Skip to main content

The Formation of Lipid Hydroperoxide-Derived Amide-Type Lysine Adducts on Proteins: A Review of Current Knowledge

  • Chapter
  • First Online:
Lipid Hydroperoxide-Derived Modification of Biomolecules

Part of the book series: Subcellular Biochemistry ((SCBI,volume 77))

Abstract

Lipid peroxidation is an important biological reaction. In particular, polyunsaturated fatty acid (PUFA) can be oxidized easily. Peroxidized lipids often react with other amines accompanied by the formation of various covalent adducts. Novel amide-type lipid-lysine adducts have been identified from an in vitro reaction mixture of lipid hydroperoxide with a protein, biological tissues exposed to conditions of oxidative stress and human urine from a healthy person. In this chapter, the current knowledge of amide type adducts is reviewed with a focus on the evaluation of functional foods and diseases with a history of discovery of hexanoyl-lysine (HEL). Although there is extensive research on HEL and other amide-type adducts, the mechanism of generation of the amide bond remains unclear. We have found that the decomposed aldehyde plus peroxide combined with a lysine moiety does not fully explain the formation of the amide-type lipid-lysine adduct that is generated by lipid hydroperoxide. Singlet oxygen or an excited state of the ketone generated from the lipid hydroperoxide may also contribute to the formation of the amide linkage. The amide-adducts may prove useful not only for the detection of oxidative stress induced by disease but also for the estimation of damage caused by an excess intake of PUFA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PUFA:

Polyunsaturated fatty acid

HEL:

Hexanoyl-lysine

13-HPODE:

13-hydroperoxyoctadecadienoic acid

BGK:

Benzoyl-glycyl-L-lysine

LC/MS/MS:

Liquid chromatography tandem mass spectrometry

SUL:

Succinyl-lysine

GLL:

Glutary-lysine

AZL:

Azelayl-lysine

PRL:

Propanoyl-lysine

HHE:

4-hydroxy-2-hexenal

DHA:

Docosahexaenoic acid

KLH:

Keyhole limpet hemocyanin

BSA:

Bovine serum albumin

HEEA:

Hexanoyl-ethanolamine

8OxodG/8OHdG:

8-oxo-deoxyguanosine

MRM:

Multiple reaction monitoring

LDL:

Low-density lipoprotein

MDA:

Malondialdehyde

CML:

Carboxymethyllysine

ACR:

Acrolein

CPT I:

Carnitine palmitoyltransferase I

References

  • Aoi W, Naito Y, Takanami Y, Ishii T, Kawai Y, Akagiri S, Kato Y, Osawa T, Yoshikawa T (2008) Astaxanthin improves muscle lipid metabolism in exercise via inhibitory effect of oxidative CPT I modification. Biochem Biophys Res Commun 366:892–897

    Article  CAS  PubMed  Google Scholar 

  • Calder P (2012) Mechanisms of action of (n-3) fatty acids. J Nutr 142:592S–599S

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Sprung R, Tang Y, Ball H, Sangras B, Kim S, Falck J, Peng J, Gu W, Zhao Y (2007) Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol Cell Proteomics 6:812–819

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng Z, Tang Y, Chen Y, Kim S, Liu H, Li S, Gu W, Zhao Y (2009) Molecular characterization of propionyllysines in non-histone proteins. Mol Cell Proteomics 8:45–52

    Article  CAS  PubMed  Google Scholar 

  • Das C, Lucia M, Hansen K, Tyler J (2009) CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature 459:113–117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Franceschi G, Frare E, Pivato M, Relini A, Penco A, Greggio E, Bubacco L, Fontana A, De Laureto PP (2011) Structural and morphological characterization of aggregated species of alpha-synuclein induced by docosahexaenoic acid. J Biol Chem 286:22262–22274

    Article  PubMed  Google Scholar 

  • Duthie G, Bellizzi M (1999) Effects of antioxidants on vascular health. Br Med Bull 55:568–577

    Article  CAS  PubMed  Google Scholar 

  • Esterbauer H, Schaur R, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128

    Article  CAS  PubMed  Google Scholar 

  • Fredman G, Serhan C (2011) Specialized proresolving mediator targets for RvE1 and RvD1 in peripheral blood and mechanisms of resolution. Biochem J 437:185–197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fukuchi Y, Miura Y, Nabeno Y, Kato Y, Osawa T, Naito M (2008) Immunohistochemical detection of oxidative stress biomarkers, dityrosine and N(epsilon)-(hexanoyl)lysine, and C-reactive protein in rabbit atherosclerotic lesions. J Atheroscler Thromb 15:185–192

    Article  CAS  PubMed  Google Scholar 

  • Garrity J, Gardner J, Hawse W, Wolberger C, Escalante-Semerena JC (2007) N-lysine propionylation controls the activity of propionyl-CoA synthetase. J Biol Chem 282:30239–30245

    Article  CAS  PubMed  Google Scholar 

  • Gleissman H, Yang R, Martinod K, Lindskog M, Serhan C, Johnsen J, Kogner P (2010) Docosahexaenoic acid metabolome in neural tumors: identification of cytotoxic intermediates. FASEB J 24:906–915

    Article  CAS  PubMed  Google Scholar 

  • Hisaka S, Kato Y, Kitamoto N, Yoshida A, Kubushiro Y, Naito M, Osawa T (2009) Chemical and immunochemical identification of propanoyllysine derived from oxidized n-3 polyunsaturated fatty acid. Free Radic Biol Med 46:1463–1471

    Article  CAS  PubMed  Google Scholar 

  • Ishino K, Shibata T, Ishii T, Liu Y, Toyokuni S, Zhu X, Sayre L, Uchida K (2008) Protein N-acylation: H2O2-mediated covalent modification of protein by lipid peroxidation-derived saturated aldehydes. Chem Res Toxicol 21:1261–1270

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Osawa T (1998) Detection of oxidized phospholipid-protein adducts using anti-15-hydroperoxyeicosatetraenoic acid-modified protein antibody: contribution of esterified fatty acid-protein adduct to oxidative modification of LDL. Arch Biochem Biophys 351:106–114

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Osawa T (2002) Detection of lipid hydroperoxide-derived protein modification with polyclonal antibodies. Methods Mol Biol 186:37–44

    CAS  PubMed  Google Scholar 

  • Kato Y, Osawa T (2009) Detection of a lipid-lysine adduct family with an amide bond as the linkage: novel markers for lipid-derived protein modifications. Methods Mol Biol 580:129–141

    CAS  PubMed  Google Scholar 

  • Kato Y, Osawa T (2010) Detection of lipid-lysine amide-type adduct as a marker of PUFA oxidation and its applications. Arch Biochem Biophys 501:182–187

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Makino Y, Osawa T (1997) Characterization of a specific polyclonal antibody against 13-hydroperoxyoctadecadienoic acid-modified protein: formation of lipid hydroperoxide-modified apoB-100 in oxidized LDL. J Lipid Res 38:1334–1346

    CAS  PubMed  Google Scholar 

  • Kato Y, Mori Y, Makino Y, Morimitsu Y, Hiroi S, Ishikawa T, Osawa T (1999) Formation of Nepsilon-(hexanonyl)lysine in protein exposed to lipid hydroperoxide. A plausible marker for lipid hydroperoxide-derived protein modification. J Biol Chem 274:20406–20414

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Miyake Y, Yamamoto K, Shimomura Y, Ochi H, Mori Y, Osawa T (2000) Preparation of a monoclonal antibody to N(epsilon)-(Hexanonyl)lysine: application to the evaluation of protective effects of flavonoid supplementation against exercise-induced oxidative stress in rat skeletal muscle. Biochem Biophys Res Commun 274:389–393

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Yoshida A, Naito M, Kawai Y, Tsuji K, Kitamura M, Kitamoto N, Osawa T (2004) Identification and quantification of N(epsilon)-(hexanoyl)lysine in human urine by liquid chromatography/tandem mass spectrometry. Free Radic Biol Med 37:1864–1874

    Article  CAS  PubMed  Google Scholar 

  • Kawai Y, Kato Y, Fujii H, Makino Y, Mori Y, Naito M, Osawa T (2003a) Immunochemical detection of a novel lysine adduct using an antibody to linoleic acid hydroperoxide-modified protein. J Lipid Res 44:1124–1131

    Article  CAS  PubMed  Google Scholar 

  • Kawai Y, Saito A, Shibata N, Kobayashi M, Yamada S, Osawa T, Uchida K (2003b) Covalent binding of oxidized cholesteryl esters to protein: implications for oxidative modification of low density lipoprotein and atherosclerosis. J Biol Chem 278:21040–21049

