Skip to main content

Part of the book series: Mathematics and Its Applications ((MAEE,volume 53))

  • 1297 Accesses

Abstract

If a real polynomial f n(x=a 0+a 1 x+...+a n x n reaches the value of 1 anywhere on the segment [-1,1], then

$$\int\limits_{ - 1}^{ + 1} {{{({a_0} + {a_1}x + \cdots + {a_n}{x^n})}^2}dx} \geqslant \frac{2}{{(n + 1)2}}.$$
(1.1)

Except for an obvious error, this relation has been obtained by S. N. Bernstein [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernstein, S.N., “ Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d’une variable réelle,” Paris, 1926.

    Google Scholar 

  2. Bottema, O., Problem 170, Wisk Opgaven 14 (1929) 342–344.

    Google Scholar 

  3. Mordell, L. J., The minimum value of a definite integral, Math. Gaz. 52 (1968), 135–136.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bowman, F. and F. A. Gerard, “Higher Calculus,” Cambridge 1967 p. 327.

    Google Scholar 

  5. Smithies, F., Two remark on note by Mordell, Math. Gaz. 54 (1970), 260–261.

    Article  MathSciNet  MATH  Google Scholar 

  6. Mordell, L.J., The minimum value of a definite integral, II, Aequationes Math. 2 (1969), 327–331.

    Article  MathSciNet  MATH  Google Scholar 

  7. Mirsky, L., A footnote to a minimum problem of Mordell, Math. Gaz. 57 (1973), 51–56.

    Article  MathSciNet  MATH  Google Scholar 

  8. VasiĆ, P.M. and B.D. Rakovich, A note on the minimum value of a definite integral, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 544-576 (1976), 13–17.

    Google Scholar 

  9. Rakovich, B.D. and P.M. VasiĆ, Some extremal properties of orthogonal polynomials, Ibid. No. 634-677 (1979), 25–32.

    Google Scholar 

  10. Janous, W., A Minimum Problem for a Class of Polynomials, to appear.

    Google Scholar 

  11. American Mathematical Monthly 97 (1989), 655–656.

    Google Scholar 

  12. Aufgabe 933, Elem Math. 40 (1985).

    Google Scholar 

  13. Acu, D., Extremal problems in the numerical integration of the functions, doctor’s thesis, Cluj-Napoca, 1980 (Romania).

    Google Scholar 

  14. Acu, D. —, The Use of Quadrature Formulae in Obtaining Inequalitis, The Scientific Paper Session “Mathematical Inequalities”, 13-15 November, 1981, Sibiu, Romania.

    Google Scholar 

  15. Acu, D. —, V-Optimal formulas of quadrature with weight function of the Laguerre type, Proceedings of the second symposium of Mathematics and Its Applications, 30-31 October, 1987, Timişoara, Romania (1988), 51–54.

    Google Scholar 

  16. Acu, D. —, Extremal problems with polynomials, Symposium on “Numerical Methods with Applications to Sciences and Technique”, 13-14 November, 1987.

    Google Scholar 

  17. Bahvalor, S.V., Méthodes numériques. Moscou, 1976.

    Google Scholar 

  18. Berezin, I.S. and N.I. Zhidkov, Computational Methods (in Russian), V. 1, “Nauka”, Moskow, 1966.

    Google Scholar 

  19. DAVIS, I. and B. RABINOWITZ, “Numerical Integraltion,” London, 1967.

    Google Scholar 

  20. Ghizzetti, A. and A. Ossicini, “Quadrature Formulae,” Berlin 1970.

    Google Scholar 

  21. Ionescu, D.V., “Numerical Quadratures” (in Romain), 1957 Romania.

    Google Scholar 

  22. Nikol’skiï, S. M., “Quadrature Formulas” (in Russian), Moskow, 1974.

    Google Scholar 

  23. Locher, P., Pozitivitat bei Quadratur formulas; Habilitationnchrift, im Fachbereich Mathematik der Eberhard-Karls Universität zu Tübingen, 1972.

    Google Scholar 

  24. Stancu, D.D. and H.A. Stroud, Quadrature formulas with simple Gaussian nodes and multiple fixed nodes, Math. Comput. 17, Nr. 84 (1983), 384–394.

    Google Scholar 

  25. ToŠiĆ, D., “Uvod u numeričku analizu,” Beograd, 1987.

    Google Scholar 

  26. MitrinoviĆ, D.S., “Analytic Inequalities,” Berlin-Heidelberg-New York, 1970.

    Google Scholar 

  27. SzegÖ, G., Orthogonal Polynomials, Amer. Math. Soc. Colloquium Publ. 23, New York, 1939.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mitrinović, D.S., Pečarić, J.E., Fink, A.M. (1991). Inequalities of Bernstein-Mordell Type. In: Inequalities Involving Functions and Their Integrals and Derivatives. Mathematics and Its Applications, vol 53. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3562-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3562-7_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5578-9

  • Online ISBN: 978-94-011-3562-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics