0, and 
w' = p' = 0) modes. Therefore, in compressible boundary layers and channel flows, for 
instance, the density variance is not a good parameter to describe compressibility effects 
accurately. 
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weighted averages viz., respectively: 

F = F + f' = F + f" , 
and noticing that: f' = 0 , f" = 0, 

where 

1'=1=0, 

F = pF/p 

f" =1= 0, 

and F - F = f" - !' = -p' f" /p = -p' I' /p = -pf' /p . 

Adopting density-weighted or Favre's averages5, and considering a binary 
mixture of perfect gases (see Chapter 5), the equations governing the mean 
motion are: 

Mean continuity (10.1) 

Mean momentum 8(pUi) + 8(pU; Uj) = pFi _ 8P 
8t 8xj 8x i 

~ 

_ 8(pu~'u"j) + 8Tij 
8xj 8xj , (10.2) 

Mean internal energy 
8(p"€) 8(peUJ ) = p8Ui _ p 8u~' 
---at + 8x j 8x; 8Xi 

8iJ. 8u" 8-q· 8(-pe"u'() 
- l l t J 

+Tij -8 +Tij -8 + -8 - 8 
X] Xi Xi X j 

(10.3) 

Mean mass fraction 
8 (-{;) 8(n?1U·) 8(p:Y;;;;) 8q. _P __ + fA--' J =_ J +~. 

8t 8x] 8x] 8xj 
(lOA) 

In the previous equations, Tij stands for the viscous stress tensor, qj and 
qmj for the molecular heat and mass fluxes respectively. 

With respect to the previous equations, the closure issue is concerned 
with two types of terms: 

5The equations governing the mean properties of variable density fluid motions have 
been derived in Chapter 5. As compared with the incompressible, constant density 
situation, new non-linearities due to density variations introduce additional correlations. 
These correlations can be handled in different ways. Two of them have been more 
specifically discussed, with reference to binary regrouping (density weighted or Favre's 
averaging) and ternary regrouping (conventional or Reynolds averaging). The two 
formulations differ by the way the extra correlation terms due to density variation, the so 
called dJ.c. (density fluctuation correlations), are handled. This formal distinction may 
have a direct incidence on the expression of the closure schemes. 
Favre averaged equations bear great formal resemblance to those governing incom­
pressible flows, since most dJ.c.'s are explicitly "eliminated" from the formulation, but 
are implicitly present in mean mass-weighted operators. 
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(i) turbulent diffusion (or transport) terms, viz. 15« == pa"u'J; 
(ii) correlations with the Favrian velocity fluctuation ui'. 

The modeling of the former can be sought from formal extensions of the 
corresponding constant density fluxes, where, for instance, the Reynolds 
stress tensor Pouiuj is simply changed to puiuj or pui'u'J. 
The latter introduce new dilatational or compressible contributions that 
are specific to variable density fluid motions, as we shall see now. 

10.4.1. PRESSURE-DILATATION CORRELATION 

In eq.(10.3), the coupling term between the instantaneous pressure and the 
Favrian dilatation fluctuation reads: 

au~' -au~' au" p __ t = p_t + p,_t . 
aXi aXi aXi 

The last term in the right-hand-side introduces the pressure-dilatation 
correlation nd, which can be equally written as (see Chapters 5 and 6): 

- au~' au~ nd == P'y)' = p, __ t = p,_t 
aXi aXi 

(10.5) 

This term is specific to non-isovolume fluctuating motions. 

10.4.2. DILATATION DISSIPATION 

Similarly, the coupling term between the viscous stress and the Favrian 
dilatation fluctuation in eq.(10.3) reads: 

au" au~' au~' 
Tij~ = Tij~ + T[J'~' 

UXi UXi UXi 

where T[j denotes the fluctuation centered on the mean value Tij. 
Now, as shown in Chapter 6-§6.4.4, the last term in the right-hand-side 
expression can be rewritten as (neglecting viscosity fluctuations): 

()u~' 
pE == T[j ax: = pEs + PEd + pEnh. (10.6) 

Here, Es , Ed and Enh denote respectively the solenoidal, dilatational and 
non-homogeneous contributions to the dissipation rate: 

- 2Ji-,-, 
fs = -w··w·· P tJ tJ' 

4Ji-
Ed = _-fJ,2 

3 P , 
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10.4.3. THE CLOSURE PROBLEM 

To summarize, the closure problem of the open set of equations governing 
the mean motion of a variable density fluid requires to derive closure 
schemes for different types of terms which: 

- are formally analogous to those considered in constant density flows, 
-------e g the "diffusion" terms say P- a"u'" .. , 'J ' 

- directly originate from density fluctuations, such as the turbulent mass 
flux u'" ~ , 

- are specific to density fluctuations, namely TId and Ed. 

Some closure schemes for each type of terms are separately reviewed in the 
following sections. 

10.5. Turbulent momentum transport modeling 

10.5.1. EDDY-VISCOSITY REPRESENTATION OF REYNOLDS STRESSES 

A widely used representation of the Reynolds stresses in incompressible 
flows is based on the so-called Boussinesq scheme, introducing an eddy or 
turbulent viscosity fLt: 

(10.8) 

or 
(10.9) 

where bij = (u~uj /k) - ~8ij is the Reynolds stress anisotropy tensor. Po 
denotes the constant density of the incompressible fluid in an isovolume 
motion and Ii == !u~u~ is the turbulence kinetic energy. 

Apart from the general validity of such a linear relation (see §10.5.4), 
transposition of eq.(1O.8) in variable density flows raises at least three 
specific questions: 

- What accounts for the "flux", i.e., the compressible equivalent to the 
incompressible Reynolds stress tensor? 

- What accounts for the "forces" driving the flux, i.e., the mean strain 
rate tensor in isovolumejincompressible flows? 

- Are the "incompressible" eddy-viscosity expressions acceptable in vari­
able density fluid situations? 

Some answers to these questions will be now examined. 
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Direct transpositions 
A straightforward transposition of eq.(10.8) to variable density flows yields 
the following expressions, based on Reynolds and Favre decompositions 
respectively: 

(10.10) 

and - ---;;-;; 2 _ -k' (5- 1 aUl, ) 
-PUiUj + 3 P Uij = 2J.lt ij - 3 aXl Uij , (10.11) 

where k = ~ulul and k = ~« in eqs.(10.10) and (10.11), respectively. 
The previous relations are not equivalent, as it can be seen by converting 
Favre averages into Reynolds averages, according to the simple analytical 
relationship given in Chapter 5 (see Table 5.2). When Favre averages are 
used, eq.(10.11) is the most widely adopted expression, beginning with 
Jones and Launder [238], Jones [237], in 1979 and Ha Minh et al. [195] 
in 1981. 
Nevertheless, the following alternate formulations have been proposed. 

Wilcox-Rubesin (1980). A more complex relation was introduced in 1980 
by Wilcox and Rubesin [485] as part of a (k-w 2) model, where w = Elk is 
the dissipation rate per unit kinetic energy. It reads 

where (3* = 0.09 is a model coefficient. 

Dussauge-Quine (1988). Dussauge and Quine [141] used the following 
eddy-viscosity in a (k - E) model for the turbulent shear stress 

with CJ1. = 0.09, C(2) = 1.5. M denotes the local Mach number, and 

{3= o{y-l) , 
C l - 1 + Prodl"E 

where 'Y = CplCv = 1.4 for air, and Cl = 1.5. Prod denotes the production 
rate in the turbulence kinetic energy equation. Several values of the last 
model coefficient have been tested, ranging between -1.35 and -0.8. 
Applied to the calculation of a supersonic shear layer, the model gives 
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encouraging results, since it predicts a decrease of the spreading rate as 
the Mach number increases, in contrast with the usual (k - f) model which 
appears practically insensitive to such an effect. 

Taulbee-VanOsdol (1991). Extra terms due to turbulent fluxes are inclu­
ded in the model adopted by Taulbee and VanOsdol [454] since 

- - -
_ --;;--;, 2 _ -k' _ (8Ui 8Uj 2 8UI,) _ Ii Ii 1_ Ii Ii, 

-puiuJ' +-3 P Uij-!-lt -8 +-8 ---8 Uij -pui uJ,+-put UIUij· 
Xj Xi 3 Xl 3 

(10.13) 
This scheme was introduced in a (k-f-p ,2-u"i) model to predict the adia­
batic-wall boundary layer and the compressible free shear layer. As noticed 
by the authors, "the extra terms appearing in the equation are probably not 
too important" in the first situation. Indeed, according to Kistler's data, 
u" /U in this case is about -0.0011 and -0.0028 for Mco = 1.7 and 4.7, 
respectively. 

10.5.2. EDDY-VISCOSITY EXPRESSIONS 

In contrast with the molecular viscosity which can be considered as a 
macroscopic physical property of the fluid, the eddy-viscosity is tightly 
linked with the properties of the flow field. Hence, the next step in the 
modeling procedure based on such a concept is to prescribe the eddy­
viscosity, and more generally, all turbulence transport coefficients, such 
as the thermal and mass diffusivities. This can be achieved from different 
ways, associated with: 

- zero-equation models, based on algebraic expressions of the eddy-visco­
sity; 

- one-equation models, in which the eddy-viscosity is directly derived 
from a modeled transport equation, or deduced from another transpor­
table quantity; 
two-equation models, where two distinct characteristics are introduced 
as transportable functions governing eddy-viscosity variations. 

Mixing-length models. When restricted to two-dimensional boundary 
layers flows, the eddy-viscosity is obtained from a mixing length, as given 
by: 

_ _ 21 8U
I !-It = pCm 8y . (10.14) 

The mixing length Cm is to be prescribed algebraically as a local function 
of position in the flow field. Some expressions of Cm are recalled in section 
10.9. 
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Turbulence-kinetic-energy models. From simple dimensional conside­
rations, the eddy-viscosity can be written as: 

7lt = p uref xl, (10.15) 

where uref - resp. 1 -, is a characteristic velocity scale - resp. length 
scale -, of the fluctuating turbulent motion. 
Adopting uref oc v'k and 1 oc Rm , we reduce eq.(10.15) to 

(10.16) 

where C stands for a nondimensional constant. 
To be adopted as a closure scheme, eq.(10.16) requires that the local amount 
of turbulence kinetic energy is known. This can be achieved by solving a 
model transport equation for this function, introducing the one-equation 
(iC) turbulence model. Closure schemes involved in the modeling of this 
equation in variable density situation are discussed in section 10.10.2. 

Two-equation models. The next step in prescribing the eddy-viscosity 
from eq.(10.15) consists in solving a second modeled transport equation for 
the characteristic length scale I, producing a two-equation (k-I) turbulence 
model. In actual fact, this idea can be generalized to obtain the eddy­
viscosity from any dimensionnally correct group of two independent func­
tions, based on any combination of suitable powers of characteristic velocity 
and length scales. Formally, this can be written as: 

(10.17) 

Some examples of the additional transportable function (, which has been 
used in predicting variable density fluid motions are given in table 10.1. 
Additional references can be found in Wilcox [484], pages 459 & 460. 

Since 1975, the constant density version of the two-equation (k - E) 
model has become one of the most popular in this category and is widely 
adopted in predicting turbulent flows for industrial applications. It has also 
been extended to predicting variable density and compressible fluid motions 
and will be detailed in section 10.11.1. 

10.5.3. COMPRESSIBILITY EFFECTS ON THE EDDY-VISCOSITY 
CONCEPT 

In most proposals to extending eq.(10.15) to variable density and/or com­

pressible situations, Batchelor's scaling "{ oc 7?/2/ R, is adopted for the dissi­
pation rate. Thus, it is assumed that only one characteristic length scale 
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TABLE 10.1. Some examples of two-equation (k - () models 

Author - Ref. Year Additional function ( 

Kolmogorov [256] 1942 

Wilcox [483] 1988 

Saffman [403] 1970 
Spalding [441] 1972 
Wilcox & Traci [486] 1976 

Davidov [123] 1961 

Harlow & Nakayama [209] 1967 "k3/2 It (= l) 
Jones & Launder [238] 1972 

Cousteix, Saint-Martin, Messing, 

Bezard, Aupoix [108] 1997 

I oc C accounts for both turbulent transport, say I, and energy transfer by 
fluctuating motions, say C. In high turbulence Reynolds number flows, it 
results, for instance, that: 

(10.18) 

Directly adopting eq.(10.18) in variable density and/or compressible fluid 
motions is questionable for, at least, the following reasons: 

a) A possible consequence of compressibility effects is that the model coef­
ficient CjJ- (0.09, in incompressible flows) could change with the turbulence 

Mach number Mt=Vk/c. Such modifications have been actually proposed, 
as reviewed by Nichols [346]. 

b) As recalled by Ristorcelli [394], even in constant density, high Reynolds 
number flows, the ratio 1/ C slightly depends on the type of flow, so that the 
coefficient in eq.(10.18), should be flow dependent. 

c) In the context of compressible turbulent flows and even restricting Bat­
chelor's scaling to the solenoidal dissipation, the choice of a single charac­
teristic length scale is even more questionable. This can be seen from 
different results obtained, for instance, in compressed turbulence (Zeman 
& Coleman [499]), in shock-turbulence interaction (Jamme [231]) or in a 
compressible mixing layer (Freund et al. [163]). 
For the latter situation, the characteristic length scale of the energy contai­
ning eddies C exhibits a dependence on the convective Mach number which 
is different from the transverse large-eddy length scale l. It seems then 
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plausible that compressible mean flow interacts directly with the large 
eddies which govern the production of turbulence kinetic energy and the 
expansion rate. On the other hand, turbulent dissipation occurs mainly at 
high frequency, i.e., involves small-scale fluctuations that are less influenced 
by the mean flow and associated compressibility effects. Thus, a possible 
way to handle this specific action of compressibility could consist in adopting 
a multiple-scale model, as proposed by Liou et al. [300] in 1995. 

In 1997, using such a two-scale method, Yoshizawa et al. [492] reached 
the conclusion that compressibility effects on Boussinesq's scheme were 
two-fold. One consequence should be a modified expression of the eddy­
viscosity, the other comes from the deviation of the Reynolds stress from 
a turbulent viscosity representation, which is written using the Lagrange 
derivative of the mean velocity and the spatial derivatives of the mean 
density and internal energy. The Reynolds stress representation proposed 
by these authors reads: 

- 2- - 1 
ui uj - "3 Hij = - 2Vtc (S ij - "3 Snn 8ij ) + non linear correction 

+ mean density gradient + mean internal energy 
contribution contribution, (10.19) 

where Sij = (8Uj/8xi + 8Ui/8xj)!2. 
The contributions due to mean density and internal-energy gradients are 
supposed to increase near a shock, where these gradients become large. The 
non-linear correction includes Sij-Sij and Sij-Rij parts (see next section). 
The compressible correction to the eddy-viscosity Vtc is written as follows: 

(10.20) 

where Vt = CJ1,k2/f is the usual expression for the incompressible eddy­
viscosity, with CJ1, = 0.09. Hence, from eq.(10.20), compressibility effects 

result from the influence of the turbulence density intensity Ip = )fi /75 
and the turbulence Mach number Mt . Two values of the model coeffi~ient 
have been investigated (A = 5 and A = 10). The differences observed with 
these values on the prediction of the spreading rate of a compressible shear 
layer cannot be significantly corroborated, due to the scattering of the 
experimental data. 

10.5.4. NON-LINEAR CONSTITUTIVE RELATIONSHIP 

Even in incompressible flows, a linear expression such as eq.(10.8) has no 
firm basis, neither mathematically nor physically. In particular, it results 
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from eq. (10.9) that the principal axes of the Reynolds stresses are systema­
tically aligned with those of the mean rate of strain tensor, a point which 
is in disagreement with experimental evidence in homogeneous shear flows, 
for instance. From a theoretical point of view, such linear expressions can be 
considered as crude approximations to a more general constitutive expres­
sion of the turbulent stresses, see, for instance, Lumley [304]. 

As a first step toward non-linear eddy-viscosity models in incompressible 
fluid motions, the following second-order expansion, Lumley (1970) [304], 
Saffman (1976) [404] can be derived 

-3 
2- - k (- - - - ) 

-UiUj + 3k Oij = 2lJtSij - D f2 SikRkj + SjkRki 

where Rkj = !(OUk _ oUj) 
2 OXj OXk 

and one additional constant D is introduced. 
This relation was adapted in 1980 by Wilcox and Rubesin [485] as part of 
a (k _w2 ) model for compressible flows, yielding: 

where (3* = 0.09 is a model coefficient. 
With this scheme, the model improves the prediction of the anisotropy of 
the normal stresses in the logarithmic region of a compressible boundary 
layer, with a fair restitution of pressure gradient effects. 

The promising idea behind the derivation of more general non-linear eddy­
viscosity models in incompressible fluid motions is the expected capability 
to capture turbulence effects that are directly linked with Reynolds stress 
anisotropy in complex situations, such as secondary flows in ducts or two­
component behaviour of turbulence near a solid surface. It is hoped that 
predictions based on such types of closure could be as good as those obtai­
ned with second-order models and cheaper, in terms of computing resources. 
Several non-linear constitutive relations have been proposed. The first one, 
by Pope [369] in 1975, has been extended to three dimensional flows and 
non-inertial reference frames by Gatski & Speziale [175], in 1993. Various 
other formulations have been proposed by Shih et ai. [426] in 1993, Craft et 
al. [111] in 1996, Wang [478] in 1997, in addition to proposals derived from 
the renormalization group theory, see, for instance, Rubinstein & Barton 
[400]. They are briefly reviewed in Chassaing [84]. 

A comparative study of various linear and non linear eddy-viscosity 
schemes in two- and three-equation models was published in 2000 by Bara­
kos and Drikakis [29]. These authors aim at assessing the capability and 
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accuracy of the models in predicting transonic flows featuring shock/boun­
dary-layer interaction and separation. The general conclusion is balanced: 
as compared with those obtained from linear eddy-viscosity models, the 
predictions are improved when using non-linear models. However the com­
puted results are still far from the experimental data. For the flow over a 
bump for example (ONERA Case C, as provided by Delery at the 1980-81 
Stanford Conference), the maximum of the turbulent shear stress profile is 
not predicted at the same location as that given by the measurements, and 
its value is underpredicted by about 40% to 50%. 

Since it has not yet been demonstrated that compressible anisotropy 
effects can be accounted for by formal transposition of non-linear incom­
pressible expressions, and owing to the fact that, even in incompressible 
flows, the implementation of some non-linear eddy-viscosity formulations 
may become cumbersome, this type of closure will not be discussed in more 
detail here. 

10.6. Turbulent heat/mass transport modeling 

10.6.1. GRADIENT DIFFUSION ASSUMPTION 

For heat and mass turbulent fluxes, the counterpart of the gradient diffu­
sion assumption for turbulent momentum transport are: 

-- of -pf"u'! = pft -
J OXj 

-fl I -r of or - p u· = P t - , 
J OXj 

(10.21) 

where f' (resp. fIt) denotes temperature or mass-fraction fluctuations with 
respect to conventional (resp. density-weighted) averages. 
Eq.(10.21), can be viewed as a direct transposition of Fourier's and Fick's 
laws for molecular heat and mass transfer to turbulent transport, where 
f t (L 2T- 1 ) stands for a heat or mass turbulence diffusivity. Hence, the ratio 
of the thermal (ad and mass (Vd turbulence diffusivity to the turbulence 
kinematic eddy-viscosity Vt results in turbulence Prandtl and Schmidt num­
bers: 

Vt Vt 
at = - = -. 

at V t 
(10.22) 

In addition to the validity of the gradient diffusion assumption, eq.(10.22) 
raises the question of the value of the turbulence Prandtl-Schmidt numbers 
in compressible and variable density flows. As reported by Cousteix & 
Aupoix [107], no systematic effects of Mach number in boundary layers flows 
have been observed on the turbulence Prandtl number, which is rather flow­
dependent: 0.8",,0.9 (flat plate boundary layer), 0.7 (jet) and 0.5 (wake). 
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10.6.2. ALTERNATIVE TO GRADIENT DIFFUSION SCHEMES 

Even in incompressible fluid motions, there exists several classes of turbulent 
flows where simple eddy-viscosity and gradient diffusion schemes are not 
appropriate. The reason can be found from at least two arguments, in terms 
of (i) time scale ratio and (ii) level of anisotropy, Pope [370]. 

(i) As pointed out by Corrsin [103], the gradient diffusion scheme requi­
res that the time behaviour of the diffusing motions should be locally 
and instantaneously dominated by the time scale imposed by the mean 
velocity gradient, say (8U /8y)-1 in a thin shear layer. This can be 
presumably achieved by the small-scale turbulent eddies but not by 
the large scale turbulent motions; 
(ii) A linear relationship between stress and strain tensors can be 
mathematically derived when assuming isotropic conditions. Hence, 
the deviatoric part of the Reynolds stress tensor cannot be determined 
from the local mean strain rates in flows where high anisotropy levels 
are developed, due to curvature, secondary flows or swirl, for instance. 

Examples of local and non-local formulations, accounting for curvature 
and large scale structure effects (intermittency, convective transport) are 
reviewed in Chassaing [84]. 

Some of the previous flaws can be obviously transposed to variable 
density flows. In low Mach number flows, a severe limitation of such simple 
gradient-type approximations, due to large scale motions, can be expected 
in fire flows where very large density gradients are present. 
In 1999, Shimomura [428] derived a new model for thermally driven turbu­
lent flow, by applying a two-scale direct-interaction approximation to the 
Rehm-Baum [379] equations governing a low Mach number flow (see Chap­
ter 3). The model is theoretically deduced by considering the fluctuating 
fields without perturbing the buoyant term and assuming an isobaric evolu­
tion for the thermal pressure (pT = C te ), both in space and time. The 
result, to be used as a turbulence closure in a first-order model, is as follows: 

-,-, 8Ui 8Uj 2(- 8UI) 
-uiuJ. = Vt(~ +~) - -3 k + Vt~ 8ij , 

UXj UXi UXI 
(10.23) 

with: 
I2 

Vt = 0.12-::-, 
E 

-()' , _ ( 8T ) 8J? 
- uj-at ~ +'rJo~, 

UXj UXj 
(10.24) 

i{2 i{ Q 1 ()I2 

at = 0.14-::-(1 + 0.27 _ CST) and 'rJo = 0.32-T -=- . 
E E Po P 0 0 Ee 

Here, Q s is the heat source and Ee = 2>..( 8()' / 8Xi)2 the turbulent dissipa­
tion rate of the thermal variance ()'2. 
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As compared with the usual gradient type expressions - eqs.(10.10) and 
(10.11) -, it appears that the main modification concerns the turbulent 
heat flux, due to the presence in eq.(10.24) of the mean pressure gradient 
term. Also noticeable is the change in the turbulence thermal diffusivity 
at, as a function of the heat source when Qs =f. O. Without external heat 
release, the equivalent turbulence Prandtl number is about 0.86. 
These closure schemes were applied to the prediction of the natural turbu­
lent convection along a heated vertical plate. The model prediction of the 
longitudinal heat flux profile u'O' is in better agreement with the experi­
mental data. 

10.7. Modeling d.f.c terms 

According to the classification introduced in §10.4.3, we turn now to the 
second point to be addressed in first-order closure of variable density turbu­
lent flows, viz. the modeling of first-order dJ.c. terms P' f' == pf' = -(5 I". 
Particular attention is given to the turbulent mass flux ui' in relation with 
Favre's averaged formulation of the mean motion and turbulence kinetic 
energy equations. 

Linearized approximations 
Approximate expressions of the turbulent mass flux pu~ can be easily ob­
tained when considering separately one of the following three situations: 

(a) perfect compressible gas (homogeneous composition); 
(b) isobaric evolution (homogeneous composition); 
(c) isothermal, ideal mixing of two non-reactive species. 

The corresponding equations of state are respectively: 

1 T 
(a) - = R-, 

P P 
1 C 1-C 

(c) - = - + --. (10.25) 
P PI P2 

In eq.10.25(b), n is the polytropic coefficient (n = 0: isobaric evolution, 
n = 1: isothermal evolution, n = Cp/Cv : isentropic evolution). 
In eq.l0.25(c), C denotes the mass fraction of one of the two species and 
PI and P2 are the densities of each pure species. 
First-order approximate expressions of density fluctuations can be deduced 
from the previous expressions, assuming small fluctuations, viz., P' /(5« 1, 
p' / P« 1,0'/8« 1 and ,'It<< 1, where p', p', 0' and,' are the fluctuations 
of density, pressure, temperature, and mass-fraction corresponding to the 
Reynolds averages (5, P, T and C, respectively. They read: 

P' p' 
(b) n(5 ~ P 

, 
(c) L ~ PI - P2,' (10.26) 

(52 PIP2 
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Thus the turbulent mass fluxes are linearly linked with pressure-velocity, 
temperature-velocity and mass-fraction-velocity correlations: 

p'u' p'u~ O'u~ 
(a) 75 ~ = P ~- T ~ , 

-,-, 
( ) P ui PI-P2_-,-, (10.27) 

C -=- = P 'Y ui . 
P PIP2 

Hence, for a non isothermal evolution (n =/: 1) of a perfect gas, it can be 
deduced that: 

p'u' 1 O'u~ 
--~ - ----~ 

75 n-1 T . 
(10.28) 

The approximate expression 10.27(c) was used in 1987 by Shih et al. 
[427] in second-order modeling of a variable density mixing layer. 
In compressible flows, and with the aid of additional assumptions, eq.(10.28) 
can be used to get the expected scheme, as first proposed by Rubesin. 

Rubesin (1976). The simplification introduced by Rubesin [397] in 1976, 
consists in assuming that the constant total-temperature condition (CpT + 
UjUj/2 = Ct ) also applies to the turbulent field. Hence, to first-order, one 
can assume that Cp 0' + Uiui ~ 0, from which, in 2-D thin shear layer flows 
(U1(= U) » U2 ), it results that 

(10.29) 

This expression, with with n = 1.2 as recommended by Rubesin, leads to 
a systematically negative mass flux. This is not the case with eq.(10.28). 

Galmes-Dussauge-Dekeyser (1983). In a modified version of the Jones­
Launder (k - E) model, Galmes et al. [174] suggested to account for compres­
sibility effects in the prediction of supersonic boundary layers with non-zero 
pressure gradient, by including the mean pressure term u"( aP / ax). The 
closure scheme adopted for the turbulent mass flux p'u' /75 is based on the 
strong Reynolds analogy6. For a 2-D boundary layer, it reads: 

where M is the Mach number. The value adopted for the correlation coeffi­
cient between density and velocity fluctuations Rpu is 0.8. 
It can be noticed that the previous expression is not galilean invariant. 
Finally, it is to be added that in [174], the eddy-viscosity is also modified by 

6The model is only valid in boundary layers over adiabatic walls, not too far from 
equilibrium. 
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the previous compressibility term, as mentioned in §10.5.3. The expression 
IS: 

Vandromme-Ha Minh (1985). A direct transposition of eq.(10.29) using 
Favre's averages was extensively adopted by Ha Minh and Vandromme 
[332], [471] to predict various types of compressible flows, including shock­
boundary layer interaction. It reads: 

u· u" = __ --'J'-----=_ u~'u" . 
t (n _ I)CpT t J 

(10.30) 

Dussauge-Quine (1988). A slightly different expression was used by Dus­
sauge and Quine [141] in the prediction of 2-D supersonic mixing layers: 

--------- u"u" 
p'ui = C(i)(-y - I)M2p b t , 

where M denotes the local Mach number, and subscript 1 refers to the 
direction of mean advection. The value of the model constant C(i) is 
adjusted to the flux component: C(I) = 0.8 and C(2) = 1.5. 

Basically, most of the previous schemes are directly derived from the 
utilization of the strong Reynolds analogy of Morkovin (see Chapter 4, 
section 4.4.2), yielding the generic form u" ex: u'f2 /U. According to the DNS 
data of Zeman [496], such an expression is of wrong sign for the response of 
an initially isotropic turbulence to a normal shock. It results in gross errors 
in the turbulence kinetic energy balance (gain, instead of loss of energy), 
which yields Zeman to "strongly suggest that the application of SRA be 
avoided in modeling turbulent boundary layers in the presence of shocks." 

Gradient diffusion hypothesis 
As reviewed by Purwanto [376] in 1994, various proposals suggested to 
model dJ.c. terms p'ui, p'O' , ... , using a generalized gradient diffusion expres­
sion of the form: 

-,-, D up 
-pui = t-u ' 

where Dt denotes a turbulence diffusivity. 

X· t 
(10.31) 

A closure scheme of this type was adopted by Milinazzo & Saffman [331] 
in 1976 to model the dominant turbulent mass flux (p'v') in the mean 
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continuity equation of an inhomogeneous, two-dimensional mixing layer. It 
reads 

,..., J-lt 1 op 
-pv = ---. 

Cfp P oy 
The value of turbulence Prandtl-Schmidt mass diffusion number is ranging 
between 0.25 and 1. 
Such gradient diffusion schemes were also introduced very early in combus­
tion applications 7 (see Kent and Bilger [245] in 1977 and J anich and 
Kollmann [233] in 1979, for instance). This explains why the validity of 
such gradient diffusion schemes was first questioned in premixed flames. 
In this case, measurements showed that the local heat release drives the 
turbulent heat flux in a direction opposite to that predicted byeq.(10.31). 
In 1982, the measurements in a non premixed flame by Driscoll et al. [134] 
exhibit clear evidence of counter-gradient diffusion of density for the axial 
turbulent flux component, so that the gradient diffusion assumption is 
seldom obeyed for p'u'. On the contrary, the radial flux p'v' was found 
to follow a gradient diffusion relation throughout the flow field. 
Some years later, the gradient diffusion relation for turbulent mass flux was 
also questioned in non-reactive, binary gas jets. In 1989, the results of Zhu 
et al. [503] validated a gradient diffusion relation 

- op 
p'u' = -Dt-, ox (10.32) 

only for a downstream distance x/ Do ~ 6 in a premixed helium/air round 
jet, with 50% of helium and Do = 9.5 mm. In the near field of the jet, 
eq.(10.32) is not valid over a substantial part of the flow, except near the 
core of the jet. Now considering the radial flux component, the correspon­
ding gradient relation 

0-
p'v' = -Dr"!!" oy (10.33) 

only applies for x/ Do ~ 5.1. But, unlike the axial flux, eq.(10.33) is not 
valid inside the potential core of the jet, but is true over the rest of the flow 
field. 

7In 1975, Lockwood and Naguib [302] proposed a (k -f) model, based on conventional 
averaged equations, to predict free turbulent diffusion flames in a round jet. Although not 
explicitly associated with the turbulent mass flux, the modeled equation of the turbulence 
kinetic energy k incorporates a density gradient term, to account for "the generation of 
k due to the density fluctuations". In a 2-D-thin-shear-layer situation, it reads 

C C ---ri J-It 8p 
omp = p, --8 ' 

(J'p x 

where " is the fluctuation of the mixture fraction, C p a model constant and (J'p the 
turbulence Schmidt number. 
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In 1990, So et al. [436] extended the measurements to the self-preserving 
region of a helium/air, isothermal round jet with the same exit diameter Do. 
The exit Reynolds number was 4,300 and the jet-to-ambient fluid density 
ratio 0.64. In this case, mean quantities, turbulent mass fluxes and second­
order turbulent correlations achieve self-preservation at a downstream loca­
tion of about 24 Do. For 13.8 :S xl Do :S 24.46, the axial turbulent mass flux 
p'u' and the mean density gradients have opposite signs only in the central 
region of the jet (r :S 0.88, where 8 is the half-velocity width of the jet). 
Thus, according to the authors, a gradient diffusion relation does not apply 
in the outer region of the jet, as a consequence of the physics of the mixing 
which is mainly controlled by large-scale motions in this region. Finally, as 
shown in Chapter 6, limitations to gradient diffusion formulations can be 
pointed out analytically in free, isobaric jets. 

Gradient diffusion expressions for the turbulent mass flux were also introdu­
ced in various first and second-order models to predict compressible flows, 
Taulbee & VanOsdol [454] in 1991, Sarkar & Lakshmanan [413] in 1991, 
for instance. In the latter reference, similar gradient diffusion schemes are 
introduced for both mass and heat turbulent fluxes: 

P'u' = -~ 8(5 and ()lu' = _~ 8T 
~ 8 ~ 8' a p Xi aT Xi 

-2 
where Vt = 0.09k /E. The values of the turbulent Schmidt and Prandtl 
numbers are a p = aT = 0.7. 
An original contribution was proposed by Rubesin [398] in 1990. Within 
the 2-D thin shear layer approximations it reads: 

- I - 1 k 1 pu"v" 8h 
U " - C - n - 1 e~a2 -----:;;- 8y . (10.34) 

In eq.(10.34), I is the isentropic coefficient, hand li are -the enthalpy and 
speed of sound of the mean flow (li2 = (! - l)h), k and (' the turbulence 
kinetic energy and its dissipation rate in a Favrian formulation. The value 
of the model constant is Ce = 0.35. 
This scheme was _ developed to improve a previous proposal by Ru besin 
in 1976 -see eq.(10.29) -, in the prediction of super and hypersonic 
boundary layers with non-adiabatic conditions. In particular, it can be 
noticed that in a flow where the Reynolds stress has a given sign, the 
sign of u" is different below or above the point where h is extremum. 

Transport equation of the turbulent mass flux 
An open transport equation for the turbulent mass flux p'u~ == -(5 U"i can be 
obtained by manipulation of the equations governing velocity and density 
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fluctuations (see Chapter 5-§5). Further simplification to the results given 
in that chapter can be obtained, by assuming, for instance, a linearized 
form of 1/ p (Liou & Shih [299]): 

1 1 p' _lIp' p' 2 1 p' p'2 - = = (1 + -= ) = =[1 - -= + ( -=) + ... ] ~ = - =- + O( =-) . 
p p p p p p P p2 P 3 

Jones (1979). Jones [237] was probably the first author to propose a 
modeled transport equation for the turbulent mass, based on the following 
general form in high turbulence-Reynolds-number flows: 

8u~' - 8u~' 
p( -8 Z + Uj -8 Z) = Production + Diffusion - Dissipation. (10.35) 

t Xj 

Zeman (1991). Dealing with the response of an initially isotropic turbu­
lence to a normal shock, Zeman [496] suggested the following transport 
equation: 

D-,-, -,-, 8- 8U-· p U i P U i .."....." P -,-, Z --:=::::----U·U.--pU .-. 
Dt Ta Z J 8x j J 8x j 

The first term in the right-hand-side drives the turbulent mass flux to relax 
to zer~ after the shock, on the fast acoustic time scale Ta = OAMtTt, where 
Tt = k /Es is the vortical turbulence time scale based on the solenoidal 
dissipation (see Chapter 6). 
Within the shock, this equation yields a negative normal component of the 
turbulent mass flux (p'u'l < 0), so that the mean pressure coupling term 
(d) in eq.(10.52) damps turbulence, as expected from the Rayleigh-Taylor 
analogy (Chapter 2). 

Taulbee and VanOsdol (1991). Taulbee and VanOsdol [454] proposed the 
following closure schemes to the modeling of eq.(10.35): 

. -8Ui 1 -- 8p 
ProductIOn = -pu'f - + -(pu"u" - p'U~'U")-, 

J 8x. -p Z J t J 8x· 
J J 

(10.36) 

(10.37) . 
(10.38) 

The production term in eq.(10.36) includes two contributions involving 
mean velocity and density gradients. They are both "exact", i.e., directly 
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deduced from transportable quantities, when adopting the eddy-viscosity 
formulation of the authors (see eq.(10.13). Due to the various assumptions 
introduced during its derivation, the dissipation scheme (10.38) is restricted 

to low Mach number situations where #-/p ~ 1 and the density pressure­
gradient correlations are negligible. The model constant is GU2 = 5.3. 
The cross-stream averaged mass fluctuating velocity profiles (v") calculated 
with this model in a flat plate boundary layer can be compared with those 
obtained from a simple gradient hypothesis: 

-2 - op k 
p V" = Vt 8y with Vt = Gil E . 

The same shape of profiles results from both formulations, the profiles 
deduced from a simple gradient hypothesis being systematically lower than 
those obtained with the previous model. The departure between the two 
computed profiles is all the more important than the free stream Mach 
number is high. 

10.8. Modeling density effects 

We consider now the final question introduced in §10A.3. It is concerned 
with the modeling of the terms that are specific to variable density fluid 
turbulence, namely the pressure-dilatation correlation and the dilatational 
or compressible dissipation. Some of the various schemes, that have been 
derived so as to be used in first-order closure models, are reviewed in this 
section, beginning with the pressure-dilatation correlation: 

-- au" au~ 
IId = p'O' = p'--' = p,_t . 

aXi aXi 

10.8.1. PRESSURE-DILATATION CORRELATION 

Review of some closure schemes 

Viegas-Horstman (1978). Several expressions were developed by Rubesin 
and co-workers at NASA-Ames for the compressibility contribution in a 
turbulence kinetic energy modeled equation. As an example, we just mention 
here the proposal by Viegas and Horstman [476] in 1978: 

- -
'.a, _ c_kM20Ui pv -..,p- -, 

'Y OXi 
(10.39) 

where M is the local Mach number and ~ = 0.73 a model constant. 
The derivation of this scheme is based on the same kind of assumptions as 
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those discussed in section 10.7 (Rubesin's scheme, 1976). 

Horstman (1987). Various inclusions of compressibility effects into the 
Jones-Launder model were examined by Horstman [218]. In the k equation, 
the following scheme for the pressure-dilatation correlation was used 

where M is the local Mach number. The model constants are n = 1.2 and 
C = 0.12. 
A similar modification (with a factor 0.3 kif) was introduced into the 
dissipation equation. 

Zeman (1991). In homogeneous, shocklets free, decaying turbulence or 
shear driven turbulence, Zeman [497] suggested that the pressure variance 
equation reduces to 

IfJl ___ 1_ Dpl2 
p - 2pa2 Dt ' 

where a stands for the local speed of sound and D I DT is the material 
derivative with respect to the mean motion. In other words, according to 
this relation, the pressure-dilatation correlation is proportional to the rate 
of change of potential energy p,2 due to compression work. 
Hence, the closure issue is focused on the pressure variance equation, as 
discussed in a following section, see eq.(10.57). 

Aupoix et al. (1990). Using direct numerical simulations for homogeneous, 
compressible turbulence, Aupoix et al. [24] proposed to model the evolution 
of the pressure-dilatation term from the following transport equation: 

with, 

Mt = V2k, k3
/

2 

Ta = -_-, C 1 = 0.25, C2 = 0.2. 
a f.a 

This model was only validated in homogeneous sheared compressible flows. 

Durbin-Zeman (1992). Applying rapid distortion theory to the analysis 
of compressed turbulence, Durbin and Zeman [138] suggested that the pres­
sure-dilatation term makes a rapid contribution which is proportional to 
p'2 X BUi/Bxi. Hence, a new expression has been proposed, in which a rapid 
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part, accounting for the rapid compression contribution, is added to the 
slow relaxation term in eq.(10.57): 

2- 2 '{)' Jli - p~ + C ,2 8Ui pa p = dP ~. 
la UXi 

(10040) 

Here, p~ is the equilibrium pressure variance and la an acoustic relaxation 
time scale (see §10.12.2). The model constant is Cd = (5-3,)/6 as determi­
ned from RDT, so that Cd = 0 for mono-atomic gases and 0.066 for air. 

Zeman-Coleman (1991). As pointed out by Zeman and Coleman [499], the 
isotropic model - eq.(10AO) - is entirely inadequate for 1D compression, 
since it does not distinguish between spheric (3-D) and anisotropic (direc­
tional) compression. These authors suggested to add a new contribution, 
solely due to compression anisotropy: 

1 12 2 !:IU-' F7ip'2 
'{)' (p - Pe C l2u Z) C VP·M_k 8*8* P = -- + dP - - A=-- I .. ", 

2pa2 la 8Xi PM? ZJ ZJ 
(10041) 

where 80 = ~(8Ud8xj +8Uj/8xi - ~8Ud8xI8ij) is the trace-free deforma­

tion tensor. The vortical turbulence time scale I = 21./fs is based on the 
solenoidal dissipation rate f s . 

Sarkar (1992). The analysis of Sarkar [408] is concerned with the evolu­
tion of compressible flow statistics for time intervals larger than the acoustic 
time scale. Hence, the compressible part of the pressure-dilatation correla­
tion p'C{)' can be neglected, as compared with the incompressible one, p,I{)'. 
Here, p'I is the incompressible pressure associated with the solenoidal part 
of the velocity vector. In such situations, the pressure-dilatation correlation 
can be formally written as 

p'{)' ::: p'I{)' = p'S{)' + p,R{), . 

As inferred from the previous relation, the closure scheme of p,I{), is made of 
two additive terms, as it is usual in pressure-strain modeling for constant 
density flows. Thus the incompressible pressure contribution is split into 
the so-called slow and rapid parts. 

- The slow part is modeled as 

p'S{)' = (Y3p f sMl , 

where fs is the solenoidal dissipation associated with isovolume velocity 
fluctuations, and Mt = V2k/c is the turbulence Mach number. 
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- The rapid part - associated with plR - that reacts instantaneously 
to a change in the mean velocity gradient, can be approximated by the 
algebraic relation 

provided that an equilibrium scaling exists in the flow. Hence, additional 
compressible correlations do not dominate the incompressible terms. As 
shown by Sarkar, Amm = q,& == u~C u~c, where u~c is the dilatational part 
of the fluctuating velocity. Introducing 

1 2 
Amn = 3qc bmn + Bmn , 

the deviatoric tensor Bmn , modeled by the leading-order term in a Taylor­
series expansion around the isotropic state, is taken as proportional to the 
anisotropy tensor aij = u~uj - (2kbij/3). Assuming that, for M t < 0.5, the 
anisotropic part of Amn varies as Mtq2, the final scheme for the rapid part 
IS: 

~ _ 8 2_8Um- _8Um -
p' -a - -3D:4Mt p~k + D:2MtP-j:)-amnk . 

UXm UXn 

The final form of the pressure-dilatation model is 

(10.42) 

Ristorcelli (1997). The analysis of Ristorcelli [394] treats turbulence in 
which compressible effects are generated by the turbulent motions, under 
several hypothesis and, in particular, 

(i) a compact-source assumption: a turbulent eddy is small with respect 
to the length scale of its acoustic radiation; 
(ii) a compact flow assumption: the size of the turbulent field, D is 
small or in the order of the acoustic scale; D / >.. S 1, where >.. is the 
characteristic length scale of the propagation of pressure and density 
fluctuations. 

In this regard, homogeneous compressible DNS, as treated by Sarkar et 
ai. [416], for example, is not a compact flow, since it is concerned with 
turbulence of scale £. irradiated by an infinite external acoustic field genera­
ted by turbulence whose statistics are the same as those of the local turbu­
lent region. 
According to Ristorcelli's assumptions, the pressure-dilatation is found to 
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be a non-equilibrium phenomena. It is modeled as the sum of a slow and 
rapid part and includes the substantial derivative following a mean fluid 
particle of a relative time scale based on the non-dimensional strain and 
rotation rates of the mean motion. Restricted to low-Ml situations, it scales 
as 

(10.43) 

Here Prod stands for the production rate of the turbulence kinetic energy, Es 
is the solenoidal dissipation (as modeled in next section) and S = (SijSij)2 
the trace of the square of the mean strain rate matrix Sij = (aUi/fJxj + 
au j / aXi) /2. 
Hence, from eq.(10.43), conditions for the pressure-dilatation correlation to 
be important, are, that the square of the strain (gradient) Mach number 
Ms = MtSk/Es is large and turbulence far from the energetic equilibrium 
Prod =1= Es· Now, depending upon the departure from energetic equilibrium, 
eq.(10.43) shows that the pressure-dilatation can be either positive or ne­
gative, and therefore the gradient Mach number can equally have a stabili­
zing or destabilizing effect. 

Hamba (1999). The following scheme, due to Hamba [203], is part of the 
modeling of the pressure variance equation (see §10.12.2). It reads 

(10.44) 

In this expression, D / Dt stands for the material derivative following the 
mean motion and Xp is a non-dimensional pressure variance corresponding 
to the ratio of potential to kinetic energy for weak fluctuations 

(10.45) 

To achieve good agreement between model predictions and direct numerical 
simulations, the constants are set to Cpdl = 1.2 and C pd3 = 6. The value 
of Cpd2 needs not to be prescribed in homogeneous shear flows where the 
mean velocity divergence is zero. 

Discussion 
Dealing with compressible homogeneous turbulence at a moderate Mach 
number, Sarkar et at. [416] suggested in 1991 that, for the purpose of 
turbulence modeling, the effect of the pressure-dilatation correlation can 
be absorbed in the model of the compressible dissipation (see the next 
section). This statement is based on DNS of isotropic turbulence which 
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indicates that the average of p't)' over its oscillations is significantly smaller 
than the compressible dissipation. 

Also shown by direct numerical simulation results, the pressure-dilata­
tion contribution to the evolution of turbulence kinetic energy is more 
important in homogeneous shear compressible flows than in decaying turbu­
lence. In this case, the major contributor to the pressure-dilatation comes 
from the incompressible pressure pI! associated with the solenoidal velocity. 

To some extent, this explains why the model derived by Sarkar [408] in 
1992 - with 0:2 = 0.15 and 0:3 = 0.2 in eq.(10.42) -, can be considered 
as a reasonable approximation for weakly inhomogeneous flows, such as 
compressible shear layer and flat plate boundary layer, far from the wall. 

Although the pressure-dilatation term p'-&' may be negligible in the k 
equation for homogeneous compressible shear flow, it cannot be inferred 
that there is no need for an appropriate closure scheme, for at least two 
reasons: 

- The model derived by Zeman and Coleman [499], with C A = 0.0008 
for the closure parameter in eq.(10.41), is capable of replicating the 
important feature of kinetic to pressure energy transfer, specific to 1D 
compression and the resulting different amplification rates of p'2 for 
low and high Mach number situations; 

- The pressure-dilatation correlation plays an important role in the pres­
sure variance equation (see §10.12.2), so that the modeling of this term 
is to be addressed when deriving a closure expression to this equation. 
In compressible homogeneous shear flow, for instance, the DNS results 
of Hamba [203] in 1999 show that the pressure-dilatation correlation 
is the dominant term in the pressure variance equation. 
As far as Hamba's scheme is concerned - eq.(10.44) -, it can be 
observed that 

- if Xp is neglected and approximating D(pk)j Dt by p(Prod - E), 
then eq.(10.44) is almost the same as the model derived by Sarkar 
[408] in 1992; 

- compressibility effects are represented by the factor (1 - Cpd3Xp), 

which amounts to 0.88 and 0.58 for M t equal to 0.1 and 0.3, 
respectively, thus reducing the pressure-dilatation growth rate 
when increasing the turbulent Mach number. 

Finally, in both Ristorcelli's and Hamba's schemes, the pressure-dilatation 
correlation is related to the non-equilibrium or unsteady properties of the 
turbulent field. This is particularly apparent with the material derivative 
of the turbulence kinetic energy in Hamba's scheme (eq.(10.44)) and a bit 
more intricate in the almost algebraic expression of Ristorcelli (see eq. (87) 
in [394]). As pointed out by the latter, the model produces predictions which 
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are consistent with the study by Simone et al. [431] where the observed 
behavior is related to the anisotropy component b12 and leads to negligible 
contributions in a quasi-equilibrium situation, as it is the case in channel 
flows and boundary layers without strong pressure gradients. 

10.8.2. DILATATION DISSIPATION 

Review of some models 
We turn now to the modeling of the last term which is specific to variable 
density turbulent flows, viz. the dilatation or compressible dissipation Ed, 
eq.{10.7). 

Zeman (1990). According to Zeman [495], the dilatation dissipation IS 

considered as proportional to the solenoidal dissipation 

(10.46) 

The adjustable model constant is Cd = 0.75. The scalar function F depends 

on the rms or turbulence Mach number Mt = V2k/c, where c = J I RT, 
and on the probability distribution function of the turbulence, through the 
kurtosis of the p.d.f. of the velocity fluctuation, I< = ull4 /(UIl2? (ranging 
from 4 to 20). The function F(Mt, K), of order unity, is found to increase 
rapidly for 0 < M t < 2 and reaches a quasi constant level for Mt > 2 (close 
to unity, for K = 6). 
This closure was introduced in a second-order model to predict compressible 
mixing layers. It appeared able to predict the reduction of layer growth 
rates as a function of the convective Mach number in agreement with the 
experimental data. 

Sarkar-Erlebacher-Hussaini-Kreiss (1991). Sarkar et al. [416] come to a 
very similar expression, but postulate a fundamentally different basis. The 
model is simply 

(10.47) 

where the model constant is Ql = 1, based on direct numerical simulations 
of the decay of isotropic compressible turbulence at a Reynolds number 
based on the Taylor micro-scale R>. = 15. The turbulence Mach number is 
M t = -I2k/c, where c is the local mean speed of sound. 

Wilcox (1994). As shown in Wilcox [484]' page 185, the dilatation-dissi­
pation concept can be introduced in a (k -w) model (w is the Kolmogorov 

frequency of the energy bearing eddies w = ..Jk/l == E/(CJ.Lk) ). It merely 
consists in letting the closure coefficients (3 and (3* of the model vary with 
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the turbulence Mach number, thus departing from their incompressible 
values (30 and (30 as 

(3* = (30[1 + C F(Md] and (3 = (30 - (3oC F(Mt) , 

with F(Mt) = (Mt - M'fo)1i(Mt - Mto ) , C = 3/2 , Mto = 1/4 , 

where 1i(x) is the Heaviside step function. 

Ristorcelli (1997). Within the same frame of analysis as that previously 
mentioned in deriving the pressure-dilatation closure scheme, Ristorcelli 
[394] succeeded in producing a representation for the effects of the compres­
sible (or dilatational) dissipation Ed as a sum of slow (Ed) and rapid (Ed) 
portions. 
The ratio Ed/Es is found to be a function of the turbulence Reynolds number 

Rt = 4k2 /9vE, scaling as 

(10.48) 

for high-Rt and low-Mt non-equilibrium flows, respectively. Here, Mt and 
Ms are the turbulence and strain (gradient) Mach numbers, respectively. 
An important feature of the previous model is the dependence of the dilata­
tion dissipation on the viscosity: for fixed M t , Ed vanishes at a sufficiently 
high turbulence Reynolds number. 

Discussion 
Prediction of the reduction in the spreading rate of a compressible mixing 
layer can be taken as one of the most challenging issues to turbulence 
modeling of compressible effects in such flows. Indeed, most "classical" 
extensions of incompressible models, performed without incorporating di­
latational terms, fail to predict the reduction growth rate when the convec­
tive Mach number increases. This can be observed in Figure 10.2 for first­
order (k - w) and second-order (Rij) closure models as well. The (k - E) 
model generates predictions similar to those of (k -w), if not worse. 

In this figure, the spreading rate of the compressible mixing layer Gs is 
defined as 

Gs = d8 (U1 + U2 ). 
dx U1 - U2 

It is normalized by its incompressible value Gso' The shear layer thickness 
8(x) is the distance between the points where the mean velocity is, respecti­
vely, U2 + O.1(U1 - U2 ) and U2 + O.9(U1 - U2 ). The ratio Gs/Gso is plotted 
against the convective Mach number 

Me = U1 - U2 , 

Cl + C2 
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Figure 10.2. Prediction of the spreading rate of a compressible mixing layer according 
to (a) Wilcox [484], (b) Sarkar et al. [416] and (c) Zeman [495]. 

where Cl and C2 stand for the speed of sound in the two incident free 
streams. 

As shown Fig.10.2, a better agreement with experimental data is obtai­
ned when incorporating compressible or dilatation effects in the closure 
schemes. Except the first-order model of Wilcox [484], all other closure 
schemes, as derived by Zeman [495], eq.(10.46) and Sarkar et al. [416], 
eq.(10.47), have been introduced in second-order models to predict the 
reduction of the mixing layer growth rate as a function of the convective 
Mach number (see, for instance, Sarkar and Lakshmanan [413] in 1991 for 
the latter). 

These examples can be considered as representative of a "second genera­
tion"S of compressible models [495], [415], [416], [484], in which it was 
presumed that explicit dilatational terms could account for compressibility 
effects, namely the pressure-dilatation correlation and the dilatation dissi­
pation. 
Later literature on the topic, Sarkar [409] in 1995, Vreman et al. [477] in 
1996, Hamba [203] in 1999, inter alia, pointed out important implicit effects 
of compressibility, associated with structural changes of the turbulent field. 

8The "first generation" only involves simple adjustments (turbulence Mach number 
parameterization) and formal extensions of "incompressible" closure schemes. 
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Moreover, even though the importance of dilatational terms is difficult 
to assess, a priori from theoretical analysis, or check, a posteriori from 
experimental data, further developments - Ristorcelli [394] and Simone et 
al. [431] for example -, support the conclusion that compressible dissipa­
tion is negligible in most compressible flows at a moderate turbulence Mach 
number (see the M? and Mt scalings in eqs.(10.48), for instance). 

