Skip to main content

Zmorovič’s and Related Inequalities

  • Chapter
  • 1287 Accesses

Part of the book series: Mathematics and Its Applications ((MAEE,volume 53))

Abstract

In [1] V. A. Zmorovič has proved the following theorem: Theorem 1. If the function f: [a-h a+h] → R is twice continuously-differentiable, then with

$$\int\limits_{a - h}^{a + h} {{{(f''(x))}^2}dx \geqslant \frac{3}{{2{h^3}}}{{[f(a + h) - 2f(a) + f(a - h)]}^2},}$$
(1.1)

equality it and only if f is given by

$$f(x) = \left\{ {\begin{array}{*{20}{c}}{{C_1}\{ {{(h - a + x)}^3} + 6{h^2}(a - x)\} + {C_2}x + {C_3} (x \in [a - h,a]),} \\{{C_1}{{(h + a - x)}^3} + {C_2}x + {C_3} (x \in [a,a + h]),}\end{array}} \right.$$

where C 1, C 2, C 3 are arbitrary real constants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zmorovič, V. A., On some inequalities (Russian), Izv. Polytehn. Inst. Kiev 19 (1956), 92–107.

    Google Scholar 

  2. Hardy, G. H., J. E. Littlewood and G. Pólya, “Inequalities,” Cambridge, 1934.

    Google Scholar 

  3. DjordjeviĆ, R. Ž. and G. V. MilovanoviĆ, On some generalizations of Zmorovič’s inequality, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 544–576 (1976), 25–30.

    Google Scholar 

  4. VasiĆ, P. M. and J. D. KeČkiĆ, Some inequalities for complex numbers, Math. Balkanica 1 (1971), 282–286.

    MathSciNet  MATH  Google Scholar 

  5. Bullen, P. S., A note on a recent paper of P. M. Vasić and J. D. Kečkić, Math. Balkanica 2 (1972), 1–2.

    MathSciNet  MATH  Google Scholar 

  6. MitrinoviĆ, D. S., (In cooperation with P. M. VASIĆ), “Analytic inequalities,” Berlin-Heidelberg-New York, 1970.

    Google Scholar 

  7. DjordjeviĆ, R. Ž., G. V. MilovanoviĆ and J. E. PeČariĆ, Some estimates of L r norm on the set of continuously-differentiable functions, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 634-677 (1979), 57–61.

    Google Scholar 

  8. MilovanoviĆ, G. V., O nekim funkcionalnim nejednakostima, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 599 (1977), 1–59.

    Google Scholar 

  9. LupaŞ, A., Inequalities for divided differences, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 678-715 (1980), 24–28.

    Google Scholar 

  10. Ionescu, D. V., “Cuadraturi numerice,” Bucuresti, 1957.

    Google Scholar 

  11. PeČariĆ, J. E., Concerning Extended Complete Tchebychehh System, J. Math. Anal. Appl. 102, (1984), 385–392.

    Article  MathSciNet  MATH  Google Scholar 

  12. Karlin, S. J. and W. J. Studden, “Tchebycheff Systems: with Applications in Analysis and Statistics,” New York/London/Sydney, 1966.

    Google Scholar 

  13. PeČariĆ, J. E., G. H. Tudor, B. Crstici and B. SaviĆ, Note on Taylor’s Formula and Some Applications, J. Approx. Theory 51 (1987), 47–53.

    Article  MathSciNet  MATH  Google Scholar 

  14. Farwig, R. and D. Zwick, Some divided difference inequalities for n-convex functions, J. Math. Anal. Appl. 108 (1985), 430–437.

    Article  MathSciNet  MATH  Google Scholar 

  15. Neuman, E. and J. E. PeČariĆ, Inequalities involving multivariate convex functions, J. Math. Anal. Appl. 137, (1989), 541–599.

    Article  MathSciNet  MATH  Google Scholar 

  16. Zmorovich, V. A. and N. I. Cherneï, Some integral inequalities (Russian), Dokl. Akad. Nauk. Ukrain. SSR Ser. A. (1983), No. 6, 13–16.

    Google Scholar 

  17. Isihara, S., Information loss and entropy increase, J. Math. Anal. Appl. 39 (1972), 314–317.

    Article  MathSciNet  MATH  Google Scholar 

  18. Erdélyi, A., An extension of Hardy-Littlewood-Polya inequality, Proc. Edinburgh Math. Soc, II. Ser. 21 (1978), 11–15.

    Article  MATH  Google Scholar 

  19. Neumann, E., Inequalities involving multivariate convex functions II, Proc. Amer. Math. Soc. 109 (1990), 965–974.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mitrinović, D.S., Pečarić, J.E., Fink, A.M. (1991). Zmorovič’s and Related Inequalities. In: Inequalities Involving Functions and Their Integrals and Derivatives. Mathematics and Its Applications, vol 53. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3562-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3562-7_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5578-9

  • Online ISBN: 978-94-011-3562-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics