Skip to main content

Markov State and Diffusive Stochastic Models in Electron Spin Resonance

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 797))

Abstract

Electron spin resonance (ESR) spectra of biological macromolecules reflect a wide range of dynamical molecular motions. However, because an electron spin is strongly coupled to its environment, the quantal degrees of freedom must be propagated for hundreds of nanoseconds to calculate spectra with a reasonable resolution of detail. Furthermore, a large number of independent “samples” are necessary for a reliable estimate of the ESR spectrum. For this reason, a direct calculation from molecular dynamics (MD) simulations is inefficient and wasteful route. As a practical alternative, we present a methodology in which stochastic are first constructed from MD simulations and then used to calculate ESR spectra. Discrete Markov state models (MSMs) offer a natural representation of the jump-like isomerization dynamics of a spin label attached to a protein through a flexible linker. A pedagogical introduction to the second half of the formalism—accounting for the coupling between the molecular and the spin dynamics—is also provided. The chapter concludes with a successful application of the methodology to multi-frequency ESR spectroscopy of spin-labeled T4 Lysozyme.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Although not rigorously correct, the assumption that the classical dynamics is completely uninfluenced by the states of the quantum system is typically an excellent approximation for room-temperature magnetic resonance. One minor inconvenience is that the equilibrium population of the states of the spin system corresponds to an infinite temperature. This, however, affects only the longitudinal magnetization but not the transverse magnetization whose evolution is calculated.

  2. 2.

    A time-dependent or constant rotation matrix is associated with each successive transformation in a motional model like (10.5). The matrix for the net transformation from L to N, to be employed in (10.4), is obtained as the product of the successive rotation matrices: R LN(t)=R LM R MS(t)R SN.

  3. 3.

    Splitting the molecular motion according to (10.7) assumes that the overall molecular tumbling and the motion of the spin label with respect to the global molecular frame are independent [23]. Clearly, this approximation may break in some cases, e.g., when an internal structural rearrangement changes the overall structure—and hence the rotational diffusion tensor—of the whole molecule. Nevertheless, in many instances with spin-labeled biomacromolecules the approximation of decoupled global and internal motions is well justified.

  4. 4.

    In protein crystal structures the side chain of cysteine is very rarely seen to adopt a conformation with χ 1≈+60 when located on α helices since this places the cysteine sulfur atom in unfavorable steric contact with the backbone atoms of the helix.

  5. 5.

    The observation that, considering the multiplicity of its dihedral angles, the R1 side chain can adopt 108 different rotameric states motivated the choice of number of microstates.

  6. 6.

    Since the absolute value of the cw-ESR measurement depends on instrumental factors and is not relevant for our purposes, proportionality constants relating the magnetizations and the respective spin operators have been neglected in (10.16).

  7. 7.

    These are

    $$\begin{aligned} \hat{S}_0&= \left [\begin{array}{c@{\quad}c}1 & 0 \\ 0 & 1 \end{array} \right ] , \qquad \hat{S}_+= \left [\begin{array}{c@{\quad}c}0 & 1 \\ 0 & 0 \end{array} \right ] ,\\ \hat{S}_-&= \left [\begin{array}{c@{\quad}c}0 & 0 \\ 1 & 0 \end{array} \right ] ,\qquad \hat{S}_z=\frac{1}{2} \left [\begin{array}{c@{\quad}c}1 & 0 \\ 0 & -1 \end{array} \right ] . \end{aligned} $$
  8. 8.

    In principle, the submatrix ρ 0 in (10.17) contains the 3×3 or 2×2 identity matrix I 0 along its main diagonal. However, the part proportional to the identity matrix is neither affected by the relaxation or the coherent evolution nor does it affect the evolution of the rest of the density matrix. Hence, ρ 0 can be taken as traceless.

  9. 9.

    As mentioned above, the justification lies in the fact that the time scale T 1—on which ρ z and ρ 0 build up—depends on motions at the time scale of the Larmor precession and is much longer than the time scale T 2—on which ρ + decays—dominated by slow motions. The high field approximation automatically excludes the possibility to account for the contribution of T 1 processes to T 2 relaxation using Eq. (10.22).

  10. 10.

    The numerical advantages associated with working in the rotating frame are apparent from (10.27), where the transverse magnetization M +(t) consists of a rapidly oscillating “carrier” wave whose amplitude is modulated by the slowly changing “signal” \(M_{+}^{\prime}(t)\). Thus, following M +(t) numerically would require an integration time step sufficient to resolve the fast oscillations on the time scale of the Larmor precession (cf. Table 10.3). In contrast, calculating the slowly changing \(M_{+}^{\prime}(t)\) numerically allows us to take time steps larger by several orders of magnitude.

  11. 11.

    Note that the same propagator matrix acts on both sides of \({\rho}_{+}^{\prime}\) in this equation, which is different from the propagation of the density matrix ρ in the full Hilbert space. The source of the difference lies in replacing the commutator in (10.19) by an anticommutator in (10.22).

References

  1. Abragam A (1961) The principles of nuclear magnetism. Oxford University Press, New York

    Google Scholar 

  2. Anderson PW (1954) A mathematical model for the narrowing of spectral lines by exchange or motion. J Phys Soc Jpn 9(3):316–339

    Article  Google Scholar 

  3. Barnes JP, Liang Z, Mchaourab HS, Freed JH, Hubbell WL (1999) A multifrequency electron spin resonance study of T4 Lysozyme dynamics. Biophys J 76(23):298–3306

    Google Scholar 

  4. Beier C, Steinhoff HJ (2006) A structure-based simulation approach for electron paramagnetic resonance spectra using molecular and stochastic dynamics simulations. Biophys J 91:2647–2664

    Article  PubMed  CAS  Google Scholar 

  5. Bennati M, Prisner TF (2005) New developments in high field electron paramagnetic resonance with applications in structural biology. Rep Prog Phys 68(2)

    Google Scholar 

  6. Borbat PP, Costa-Filho AJ, Earle KA, Moscicki JK, Freed JH (2001) Electron spin resonance in studies of membranes and proteins. Science 291:266–269

    Article  PubMed  CAS  Google Scholar 

  7. Budil DE, Lee S, Saxena S, Freed JH (1996) Nonlinear-least-squares analysis of slow-motion EPR spectra in one and two dimensions using a modified Levenberg-Marquardt algorithm. J Magn Reson, Ser A 120:155–189

    Article  CAS  Google Scholar 

  8. Budil DE, Sale KL, Khairy KA, Fajer PG (2006) Calculating slow-motional electron paramagnetic resonance spectra from molecular dynamics using a diffusion operator approach. J Phys Chem A 110:3703–3713

    Article  PubMed  CAS  Google Scholar 

  9. Cekan P, Sigurdsson ST (2009) Identification of single-base mismatches in duplex DNA by EPR spectroscopy. J Am Chem Soc 131(50):18,054–18,056

    Article  CAS  Google Scholar 

  10. Columbus L, Hubbell WL (2002) A new spin on protein dynamics. Trends Biochem Sci 27:288–295

    Article  PubMed  CAS  Google Scholar 

  11. Columbus L, Kalai T, Jeko J, Hideg K, Hubbell WL (2001) Molecular motion of spin labeled side chains in α-helices: analysis by variation of side chain structure. Biochemistry 40:3828–3846

    Article  PubMed  CAS  Google Scholar 

  12. DeSensi SC, Rangel D, Lybrand TP, Hustedt EJ (2008) The calculation of nitroxide cw-EPR spectra from Brownian dynamic trajectories and molecular dynamics simulations. Biophys J 94(10):3798–3809

    Article  PubMed  CAS  Google Scholar 

  13. Earle KA, Dzikovski B, Hofbauer W, Moscicki JK, Freed JH (2005) High-frequency ESR an ACERT. Magn Reson Chem 43:S256–S266

    Article  PubMed  CAS  Google Scholar 

  14. Eviatar H, van Faassen E, Levine Y, Hoult D (1994) Time-domain simulation of ESR spectra of nitroxide spin probes. Chem Phys 181:369–376

    Article  CAS  Google Scholar 

  15. Eviatar H, van der Heide U, Levine YK (1995) Computer simulations of the electron spin resonance spectra of steroid and fatty acid nitroxide probes in bilayer systems. J Chem Phys 102:3135–3145

    Article  CAS  Google Scholar 

  16. Fanucci GE, Cafiso DS (2006) Recent advances and applications of site-directed spin labeling. Curr Opin Struct Biol 16:644–653

    Article  PubMed  CAS  Google Scholar 

  17. Fedchenia II, Westlund PO, Cegrell U (1993) Brownian dynamics simulation of restricted molecular diffusion. The symmetric and deformed cone models. Mol Simul 11:373–393

    Article  CAS  Google Scholar 

  18. Fleissner MR, Cascio D, Hubbell WL (2009) Structural origin of weakly ordered nitroxide motion in spin-labeled proteins. Protein Sci 18(5):893–908

    Article  PubMed  CAS  Google Scholar 

  19. Freed JH (1976) Theory of slow motional ESR spectra for nitroxides. In: Berliner LJ (ed) Spin labeling: theory and application. Academic Press, New York, pp 53–132

    Google Scholar 

  20. Freed JH (2000) New technologies in electron spin resonance. Annu Rev Phys Chem 51:655–689

    Article  PubMed  CAS  Google Scholar 

  21. Guo Z, Cascio D, Hideg K, Kalai T, Hubbell WL (2007) Structural determination of nitroxide motion in spin-labeled proteins: tertiary contact and solvent-inaccessible sites in helix G of T4 Lysozyme. Protein Sci 16:1069–1086

    Article  PubMed  CAS  Google Scholar 

  22. Hakansson P, Westlund PO, Lindahl E, Edholm O (2001) A direct simulation of EPR slow-motion spectra of spin labelled phospholipids in liquid crystalline bilayers based on a molecular dynamics simulation of the lipid dynamics. Phys Chem Chem Phys 3:5311–5319

    Article  CAS  Google Scholar 

  23. Halle B (2009) The physical basis of model-free analysis of NMR relaxation data from proteins and complex fluids. J Chem Phys 131(22):224,507–224,522

    Article  Google Scholar 

  24. Hartigan JA (1975) Clustering algorithms. Wiley, New York

    Google Scholar 

  25. Jiao D, Barfield M, Combariza JE, Hruby VJ (1992) Ab initio molecular orbital studies of the rotational barriers and the sulfur-33 and carbon-13 chemical shieldings for dimethyl disulfide. J Am Chem Soc 114(10):3639–3643

    Article  CAS  Google Scholar 

  26. Klare JP, Steinhoff HJ (2009) Spin labeling EPR. Photosynth Res 102(2–3):377–390

    Article  PubMed  CAS  Google Scholar 

  27. Krstic I, Endeward B, Margraf D, Marko A, Prisner TF (2012) Structure and dynamics of nucleic acids. Top Curr Chem 321:159–198

    PubMed  CAS  Google Scholar 

  28. Kubo R (1954) Note on the stochastic theory of resonance absorption. J Phys Soc Jpn 9(6):935–944

    Article  CAS  Google Scholar 

  29. Kubo R (1969) A stochastic theory of line shape. Adv Chem Phys 15:101–127

    Google Scholar 

  30. Kuprusevicius E, White G, Oganesyan VS (2011) Prediction of nitroxide spin label EPR spectra from MD trajectories: application to myoglobin. Faraday Discuss 148:283–298

    Article  PubMed  CAS  Google Scholar 

  31. Langen R, Oh KJ, Cascio D, Hubbell WL (2000) Crystal structures of spin labeled T4 Lysozyme mutants: implications for the interpretation of EPR spectra in terms of structure. Biochemistry 39:8396–8405

    Article  PubMed  CAS  Google Scholar 

  32. Levitt MH (2008) Spin dynamics: basics of nuclear magnetic resonance, 2nd edn. Wiley, Chichester

    Google Scholar 

  33. Liang Z, Lou Y, Freed JH, Columbus L, Hubbell WL (2004) A multifrequency electron spin resonance study of T4 Lysozyme dynamics using the slowly relaxing local structure model. J Phys Chem B 108:17,649–17,659

    Article  CAS  Google Scholar 

  34. Maragakis P, Lindorff-Larsen K, Eastwood MP, Dror RO, Klepeis JL, Arkin IT, Jensen MO, Xu H, Trbovic N, Friesner RA, Palmer AG, Shaw DE (2008) Microsecond molecular dynamics simulation shows effect of slow loop dynamics on backbone amide order parameters of proteins. J Phys Chem B 112(19):6155–6158

    Article  PubMed  CAS  Google Scholar 

  35. Mchaourab HS, Kalai T, Hideg K, Hubbell WL (1999) Motion of spin-labeled side chains in T4 Lysozyme: effect of side chain structure. Biochemistry 38:2947–2955

    Article  PubMed  CAS  Google Scholar 

  36. Mchaourab HS, Lietzow MA, Hideg K, Hubbell WL (1996) Motion of spin-labeled side chains in T4 Lysozyme. Correlation with protein structure and dynamics. Biochemistry 35:7692–7704

    Article  PubMed  CAS  Google Scholar 

  37. Mchaourab HS, Steed PR, Kazmier K (2011) Toward the fourth dimension of membrane protein structure: insight into dynamics from spin-labeling EPR spectroscopy. Structure 19(11):1549–1561

    Article  PubMed  CAS  Google Scholar 

  38. Meirovitch E, Nayeem A, Freed JH (1984) Analysis of protein-lipid interactions based on model simulations of electron spin resonance spectra. J Phys Chem 88:3454–3465

    Article  CAS  Google Scholar 

  39. Norris JR (1997) Markov chains. Cambridge University Press, Cambridge

    Book  Google Scholar 

  40. Polimeno A, Freed JH (1993) A many-body stochastic approach to rotational motions in liquids. Adv Chem Phys 83:89–210

    CAS  Google Scholar 

  41. Polimeno A, Freed JH (1995) Slow motional ESR in complex fluids: the slowly relaxing local structure model of solvent cage effects. J Phys Chem 99:10,995–11,006

    Article  CAS  Google Scholar 

  42. Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77:257–286

    Article  Google Scholar 

  43. Redfield AG (1957) On the theory of relaxation processes. IBM J Res Dev 1:19–31

    Article  Google Scholar 

  44. Robinson BH, Slutsky LJ, Auteri FP (1992) Direct simulation of continuous wave electron paramagnetic resonance spectra from Brownian dynamics trajectories. J Chem Phys 96:2609–2616

    Article  CAS  Google Scholar 

  45. Roux B (1994) The calculation of the potential of mean force using computer simulations. Comput Phys Commun 91:275–282

    Article  Google Scholar 

  46. Schneider DJ, Freed JH (1989) Spin relaxation and motional dynamics. Adv Chem Phys 73:387–527

    CAS  Google Scholar 

  47. Sezer D, Freed JH, Roux B (2008) Parametrization, molecular dynamics simulation, and calculation of electron spin resonance spectra of a nitroxide spin label on a polyalanine alpha-helix. J Phys Chem B 112(18):5755–5767

    Article  PubMed  CAS  Google Scholar 

  48. Sezer D, Freed JH, Roux B (2008) Simulating electron spin resonance spectra of nitroxide spin labels from molecular dynamics and stochastic trajectories. J Chem Phys 128(16):165,106–165,116

    Article  Google Scholar 

  49. Sezer D, Freed JH, Roux B (2008) Using Markov models to simulate electron spin resonance spectra from molecular dynamics trajectories. J Phys Chem B 112(35):11,014–11,027

    Article  CAS  Google Scholar 

  50. Sezer D, Freed JH, Roux B (2009) Multifrequency electron spin resonance spectra of a spin-labeled protein calculated from molecular dynamics simulations. J Am Chem Soc 131(7):2597–2605

    Article  PubMed  CAS  Google Scholar 

  51. Sezer D, Sigurdsson ST (2011) Simulating electron spin resonance spectra of macromolecules labeled with two dipolar-coupled nitroxide spin labels from trajectories. Phys Chem Chem Phys 13(28):12,785–12,797

    Article  CAS  Google Scholar 

  52. Steinhoff HJ, Hubbell W (1996) Calculation of electron paramagnetic resonance spectra from Brownian dynamics trajectories: application to nitroxide side chains in proteins. Biophys J 71:2201–2212

    Article  PubMed  CAS  Google Scholar 

  53. Stoica I (2004) Using molecular dynamics to simulate electronic spin resonance spectra of T4 Lysozyme. J Phys Chem B 108(5):1771–1782

    Article  CAS  Google Scholar 

  54. Tombolato F, Ferrarini A, Freed JH (2006) Dynamics of nitroxide side chain in spin-labeled proteins. J Phys Chem B 110:26,248–26,259

    Article  CAS  Google Scholar 

  55. Usova N, Westlund PO, Fedchenia I (1995) Direct simulation of slow-motion electron spin resonance spectra by solving the stochastic Liouville equation in time domain with stochastic dynamics in the form of trajectories. J Chem Phys 103:96–103

    Article  CAS  Google Scholar 

  56. Zhang Z, Fleissner MR, Tipikin DS, Liang Z, Moscicki JK, Earle KA, Hubbell WL, Freed JH (2010) Multifrequency electron spin resonance study of the dynamics of spin labeled T4 Lysozyme. J Phys Chem B 114(16):5503–5521

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deniz Sezer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sezer, D., Roux, B. (2014). Markov State and Diffusive Stochastic Models in Electron Spin Resonance. In: Bowman, G., Pande, V., Noé, F. (eds) An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation. Advances in Experimental Medicine and Biology, vol 797. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7606-7_10

Download citation

Publish with us

Policies and ethics