Hence, one can reasonably question the capability of this early genera­
tion of compressible models (based on specific modeling of explicit dilatatio­
nal terms) in capturing the actual mechanism responsible for predicted 
compressibility effects and suspect whether an effect attributed to compres­
sible dissipation could not actually represent an alteration in production, 
as recently suggested by Guezengar et al. [191]. 

10.9. Examples of zero-equation models 

After having analyzed separate closure schemes accounting for variable 
density or compressibility effects, this section introduces a second part of 
the chapter which is devoted to the presentation of some complete models 
that have been used to predict such types of turbulent flows. The review 
does not aims at being exhaustive, but simply illustrative of some salient 
contributions. 

Owing to the great number of algebraic expressions of eddy-viscosity, 
the presentation is limited here to those which have been used in predicting 
compressible turbulent flows for practical applications. For a more detailed 
review, the reader is referred to Vandromme [469] or Cousteix & Aupoix 
[107], for instance. 

Michel-Quemard-Durant (1969). In the mixing length scheme proposed 
by Michel et al. [327], the eddy-viscosity in a turbulent boundary layer is 
given by: 

The mixing length fm is taken as a function of the distance to the wall y 

fm ( X y) h T = 0.085 tanh 0.085"8' wit X = 0.41 . 

Here <5 is the conventional boundary layer thickness. F is a modified version 
of the Van Driest damping function: 

fmW 
F = 1 - exp[ - ] , 

26XI-l 
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where T = JL ~~ - pu'v' is the total shear stress. The counterpart of this 
scheme for the turbulent heat flux is: 

-'()' _ 1 -p2 02 aU aT -pv - --p .{. --, 
at may ay 

where at = 0,89 is the turbulence Prandtl number. 
This model is able to reproduce quite satisfactorily compressibility effects 
in supersonic turbulent boundary layers not too far from equilibrium. It 
was also included in a integral method by Michel et aZ. [326] to predict 
satisfactorily adiabatic boundary layers. 

Cebeci-Smith-Mosinskis (1970). The Cebeci-Smith-Mosinskis (C.S.M.) 
scheme [74] is an extension to compressible flows ofCebeci's model. Several 
adaptations of this kind have been proposed. For a rather complete invento­
ry, the reader is referred to the book by Cebeci and Smith [73]. 
In the C.S.M. model, the eddy-viscosity is derived from a two-layer formu­
lation: 

I nner region: 0:::; y:::; Yc 

Outer region: Yc :::; y:::; 0 

where Yc is the distance from the wall where the two expressions are matched 
(JLto = JLti). 
In the first expression, K, = 0.41, a = 0.0168, 01 = Jooo (l - U jUE)dy. r is 
the intermittency correction factor: 

In the inner region, the damping coefficient A is defined as 

where A+ = 26 and N is given by the following expression, accounting for 
pressure gradient and wall blowing (transpiration velocity Vw ): 

with 
2 Tw 

U =-
T Pw 
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In these formulae, subscripts wand e refer to wall and external flow condi­
tions respectively. 

Baldwin-Lomax (1978). One of the major drawbacks of the C.S.M model 
is revealed in separated flows, where 01 is not well defined. This is not the 
case with the Baldwin-Lomax (B.L.) scheme, where an implicit matching 
is adopted between two eddy-viscosity values Vti and Vto. The local eddy­
viscosity is taken as the lowest value between the two previous ones, respec­
tively defined by: 

Inner region : Vti = l!n where lm= XY (l-eY+/A+) and n = Ilnll ' 
Outer region: Vto = aCcpFIK (x, y) , 

where F = min [Ymaxfmax;CwYmaxUlij/fmax] ' 

and lK = [1 + 5, 5 (CKY/Ymax)6]-1 

1 
fmax = - sup [lm n ] 

X y 

n is the mean vorticity vector and Ymax the distance from the wall where 
[lmn] (y) is maximum. Udi/ stands for the mean velocity difference over 

Ymax' 
The model constants and parameters are given in table 10.2. 

Discussion 

TABLE 10.2. Model constants of the Baldwin-Lomax 
eddy-viscosity model. 

Value 0.41 0.0168 26 1.6 0.25 0.3 

Algebraic eddy-viscosity models were primarily derived for closing the ave­
raged Navier-Stokes equations under thin shear layer approximations and 
were mainly dedicated to wall bounded flows. They are easy to use, cheap, 
and produce rather accurate results in boundary layers that are not too far 
from equilibrium, even at high Mach numbers, Cousteix & Aupoix [107]. 
Mean flow predictions of attached supersonic boundary layers with C.B.S. 
and B.L. models are generally found in reasonably good agreement with 
experimental data. 
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10.10. One-equation models 

The following table give some examples of one-equation models that have 
been proposed for predicting incompressible flows. As far as applications 
to variable density and compressible flows are concerned, only two of them 
will be detailed here, based on modeled transport equations for (i) the 
eddy-viscosity and (ii) the turbulence kinetic energy. 

TABLE 10.3. Examples of one-equation incompressible turbulence models 

Transportable function Author Ref. Year 

Turbulence kinetic energy Prandtl [372] 1945 

Emmons [148] 1954 

Turbulence shear stress Bradshaw & Ferriss [53] 1972 

Nee & Kovasznay [345] 1968 
Secundov [424] 1971 

Eddy Baldwin & Barth [28] 1990 
viscosity Spalart & Allmaras [440] 1992 

Gulyaev, Kozlov & Secundov [192] 1993 
Durbin, Mansour & Yang [139] 1994 

10.10.1. EDDY-VISCOSITY TRANSPORT EQUATION 

The first model based on an eddy-viscosity transport equation was proposed 
by Nee & Kovasznay [345] in 1968. After an eclipse of more than twenty 
years, this type of closure is again in use for practical applications, thanks 
to the proposals of Baldwin & Barth [28], and more recently, Spalart & 
Allmaras [440]. In the latter models, the eddy-viscosity is taken as: 

Vt =od) , (10.49) 

where a is a model coefficient and f) an effective eddy-viscosity, which is 
governed by a model transport equation of the general form 9 : 

of) - of) . 
~ + Uj~ = Dill + Source - Smk. 
ut uXj 

(10.50) 

9The Spalart-Allmaras model can predict a laminar solution. The complete version of 
this model includes a "trip" term to initiate transition in a smooth manner. For sake of 
shortness, the detailed expressions of this term are not given in Table 10.4. 
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TABLE 10.4. Details of Baldwin-Barth and Spalart-Allmaras eddy-viscosity transport 
equation models, in reference to eqs.(10.49) and (10.50). 

Term 

Diffusion 

Source 

Sink 

Oi 

Bald win-Barth 

1fu aD 
(j aXj Cfij 

CjJ.DID2, where 

Spalart-Allmaras 

1 a [(v + D) aD 1 
(J'Cfij + Cfij 

lli aD aD 
(J' CfijCfij 

-y -1---L-- 1+0, 
and 

(= D/v 

CwJ/w(~?, where 
6 

fw=g(~)1/6 
g +C~3 

g=r+CW2 (r6 -r) 
r = D/Sx2y2) 

+/A+ - +/A+ D I =l-e41 o,andD2 =1-e y 2 

Model 

Baldwin 
& Barth 

Spalart 

& Allmaras 

TABLE 10.5. Model constants. 

Constants 

CjJ. = 0.09 Cd = 1.2 C<2 = 2 At = 26 At = 10 
(J' = 0.7 X = 0.41 

Cbl = 0.1355 Cb2 = 0.622 Cvl = 7.1 Cwl = 3.2391 

Cw2 = 0.3 Cw3 = 2 (J' = 2/3 X = 0.41 

The one-equation model of Spalart & Allmaras has been used by Wong 
[487] to predict supersonic separated flows in an axisymmetric configuration 
that were not validated by the authors of the model [440]. According to 
Wong, the model is able to predict relaminarization but cannot be trusted 
to predict accurately the onset and duration of transition. Nevertheless, 
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this corresponds to an improved situation as compared with the results 
obtained from an algebraic eddy-viscosity model (Baldwin-Lomax) which 
cannot predict relaminarization without ad hoc tuning of the constants. 

10.10.2. TURBULENCE KINETIC ENERGY MODEL EQUATION 

A widely adopted expression of the eddy-viscosity in incompressible turbu­
lence reads: 

Vt ex: pit l, (10.51) 
where it and l are characteristic velocity and length scales of the turbulent 
motion, respectively. 
Assuming that l can be prescribed algebraically, the characteristic turbulen-

ce velocity is generally taken as it ex: Jk or v'k (it is recalled that k == 
ui'u"J2 -' resp. k == uiu'J2 - denotes the kinematic turbulence kinetic 
energy, according to density weighted or classical averages). This function 
is governed by an exact transport equation which reads, when Favre's 
decomposition is adopted (see Chapter 5): 

ok - ok ----- aUi a 1 - -aP au~' p(-+u,-) = - pu~'u"- - -[-(pu~'u~'u") + p'u"] - u'.'- + p,_t at J ax j t J ax j ax j 2 t t J J taxi aXi 
... '-,..-" .... ~~ 

(a) (b) (c) (d) (e) 

a(r· 'u~') au" tJ t t + a - Ti j -a Xj Xj 
(10.52) 

--..-.. ~ 
(g) (h) 

In eq.(10.52): 

(a) is the mean material variation of the turbulence kinetic energy, based 
on a transport formulation. Making use of the mean continuity equa­
tion, it can be easily transformed into a conservative expression: 

apk a(pkUj) _ a(pk) U.a(pk) -k aUj. 
7ft + ax' = fit + J ~ + p ax" 

J J J 

(b) is the mean shear production; 
(c) is the turbulent transport or diffusion of turbulence kinetic energy, 

including pressure effects; 
(d) corresponds to an energy transfer by coupling of the turbulent mass flux 

with the mean pressure field. It will be briefly called the mean pressure 
work, and is specific to variable density flows and Favre formulation; 

(e) is the pressure-dilatation correlation, which can also be written as 
p'( aui! aXi). It is specific to non-solenoidal velocity fluctuations. 
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The last two terms in eq.(10.52) are accounting for molecular viscosity 
effects, since Tij is the instantaneous viscous stress tensor, viz. for a Newton­
Stokes behavior: 

Thus: 
(9) is the work done by external viscous forces in the fluctuating motion; 
(h) is the Favre-averaged dissipation rate. 

