Skip to main content

High Density Outdoor Microalgal Culture

  • Chapter
  • First Online:

Abstract

Despite the common use of open raceway pond technology for algae production, the system has many serious drawbacks resulting in low productivities and relatively high production costs. The key to higher yields and a cheaper product rests with the lowering of culture volume by decreasing the thickness of the algal layer exposed to the light. The higher the culture surface-to-volume ratio (S/V), the higher the culture density and the lower the cost of handling and harvesting. Basic parameters (light, temperature, mixing, carbon dioxide, oxygen, nutrition) affecting algal productivity in thin-layer (TL) photobioreactor have been assessed. In a low volume of vigorously mixed culture, utilization of light energy and algal yields are increased. Production costs are reduced to about one fifth (20 %) compared to raceways ponds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

DO:

dissolved oxygen

dw:

dry weight

EPDM:

ethyl propylene dimer

PAR:

photosynthetic active radiation

PE:

photosynthetic efficiency

PUFA:

polyunsaturated fatty acid

S/V:

surface to volume ratio

TL:

thin layer

References

  • Akyev AY, Tsoglin LN (1992) Effect of oxygen on O2 exchange and increase of cell biomass in the development cycle of Chlorella. Soviet Plant Physiol 39:312–317

    Google Scholar 

  • Apt KE, Behrens PW (1999) Commercial developments in microalgal biotechnology. J. Phycol 35(2):215–226

    Article  Google Scholar 

  • Becker EW, Venkataraman LV (1980) Production and processing of algae in pilot plant scale experiences of the Indo-German project. In: Shelef G, Soeder CJ (ed) Algae biomass production and use. Elsevier/North Holland Biomedical Press, Amsterdam, pp 35–50

    Google Scholar 

  • Becker EW (1994) Microalgae: biotechnology and microbiology, Cambridge studies in biotechnology 10, Cambridge University Press, Cambridge

    Google Scholar 

  • Belay A (1997) Mass culture of Spirulina outdoors—the earthrise farms experience. In: Vonshak A (ed) Spirulina platensis (Arthrospira), physiology, cell biology and biotechnology. Taylor & Francis, London, pp 131–158

    Google Scholar 

  • Ben-Yaakov S, Guterman H, Vonshak A, Richmond A (1985) An automatic method for on-line estimation of the photosynthetic rate in open algal ponds. Biotechnol Bioeng 27:1136–1145

    Article  PubMed  CAS  Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    Article  CAS  Google Scholar 

  • Carlozzi P (2003) Dilution of solar radiation through “culture” lamination in photobioreactor rows facing south-north: a way to improve the efficiency of light utilization by cyanobacteria (Arthrospira platensis). Biotechnol Bioeng 81:305–315

    Article  PubMed  CAS  Google Scholar 

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506

    PubMed  CAS  Google Scholar 

  • Castillo JS, Merino FM, Heussler P (1980) Production and ecological implications of algae mass culture under Peruvian conditions. In: Shelef G, Soeder CJ (ed) Algae biomass production and use. Elsevier/North Holland Biomedical Press, Amsterdam, pp 123–134

    Google Scholar 

  • Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Biores Technol 102:71–81

    Article  CAS  Google Scholar 

  • Chisti Y (2006) Microalgae as sustainable cell factories. Environ Eng Manag J 5:261–274

    CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  PubMed  CAS  Google Scholar 

  • Demirbas A (2010) Use of algae as biofuel sources. Energy conversion and management 51(12):2738–2749

    Article  CAS  Google Scholar 

  • Doucha J (1998) The Chlorella programme in the Czech Republic. Inst Microbiol, Czech Acad Sci 16

    Google Scholar 

  • Doucha J (2012) Are microalgae suitable for production of bioethanol? (In Czech). Energie 21 5(2):34–37

    Google Scholar 

  • Doucha J, Lívanský K (1995a) Process of solar cultivation of microscopic algae and bioreactor for performing the process. Cz patent No 279579

    Google Scholar 

  • Doucha J, Lívanský K (1995b) Novel outdoor thin-layer high density microalgal culture system: productivity and operational parameters. Arch Hydrobiol/Algolog Stud 76:129–147

    Google Scholar 

  • Doucha J, Lívanský K (1998, 1999) Process of outdoor thin-layer cultivation of microalgae and blue-green algae and bioreactor for performing the process. Greek patent 1002924; US Patent 5981271 A

    Google Scholar 

  • Doucha J, Lívanský K (2006) Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate. J Appl Phycol 18:811–826

    Article  CAS  Google Scholar 

  • Doucha J, Lívanský K (2008) Influence of processing parameters on disintegration of Chlorella cells in various types of homogenizers. Appl Microbiol Biotechnol 81:431–440

    Article  PubMed  CAS  Google Scholar 

  • Doucha J, Lívanský K (2009) Outdoor open thin-layer microalgal photobioreactor: potential productivity. J Appl Phycol 21(1):111–117

    Article  CAS  Google Scholar 

  • Doucha J, Lívanský K, Bínová J, Kubičko P, Novotný P (1993) Thin-layer high density microalgal culture system: productivity and energy costs. In: Masojídek J, Šetlík I (eds) Progress in biotechnology of photoautotrophic microorganisms, Book of abstracts, 6th Int Conf on Appl Algology, České Budějovice, 6–11 September

    Google Scholar 

  • Doucha J, Straka F, Lívanský K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412

    Article  Google Scholar 

  • Doušková I, Doucha J, Lívanský K, Machát J, Novák P, Umysová D, Zachleder V, Vítová M (2009) Simultaneous flue gas bioremediation and reduction of microalgal production costs. Appl Microbiol Biotechnol 82:179–185

    Article  PubMed  Google Scholar 

  • EUREKA project OE 221 BIOFIX of the Ministry of Education, Youth and Sports of the Czech Republic (2006–2009): Use of carbon dioxide from flue gas for production of microalgae

    Google Scholar 

  • EUREKA project OE 09025 ALGANOL of the Ministry of Education, Youth and Sports of the Czech Republic (2009–2012): Production of biofuels from microalgae with a high content of starch and lipids using flue gas CO2 as a carbon source

    Google Scholar 

  • Fournadzieva S, Pillarski P (1993) Mass culture and application of algae in Bulgaria. In: Masojídek J, Šetlík I (eds) Progress in biotechnology of photoautotrophic microorganisms, Book of abstracts. 6th Int Conf on Appl Algology, České Budějovice 6–11 September

    Google Scholar 

  • Fournadzieva S, Gabev A, Pilarski P, Dittrt F (1993) Oxygen evolution, productivity and biomass quality of open mass algal cultures under conditions of increased medium bicarbonate content. Arch Hydrobiol/Algolog Stud 71:103–110

    Google Scholar 

  • Goldman JC, Dennett MR, Riley CB (1981) Inorganic carbon sources and biomass regulation in inorganic microalgal cultures. Biotechnol Bioeng 23:995–1014

    Article  CAS  Google Scholar 

  • Grima EM, Fernández FGA, Camacho FG, Vhosti Y (1999) Photobioreactors, light regime, mass transfer, and scaleup. J Biotechnol 70(1–3):231–247

    Article  Google Scholar 

  • Grobbelaar JU (1989) Do light/dark cycles of medium frequency enhance phytoplankton productivity? J Appl Phycol 1:333–340

    Article  Google Scholar 

  • Grobbelaar JU (1991) The influence of light/dark cycles in mixed algal cultures on their productivity. Biores Technol 38(2–3):189–194

    Article  Google Scholar 

  • Grobbelaar JU, Soeder CJ, Stengel E (1990) Modeling algal productivity in large outdoor cultures and waste treatment systems. Biomass 21:297–314

    Article  Google Scholar 

  • Grobbelaar JU, Nedbal L, Tichý V, Šetlík I (1995) Variation in some photosynthetic characteristics of microalgae cultured in outdoor thin-layer sloping reactors. J Appl Phycol 7:175–184

    Article  CAS  Google Scholar 

  • Hartig P, Grobbelaar JU, Soeder CJ, Groeneweg J (1988) On the mass culture of microalgae: areal density as an important factor for achieving maximal productivity. Biomass 15:211–221

    Article  Google Scholar 

  • Janssen M, Tramper J, Mur LC, Wijffels RH (2003) Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol Bioeng 81(2):193–210

    Article  PubMed  CAS  Google Scholar 

  • Kok B (1953) Experiments on photosynthesis by Chlorella in flashing light. In: Burlew B (ed) Algal cultures from laboratory to pilot plant. Carnegie Institution of Washington Publication 600, Washington DC, pp 63–158

    Google Scholar 

  • Kubín Š, Borns E, Doucha J, Weiss V (1983) Light absorption and production rate of Chlorella vulgaris in light of different spectral composition. Biochem Physiol Pflanzen 178:193–205

    Article  Google Scholar 

  • Kunjapur AM, Eldridge RB (2010) Photobioreactor design for commercial biofuel production from microalgae. Ind Chem Eng 49:3516–3526

    Article  CAS  Google Scholar 

  • Lam MK, Lee KT (2012) Microalgae, biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30(3):673–690

    Article  PubMed  CAS  Google Scholar 

  • Laws EA, Terry KL, Wickman J, Chalup MS (1983) A simple algal production system designed to utilize the flashing light effect. Biotechnol Bioeng 25:2319–2335

    Article  PubMed  CAS  Google Scholar 

  • Lee YK (1997) Commercial production of microalgae in the Asia-Pacific rim. J Appl Phycol 9:403–411

    Article  Google Scholar 

  • Lee YK (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13:307–315

    Article  Google Scholar 

  • Lívanský K (1996) Effect of O2, CO2 and temperature on the light saturated growth of Scenedesmus obliquus. Arch Hydrobiol/Algolog Stud 82:69–82

    Google Scholar 

  • Lívanský K, Doucha J (1996) CO2 and O2 gas exchange in outdoor thin-layer high density microalgal cultures. J Appl Phycol 8:353–358

    Article  Google Scholar 

  • Lívanský K, Doucha J (1997) Additional CO2 saturation of thin-layer outdoor microalgal cultures: CO2 mass transfer and absorption efficiency. Arch Hydrobiol 122/Algolog Stud 87:145–154

    Google Scholar 

  • Lívanský K, Doucha J (1998) Influence of solar irradiance, culture temperature and CO2 supply on daily course of O2 evolution by Chlorella mass cultures in outdoor open thin-layer culture units. Arch Hydrobiol 124/Algolog Stud 89:137–149

    Google Scholar 

  • Lívanský K, Doucha J (1999) Liquid film mass transfer coefficients K L for O2 and CO2 desorption from open thin-layer microalgal cultures into atmosphere. Arch Hydrobiol 127/Algolog Stud 92:109–132

    Google Scholar 

  • Lívanský K, Doucha J (2003) Evaluation of dissolved oxygen (DO) profiles in microalgal suspension on outdoor thin-layer cultivation surface. Arch Hydrobiol 149/Algolog Stud 110:151–165

    Google Scholar 

  • Lívanský K, Doucha J (2005) Utilization of carbon dioxide by Chlorella kessleri in outdoor open thin-layer culture units. Arch Hydrobiol 157/Algolog Stud 116:129–147

    Google Scholar 

  • Lívanský K, Kajan M (1994) Relationship between pCO2 and pH in batch algal cultures as a basis for an estimation of pCO2 control by means of a pH-stat system. Arch Hydrobiol/Algolog Stud 74:105–119

    Google Scholar 

  • Lívanský K, Kajan M, Pilarski PS (1993) PCO2 and pO2 profiles along the flow of algal suspension in open solar culture units: verification of a mathematical model. Arch Hydrobiol/Algolog Stud 70:97–119

    Google Scholar 

  • Lívanský K, Doucha J, Hu H, Li Y (2006) CO2 partial pressure-pH relationships in the medium and relevance to CO2 mass balance in outdoor open thin-layer Arthrospira (Spirulina) cultures. Arch Hydrobiol 165(3):365–381

    Article  Google Scholar 

  • Melis A, Neidhardt J, Benemann JR (1999) Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells. J Appl Phycol 10:515–525

    Article  Google Scholar 

  • Mori K (1986) Photoautotrophic bioreactor using visible solar rays condensed by Fresnel lenses and transmitted through optical fibers. Biotechnol Bioeng Symp 15:331–345

    CAS  Google Scholar 

  • Morita M, Watanabe Y, Okawa T, Saiki H (2001) Photosynthetic productivity of conical helical tubular photobioreactors incorporating Chlorella sp. under various culture medium flow conditions. Biotechnol Bioeng 74:136–144

    Article  PubMed  CAS  Google Scholar 

  • Morweiser M, Kruse O, Hankamer B, Posten C (2010) Developments and perspectives of photobioreactors for biofuel production. Appl Microbiol Biotechnol 87:1291–1301

    Article  PubMed  CAS  Google Scholar 

  • Nakajima Y, Ueda R (1997) Improvement of photosynthesis in dense microbial suspension by reduction of light harvesting pigments. J Appl Phycol 9:503–510

    CAS  Google Scholar 

  • Nedbal L, Tichý V, Grobbelaar JU, Xiong VF, Grobbelaar JU (1996) Microscopic green algae and cyanobacteria in high-frequency intermittent light. J Appl Phycol 8:325–333

    Article  CAS  Google Scholar 

  • Ogawa T, Fujii T, Aiba T (1980) Effect of oxygen on the growth (yield) of Chlorella vulgaris. Arch Microbiol 127:25–31

    Article  CAS  Google Scholar 

  • Ogbonna JC, Yada H, Tanaka H (1995) Effect of cell movement by random mixing between the surface and bottom of photobioreactors on algal productivity. J Ferment Bioeng 79(2):152–157

    Article  CAS  Google Scholar 

  • Oswald WJ (1988) Micro-algae and waste-water treatment. In: Borowitzka MA, Borowitzka LJ (eds) Microalgal biotechnology. Cambridge University Press, Cambridge, pp 305–328

    Google Scholar 

  • Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Biores Technol 102(1):35–42

    Article  CAS  Google Scholar 

  • Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9(3):165–177

    Article  CAS  Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microb Biotechnol 57:287–293

    Article  CAS  Google Scholar 

  • Pulz O, Scheibenbogen K (1998) Design and performance with respect to light energy input. In: Scheper T (ed) Advances in biochemical engineering/biotechnology. Springer Verlag, Berlin, pp 123–152

    Google Scholar 

  • Richmond A (1988) A prerequisite for industrial microalga-culture efficient utilization of solar irradiation. In: Stadler T, Mollion J, Verdus MC, Karamanos Y, Morvan H, Christiaen D (eds) Algal biotechnology. Elsevier Science, Amsterdam, pp 237–244

    Google Scholar 

  • Richmond A (2000) Microalgal biotechnology at the turn of the millenium: a personal view. J Appl Phycol 12:441–451

    Article  Google Scholar 

  • Richmond A, Becker EW (1986) Technological aspects of mass cultivation—a general outline. In: Richmond A (ed) CRC handbook of microalgal mass culture. CRC Press, Inc, Boca Raton, Florida, pp 245–253

    Google Scholar 

  • Simmer J (1979) Radiation energy, temperature and algal growth. In: Marvan P, Přibil S, Lhotský O (eds) Algal assays and monitoring eutrophication. E. Schweizerbart’s Verlagsbuchhandlung. Naegele u. Obermiller, Stuttgart, pp 41–45

    Google Scholar 

  • Sobczuk TM, Camacho FG, Rubio FC, Fernández FGA, Grima EM (2000) Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift photobioreactors. Biotechnol Bioeng 67:465–475

    Article  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96

    Article  PubMed  CAS  Google Scholar 

  • Šetlík I, Šust V, Málek I (1970) Dual purpose open circulation unit for large scale culture of algae in temperate zones. I. Basic design considerations and scheme of pilot plant. Algolog Stud 1:111–164 (Třeboň)

    Google Scholar 

  • Tichý V, Poulson M, Grobbelaar JU, Xiong F, Nedbal L (1995) Photosynthesis, growth and photoinhibition of microalgae exposed to intermittent light. In: Mathis P (ed) Photosynthesis: from light to biosphere, vol 5. Kluwer Academic Publishers, pp 1029–1032

    Google Scholar 

  • Torzillo G, Giovanetti L, Bocci F, Materassi R (1984) Effect of oxygen concentration on the protein content of Spirulina biomass. Biotechnol Bioeng 26:1134–1135

    Article  PubMed  CAS  Google Scholar 

  • Torzillo G, Pushparaj B, Masojídek J, Vonshak A (2003) Biological constraints in algal biotechnology. Biotechnol Bioprocess Eng 8:338–348

    Article  CAS  Google Scholar 

  • Tredici MR (2004) Mass production of microalgae: photobioreactors. In: Richmond A (ed) Handbook of microalgal culture. Blackwell Science, Oxford, pp 178–214

    Google Scholar 

  • Vonshak A (1997) Outdoor mass production of Spirulina: the basic concept. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology cell-biology and biotechnology. Taylor & Francis, London, pp 79–100

    Google Scholar 

  • Weissman JC, Goebel RP, Benemann JR (1988) Photobioreactor design: mixing, carbon utilization, and oxygen accumulation. Biotechnol Bioeng 31:336–344

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Weathers PJ, Xiong XR, Liu CZ (2009) Microalgal bioreactors: challenges and opportunities. Eng Life Sci 9(3):178–189

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the projects EUREKA of the Ministry of Education Youth and Sports of the Czech Republic (nos. OE 221 and OE 09025).

We wish to express our gratitude to BCS Engineering, a.s., Brno, Czech Republic for their fruitful technical cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Doucha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Doucha, J., Lívanský, K. (2014). High Density Outdoor Microalgal Culture. In: Bajpai, R., Prokop, A., Zappi, M. (eds) Algal Biorefineries. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7494-0_6

Download citation

Publish with us

Policies and ethics