    Article  CAS  PubMed  Google Scholar 

  • Kawai Y, Fujii H, Kato Y, Kodama M, Naito M, Uchida K, Osawa T (2004) Esterified lipid hydroperoxide-derived modification of protein: formation of a carboxyalkylamide-type lysine adduct in human atherosclerotic lesions. Biochem Biophys Res Commun 313:271–276

    Article  CAS  PubMed  Google Scholar 

  • Kawai Y, Fujii H, Okada M, Tsuchie Y, Uchida K, Osawa T (2006) Formation of Nepsilon-(succinyl)lysine in vivo: a novel marker for docosahexaenoic acid-derived protein modification. J Lipid Res 47:1386–1398

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Sabbagh F, Santanam N, Wilcox J, Medford R, Parthasarathy S (1997) Generation of a polyclonal antibody against lipid peroxide-modified proteins. Free Radic Biol Med 23:251–259

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Taylor W, Parthasarathy S (1999) Demonstration of the presence of lipid peroxide-modified proteins in human atherosclerotic lesions using a novel lipid peroxide-modified anti-peptide antibody. Atherosclerosis 143:335–340

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin N, White M, Yang X, Zhao Y (2006) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 23:607–618

    Article  CAS  PubMed  Google Scholar 

  • Levonen A, Landar A, Ramachandran A, Ceaser E, Dickinson D, Zanoni G, Morrow J, Darley-Usmar VM (2004) Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. Biochem J 378:373–382

    Article  CAS  PubMed  Google Scholar 

  • Levy B (2010) Resolvins and protectins: natural pharmacophores for resolution biology. Prostaglandins Leukot Essent Fatty Acids 82:327–332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meir K, Leitersdorf E (2004) Atherosclerosis in the apolipoprotein-E-deficient mouse: a decade of progress. Arterioscler Thromb Vasc Biol 24:1006–1014

    Article  CAS  PubMed  Google Scholar 

  • Metz T, Alderson N, Chachich M, Thorpe S, Baynes J (2003) Pyridoxamine traps intermediates in lipid peroxidation reactions in vivo: evidence on the role of lipids in chemical modification of protein and development of diabetic complications. J Biol Chem 278:42012–42019

    Article  CAS  PubMed  Google Scholar 

  • Minato K, Miyake Y, Fukumoto S, Yamamoto K, Kato Y, Shimomura Y, Osawa T (2003) Lemon flavonoid, eriocitrin, suppresses exercise-induced oxidative damage in rat liver. Life Sci 72:1609–1616

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto S, Martinez G, Medeiros M, Di Mascio P (2003) Singlet molecular oxygen generated from lipid hydroperoxides by the Russell mechanism: studies using 18(O)-labeled linoleic acid hydroperoxide and monomol light emission measurements. J Am Chem Soc 125:6172–6179

    Article  CAS  PubMed  Google Scholar 

  • Natsch A, Gfeller H, Haupt T, Brunner G (2012) Chemical reactivity and skin sensitization potential for benzaldehydes: can Schiff base formation explain everything? Chem Res Toxicol 25:2203–2215

    Article  CAS  PubMed  Google Scholar 

  • Okada H, Naito Y, Takagi T, Takaoka M, Oya-Ito T, Fukumoto K, Uchiyama K, Handa O, Kokura S, Nagano Y, Matsui H, Kato Y, Osawa T, Yoshikawa T (2012) Detection of N-(hexanoyl)lysine in the tropomyosin 1 protein in N-methyl-N′-nitro-N-nitrosoguanidine-induced rat gastric cancer cells. J Clin Biochem Nutr 50:47–52

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Onorato J, Jenkins A, Thorpe S, Baynes J (2000) Pyridoxamine, an inhibitor of advanced glycation reactions, also inhibits advanced lipoxidation reactions. Mechanism of action of pyridoxamine. J Biol Chem 275:21177–21184

    Article  CAS  PubMed  Google Scholar 

  • Osakabe N, Yasuda A, Natsume M, Sanbongi C, Kato Y, Osawa T, Yoshikawa T (2002) Rosmarinic acid, a major polyphenolic component of Perilla frutescens, reduces lipopolysaccharide (LPS)-induced liver injury in D-galactosamine (D-GalN)-sensitized mice. Free Radic Biol Med 33:798–806

    Article  CAS  PubMed  Google Scholar 

  • Palinski W, Yla-Herttuala S, Rosenfeld M, Butler S, Socher S, Parthasarathy S, Curtiss L, Witztum J (1990) Antisera and monoclonal antibodies specific for epitopes generated during oxidative modification of low density lipoprotein. Arteriosclerosis 10:325–335

    Article  CAS  PubMed  Google Scholar 

  • Riazy M, Lougheed M, Adomat H, Guns E, Eigendorf G, Duronio V, Steinbrecher U (2011) Fluorescent adducts formed by reaction of oxidized unsaturated fatty acids with amines increase macrophage viability. Free Radic Biol Med 51:1926–1936

    Article  CAS  PubMed  Google Scholar 

  • Roberts LN, Montine T, Markesbery W, Tapper A, Hardy P, Chemtob S, Dettbarn W, Morrow J (1998) Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid. J Biol Chem 273:13605–13612

    Article  CAS  PubMed  Google Scholar 

  • Shibata T, Shimozu Y, Wakita C, Shibata N, Kobayashi M, Machida S, Kato R, Itabe H, Zhu X, Sayre L, Uchida K (2011) Lipid peroxidation modification of protein generates Nepsilon-(4-oxononanoyl)lysine as a pro-inflammatory ligand. J Biol Chem 286:19943–19957

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Sugiyama A, Hisaka S, Kato Y, Takeuchi T (2012) Immunohistochemical detection of polyunsaturated fatty acid oxidation markers in acetaminophen-induced liver injury in rats. J Vet Med Sci 74:141–147

    Article  CAS  PubMed  Google Scholar 

  • Tsuji K, Kawai Y, Kato Y, Osawa T (2003) Formation of N-(hexanoyl)ethanolamine, a novel phosphatidylethanolamine adduct, during the oxidation of erythrocyte membrane and low-density lipoprotein. Biochem Biophys Res Commun 306:706–711

    Article  CAS  PubMed  Google Scholar 

  • Uchida K, Toyokuni S, Nishikawa K, Kawakishi S, Oda H, Hiai H, Stadtman E (1994) Michael addition-type 4-hydroxy-2-nonenal adducts in modified low-density lipoproteins: markers for atherosclerosis. Biochemistry 33:12487–12494

    Article  CAS  PubMed  Google Scholar 

  • Uchida K, Kanematsu M, Sakai K, Matsuda T, Hattori N, Mizuno Y, Suzuki D, Miyata T, Noguchi N, Niki E, Osawa T (1998) Protein-bound acrolein: potential markers for oxidative stress. Proc Natl Acad Sci U S A 95:4882–4887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Uddin M, Levy B (2011) Resolvins: natural agonists for resolution of pulmonary inflammation. Prog Lipid Res 50:75–88

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ueno Y, Horio F, Uchida K, Naito M, Nomura H, Kato Y, Tsuda T, Toyokuni S, Osawa T (2002) Increase in oxidative stress in kidneys of diabetic Akita mice. Biosci Biotechnol Biochem 66:869–872

    Article  CAS  PubMed  Google Scholar 

  • Weisburger J (2001) Chemopreventive effects of cocoa polyphenols on chronic diseases. Exp Biol Med (Maywood) 226:891–897

    CAS  Google Scholar 

  • Yamada S, Funada T, Shibata N, Kobayashi M, Kawai Y, Tatsuda E, Furuhata A, Uchida K (2004) Protein-bound 4-hydroxy-2-hexenal as a marker of oxidized n-3 polyunsaturated fatty acids. J Lipid Res 45:626–634

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Sayre L (2007) Long-lived 4-oxo-2-enal-derived apparent lysine Michael adducts are actually the isomeric 4-ketoamides. Chem Res Toxicol 20:165–170

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Tang X, Anderson V, Sayre L (2009) Mass spectrometric characterization of protein modification by the products of nonenzymatic oxidation of linoleic acid. Chem Res Toxicol 22:1386–1397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to sincerely thank Professor Toshihiko Osawa for his encouragement during this study. I appreciate Professor Sayuri Miyamoto for her valuable comments. I express my thanks to Mr. Akihiro Yoshida (Nakatsugawa Municipal Hospital) and Dr. Michitaka Naito (Sugiyama-Jyogakuen University) for kindly providing the urine samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoji Kato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kato, Y. (2014). The Formation of Lipid Hydroperoxide-Derived Amide-Type Lysine Adducts on Proteins: A Review of Current Knowledge. In: Kato, Y. (eds) Lipid Hydroperoxide-Derived Modification of Biomolecules. Subcellular Biochemistry, vol 77. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7920-4_2

Download citation

Publish with us

Policies and ethics