Now, as far as the modeled expression is concerned, the generic form of the 
turbulence kinetic energy equation can be taken as: 

D _ - _ (k) (k)_ 
Dt (pk) - Prod + DiJ J - fs + Ap , (10.53) 

where DjDt denotes the material derivative with reference to the mean 
flow. 
In eq.(10.53), p;:J, D~;~, fs are the production, diffusion and dissipation 
terms, the closure schemes of which are 'similar' to those developed for 
incompressible or constant density flows (direct extension from the incom­
pressible situation). Hence, Ap accounts for all compressible or variable 
density contributions. Its modeling requires specific closure schemes being 
derived for: 
- the turbulent mass flux; 
- the pressure-dilatation correlation 10; 

- the dilatation dissipation. 

Some of the corresponding closure schemes, dedicated to the modeling of 
Ap , have been already discussed in the previous sections. Therefore, we are 
simply concerned here with closure schemes for the production, diffusion 
and solenoidal dissipation terms. 

Production. When direct transpositions of the linear eddy-viscosity con­
cept are adopted in variable density fluid motions, - eqs.(10.10) and (10.11) 
-, the production term is obtained explicitly: 

p(k) ___ '7t"f, aUi _ 2 S' ,aUi _ ~ (aUI) 2 _ ~-kaiJl 
rod - PUiUJ'a - J-lt zJa 3J-lt a 3P a . 

Xj Xj XI XI 

tOBy regrouping all pressure contributions in eq.(lO.52), only one pressure term is 
obtained, u:' g:.. In Aupoix et al. [24], an exact transport equation is derived for this 
term, assuming a perfect gas equation of state. However, as pointed out by the authors, a 
term-by-term closure of this equation cannot be applied, since some of them go to infinity 
and only the difference remains finite. Thus the splitting of the pressure terms, as given 
in eq.(1O.52) is generally the one adopted in the modeling process. 
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Diffusion. A widely adopted closure scheme for the diffusion term in 
eq.(10.52) is based on a generalized gradient-type expression: 

where the turbulent transport coefficient (or diffusivity) of k is a model 
constant, taken as a turbulence Prandtl-Schmidt number (Tk. 

This expression was introduced, for instance, in 1972 by Jones and Launder 
[238], in a (k - f) model, with (Tk = 1. 

Solenoidal dissipation. In the modeling of the energy transport equa­
tion, the solenoidal or i~compressible contribution to the dissipation (Es) 
is simply deduced from k and l. Assuming that Batchelor's incompressible 
scaling still applies in variable density flows, the expression reads: 

introducing only one model constant. 

10.11. Two-equation models 

In two-equation models for incompressible fluid motions, the characteristic 
length scale lin eq.(10.51) is obtained from any product of a given power 
of the turbulence kinetic energy with another transportable quantity of 
suitable dimension. 
Some examples of such available combinations that have been used in 
variable density flows are reported in Table 10.1. Only three of them will 
be discussed here. 

10.11.1. THE (K - f) MODEL 

In 1979, Jones [237] suggested that the eddy-viscosity can be obtained 
from the turbulence kinetic energy and the dissipation rate, according to 
a direct extension of the usual incompressible relation (Jones & Launder 
[238], 1972). Using Favre averages, this scheme reads 

(10.54) 

where C I-' = 0.09 is a model constant, and E the dissipation rate, obtained 
from a model transport equation. 
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As reviewed by Vandromme and Ha Minh [472], the common form of the 
transport equation for the dissipation rate in high Reynolds number com­
pressible flows can be written as (see also Rubesin [398]): 

a(pf) a(pfUj) c f_ --;;--;,aUi c _f2 --+ a = - d ~pui uJ' -;:;-- + Dt - t2P-= 
at Xj k UXj k 

C f ,aui' C f" a P c __ aUi + t3 ~ P ~ - t4 ~ U i ~ - t5P E~ 
k UXi k UXi UXi 

'---v---" ~ ~ 
(d) (e) (f) 

(10.55) 

In the constant density situation, eq.(10.55) reduces to the first line, where 
the right-hand-side terms are the shear production, the diffusion and the 
dissipation. The second line is thus accounting for compressible effects. It is 
made of three additional terms: (d) and (e) are simply the counterparts for 
the pressure-dilatation and mean pressure contributions, already present in 
the turbulence kinetic energy equation. The last one (f) is introduced to 
accounting for the dependence of turbulence length scale on passing through 
a shock wave. The constant model is Ct5 = 1/3 in isotropic turbulence and 
unity otherwise. 

When dilatation (compressible) dissipation schemes are introduced, this 
equation is adopted with adapted values of the constants to calculate the 
solenoidal part of the dissipation rate (fs)' We shall now just give two 
examples. 

Ha Minh et al. (1981-91). A simplified version of eq.(10.55) was intensively 
used by Ha Minh and co-workers [195], [199], [280], [198], [196], [471], 
[470], for the conventional dissipation rate, as part of (k - E) model and 
second-order closure models to predict wall bounded flows, including shock­
boundary layer interaction. 
In this case, the low Reynolds number corrections of Jones-Launder [239] 
are adopted, in addition to the following assumptions, [195]: 

a 8-
- The gradient diffusion is simply D t = -;:;-- (J.Lt ;:) E ) with (Jt = 1.3 ; 

UXj (Jt UXj 

- When presentll, compressibility correction is limited to the mean pres­
sure gradient term, adopting a Rubesin-derived expression for the 
turbulent mass flux - eq.(10.30) -, with Ct4 = 1. 

When applied to the shock-induced boundary layer separation, one of the 
most striking results found by Vandromme and Ha Minh (see [471], for 
instance), is the great sensitivity of the prediction to the value of Cd. In 
the transonic flow over a bump (Delery & Le Diuzet [130]), the "lambda" 

11 In [280], no compressibility terms are added. 
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shape of the shock wave is not observed with Cd = 1.28, while it is with 
Cd = 1.57. However, even in this case, the model is not able to produce 
the correct level of turbulence kinetic energy. 

Taulbee-VanOsdol (1991). In Taulbee and VanOsdol [454], the usual 
(incompressible) form of eq.(10.55) is used to calculate the solenoidal dissi­
pation, in addition to a closure model for the dilatation-dissipation. Coupled 
transport equations of the density variance and turbulent mass flux (ui') 
are also included in the model. 
For 2-D thin shear layers, the modeled dissipation equation reads 

_ - OE _ - aE a J.lt OE E aU 2 _ E2 
pU -a + pV -a = -a (--a) + Cd::::J.lt( -a ) - C(2P=- . 

X Y Y 0'( Y k Y k 

The "standard" values of the "incompressible" constants are used (Cd = 
1.44, C(2 = 1.92, O'€ = 1.3). 
With this model, the prediction of the growth rate of a compressible mixing 
layer is in reasonable agreement with the experimental data. 

Discussion. Most proposals extending incompressible versions of the (k 
- f) model to variable density and/or compressible situations, consist in 
adding compressibility corrections to the baseline incompressible formula­
tion of the model. Some of them have been reviewed in section 10.8. With 
such (k - f) closure types, it is worth noticing that, from computational 
grounds, specific schemes accounting for variable density effects in the 
dissipation equation cannot be introduced without a similar counterpart 
into the turbulence kinetic energy equation and vice versa. 
Although not discussed here, the same kind of variable-density or compres­
sible extension can also be applied to other types of two-equation models, 
such as the (k -w) model proposed by Wilcox & Traci [486], or the (k 
- 4» model by Cousteix et al. [108] However, in all cases, Batchelor's scaling 

E ex: I 3 / 2 /.e, is adopted, assuming that only one characteristic length scale 
l ex: .e is accounting for both turbulent transport and energy transfer by 
fluctuating motions. 
As discussed in §10.5.3, such an assumption could be at least questionable 
in variable density and/or compressible turbulent flows. 

10.12. Three-equation models 

As it has been seen in the previous section, different modifications of the 
incompressible versions of two-equation models have been proposed, (i) 
including changes in the incompressible schemes, and (ii) introducing new 
additional terms, specific to density variations. 
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With the aim of modeling latter contributions, one can presume that it 
could be more suitable to account for variable density and compressibility 
effects by adding, at least, one more additional transportable function, 
yielding a three-equation model. 

Several proposals have been made for such extra transport equations. 
In 1979, Chen and Chen [91] derived a modeled transport equation for the 
temperature variance in order to predict vertical buoyant jets. The pressure 
variance was introduced by Zeman [497] in 1991 for predicting homogeneous 
compressible shear flows, and revisited by Hamba [203] in 1999. Three­
equation models (k - f - pl2) using a density variance equation, have been 
developed in order to predict compressible mixing layers by Lejeune et al. 
[287], [286] in 1996 and 1997, Yoshizawa et al. [492] in 1997, and separated 
flows by Duranti & Pittaluga [137] in 2000. In Taulbee and VanOsdoll [454], 
the density variance is also obtained from a modeled transport equation, 
the closure of which is achieved with a model transport equation for the 
turbulent mass fluxes. 

10.12.1. DENSITY VARIANCE EQUATION 

By direct manipulation of the open set of equations, an exact transport 
equation can be derived for the density variance p'2 (see Chapter 4, eq.(4.32) 
and also Taulbee and VanOsdoll [454], for instance). Some models that have 
been derived for closing this equation are now presented. 

Taulbee-VanOsdol (1991). The modeled form of the density variance 
transport equation proposed by Taulbee and VanOsdol [454] in 2-D thin 
shear layers is 

U- apl2 V-apl2 _ 2'2 aUj 2-,,0(5 a (f..lt a (pI2)) C £" pl2 --+ ---- p -+ pv -+- -- -- - ;:::;-, ox ay aXj ay ay ap ay (5 p k P 
(10.56) 

where the values of the constants ap = 1 and Cp = 5.3 are chosen by trial 
and error to get reasonable agreement with experimental data. 
In reference [454], the compressible flat plate boundary layer over an adiaba­
tic wall is calculated with the low-Reynolds version of the (k - f) model 
of Chien [94], without compressibility corrections. The density fluctuations 
variance is obtained from eq.(10.56), where the spanwise component v" of 
the turbulent mass fluxis calculated from a modeled transport equation, 
based on closure schemes (10.35), (10.36) and (10.37). Thus k and f equa­
tions can be solved independently from p'2, u" and v" equations. 

The turbulence density intensity (p'2) 1/2/(5 and the longitudinal turbu­
lent mass flux normalized by the local mean velocity u" /U are given in table 
10.6. The predicted values are compared with the experimental data of 
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Kistler and the results obtained from Morkovin's strong Reynolds analogy 
(see Chapter 4, section 4.4.2): 

Ip" J{ = (,-l)M'v;:' and 

It is seen that the overall agreement between predictions and experiment 
is reasonable for the two values of the Mach number. 
Finally, for this flow configuration, it should be added that according to 
the authors, the dominant production in the model equation (10.37), comes 
from the mean density gradient, so that a good modeling of the turbulent 
normal mass flux V" is crucial, and cannot be achieved with gradient type 
diffusion schemes. 

TABLE 10.6. Comparison of turbulence density intensity and longitudinal turbulent 
mass flux in a flat plate boundary layer over an adiabatic wall, at ylo =0.5, from Taulbee 
and VanOsdol [454]. 

Ip ti" If! 
Moo =1.7 Moo =4.7 Moo =1.7 Moo =4.7 

Morkovin's Analogy 0.035 0.131 - 0.0016 - 0.0124 
Model [454] 0.028 0.120 - 0.0008 - 0.0028 
Kistler's Exp. 0.027 0.115 - 0.0011 - 0.0028 

Lejeune-Kourta-Chassaing (1996). To predict high-speed turbulent mi­
xing layers, up to a convective Mach number of 0.8, the following model 
transport equation for the density variance was derived by Lejeune et ai. 
[287]: 

DI2 [)U- . [)- [) [) 12 -2 ~ 
_P_ = _p'2 _J + 2~(~)2 + -(Ilt-(p_) _ 2 P p,_J, 
Dt [)Xj (Jp [)Xj [)Xj [)Xj P 'Y P [)Xj 

where 'Y = Cp/Cv . 

The scheme for the pressure-dilatation term is 

I [)uj _ p'2 'Y P E 
P [)x j - 0: {52 Mt k ' 

where Mt is the turbulence Mach number. 
With 0: = -0.05, (Jp = 0.7, the model predicts turbulence kinetic energy 
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profiles which are in good agreement with the measurements, but exhibits 
a too loose dependence of the mixing layer growth rate on the convective 
Mach number. 

10.12.2. PRESSURE VARIANCE EQUATION 

Zeman (1991). The phenomenological closure of the pressure variance 
equation proposed by Zeman [497] in homogeneous compressible shear flows 
is based on the heuristic argument that, in the absence of forcing, the 
pressure fluctuations (i) tend to relax to an equilibrium value depending on 
the turbulence Mach number, Pe(Mt), and (ii) at a rate set by an acoustic 
timescale Ta (X L/a over an eddy of size L. Thus: 

__ DI2 P'2_ 2 
-2{5a2 p'iJl = _P_ = _ Pe 

Dt Ta 
(10.57) 

The acoustic time scale is taken as Ta = 0.2 T Mt , where the turbulence time 
scale T is related to vortical turbulence since T = 2k / fs, where fs denotes 
the solenoidal dissipation. Finally it is inferred from DNS data and theory 
that the equilibrium pressure variance can be taken as 

M2 +M4 _ 
p2 = 2 ( t t) {52 k a 2 • 

e l+Ml +Ml 

As shown by Zeman and Coleman [499], the model mechanism of relaxation 
to equilibrium is supported by direct numerical simulation data of homoge­
neous shear turbulence at moderate shear rates. 

Hamba (1999). Restricting the analysis to homogeneous flows, the pressure 
variance equation reduces to, Hamba [203]: 

Dpl2 __ 
-- = -2'YP p'iJl - f + Res Dt I P , (10.58) 

where iJl = auU aXi, fp is the pressure-variance dissipation and Res stands 
for residual terms which can be considered as negligible. 
At sufficiently high turbulence Mach number, the dissipation fp does not 
depend on the viscosity v, and can be modeled as 

pI2 
fp = C(pl(/ - l)-_--f, 

kProd 
(10.59) 

where Prod = -u~ujaUdaxj is the production rate of turbulence kinetic 
energy. The value of the model parameter C(pl, which depends on the 
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turbulence Mach number M t , is C!pl = 1.3 for M t = 0.3. 
Although the pressure-dilatation term p't)' may be negligible in the k equa­
tion, it plays an important (actually dominant) role in the p,2 equation. 
The scheme for the pressure-dilatation correlation is as given in eq.(10.44). 

10.13. Closure models for buoyant flows 

Many problems involving buoyant modification to turbulence occur in natu­
ral environment where, to the exception of fire flows situations, the density 
change is never more than a few percent of the mean value. The present 
part of the monograph is not dedicated to the modeling of such types of flow 
configurations. Readers with direct interest in buoyancy affected turbulent 
flows may refer to Launder [274] or Craft [109], inter alia. 

The following example is merely given to illustrate the way body-force 
influence was included in early modeling of transport (k - f) equations and 
scalar variance equations (see e.g. Gibson & Launder [181] in 1976, Chen 
& Chen [91] in 1979). 

Chen and Chen (1979). These authors [91] adapted the standard incom­
pressi ble version of the (k - f) model to predict vertical buoyant jets. They 
derived a three-equation (k - f- (J'2) model, adding a transport equation for 
the temperature variance (J'2. With the thin shear layer approximations, 
the main modifications to the standard (k - f) closure concern the expres­
sions of the significant Reynolds stresses and heat flux components, which 
become: 

- - - -2-

-u'v'= 1-co~(1+ kg8T/8y )~ 8U, 
Cl k Ch ETa 8U / 8y f 8y 

Reynolds stresses: 

v12 = C2 k, 
_ k -8T _ 8U (),2 

- u'()' = ---=[u'v'- + u'()'(l- Chl) - + g(l- Cht}-], 
~f ~ ~ ~ 

Turb. heat fluxes: 

--2 -

_ V'()' = ~ ~ ~ 8T . 
Ch k E 8y 

The previous expressions are obtained from the exact transport equations 
of the second-order correlations uiuj and ui()' when neglecting convection 
and diffusion terms. Ta is the ambient temperature, g, the gravitational 
constant, and the model constants are Co = 0.55, Cl = 2.2, C2 = 0.53, 
Ch = 3.2 and Chl = 0.5. The incompressible closure of k and E equations 
is unchanged, except for the production terms, in which the additional 
buoyant contributions are respectively added: 

Pk -,-,8U u'()' 
d = -uv -+g-

ro 8y Ta and 



308 CHAPTER 10. FIRST-ORDER MODELING 

10.14. Final discussion and concluding remarks 

Before coming to scientific conclusions, it is worth keeping m mind the 
following two general points: 

- Turbulence modeling of variable density flows addresses a wide range 
of situations, due to the various origins of density variations. Scientific 
faithfulness should require the review to be exhaustive, which is not the 
case of the present one. Progress in turbulence modeling has developed 
in a way far different from a logical, gradual, systematic approach. 
Historical faithfulness results in an impressionistic picture, which could 
make turbulence modeling look like a black art for non-specialists, as 
could probably appear from the present review; 

- This chapter is restricted to reviewing some of the aspects of the 
modeling of density variations and compressible effects in low and high 
speed flows in first-order closure models. This choice is not motivated 
on scientifically argued grounds and simply results from pedagogical 
considerations: second-order modeling is addressed in next chapter. 
Therefore, it would be unwise to conclude from this review that first­
order is an appropriate closure level for capturing the compressible 
effects that are now documented. 

Within the previous frame, the following scientific conclusions can be 
drawn: 

• In low-speed, non-reactive fluid motions, density variations arise from 
changes in temperature and/or composition, which can produce high den-

sity-intensity levels (p' /p) in turbulent flows. As far as the modeling of 
statistical averaged equations is concerned, one is faced with the specific 
closure of turbulent mass flux and, more generally, correlations with density 
fluctuation (d.f.c.). Such terms, which have no equivalence in constant 
density flows, are present even when using density-weighted averages. Free 
shear flows can be predicted by using direct extensions of closure schemes 
derived for incompressible and buoyant flows, provided a suitable closure for 
such dJ.c. is adopted. In free jets, it has been demonstrated that a gradient­
type diffusion closure for d.f.c. is not necessarily appropriate, depending 
upon the signs of mean velocity and density gradients . 

• In non-separated high-speed boundary layers, up to supersonic free stream 
Mach numbers Moo < 3 to 5, and channel flows, the effects of density 
and pressure fluctuations under adiabatic conditions at the wall are small. 
Hence, compressibility effects are mostly due to mean density and tempe­
rature variations, and mean velocity profiles can be recovered from that in 
incompressible turbulence, using the Van Driest transformation [220]. To 
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some extent, this explains why direct extensions of incompressible closure 
schemes to that of density-weighted moments for variable density flows 
("first" generation), do not yield irrelevant predictions, as demonstrated 
by Ha Minh and co-workers [195], [199], [198], [196]. 

• In eddy-viscosity models, structural changes of the turbulence field asso­
ciated with modifications in the Reynolds stress anisotropy tensor cannot 
be introduced explicitly into closure schemes, as it is the case with second­
order modeling (see next chapter). Nevertheless, some consequences of 
such dominant effects can be indirectly and subtly accounted for in first­
order closure models. This is basically the reason for improving the non­
equilibrium schemes derived for the pressure dilatation correlation, Ristor­
celli [394], Hamba [203], as part of the closure of the pressure variance 
transport equation. 

• Even within the limit of Kovasznay's modes decomposition, density fluc­
tuations are included in both acoustic (p' ::j:. 0, p' ::j:. 0, and s' = w' = 0) and 
entropy (s' ::j:. 0, p' ::j:. 0, and w' = p' = 0) modes. With nonadiabatic walls, 
density fluctuations can exist with little compressible turbulence effects 
[221]. Therefore, for boundary layers and channel flows, the density variance 
is not a suitable choice of an independent function to accurately account 
for com pressibility effects in a (k - to) model, for instance. 

• In high-speed free shear flows, direct extensions of incompressible models, 
similar to those adopted in predicting wall bounded flows, fail to predict 
the strong compressibility effects observed in such flows. In a "second" 
generation of new compressible models, specific dilatational terms (pressure­
dilatation correlation, compressible or dilatation dissipation) were presu­
med to account for such effects. 

• This statement was not confirmed by later literature on the topic. In 1995, 
Sarkar [409] showed that the reduced growth rate of turbulence kinetic 
energy in homogeneous shear flow was primarily due to the reduced level of 
turbulence production, as a consequence of a change in the anisotropy of the 
Reynolds stress due to compressibility. In 1996, Vreman et at. [477] showed 
that reduced pressure fluctuations are responsible for the reduction in the 
growth rate of mixing layers via the pressure-strain term. In 1999, Hamba 
[203] confirmed the conclusion that, in compressible homogeneous shear 
flow, the anisotropy of the Reynolds stress, which reduces the turbulence 
production, is primarily due to the decrease in the pressure-strain term 
ll12(=p'aui/aX2) which, in turn, results from the reduced level of pressure 
fl uct uations. 

Since dilatational corrections for pressure and dissipation terms in this 
second generation of compressible models were introduced in second-order 
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closure models, Zeman [495], Sarkar and Lakshmanan [413], the observed 
improvements are hardly separable from those resulting from other modifi­
cations . 

• The observations quoted in the previous item are based on DNS studies. 
They are not yet entirely confirmed by experimental evidence, due to tech­
nical difficulty in the measurements. For example, there is no clear indica­
tion of changes in the Reynolds stress anisotropy in [146] or [77], as opposed 
to [186]. 


