Skip to main content

Nanomechanical Characterization of Soft Materials

  • Chapter
  • First Online:
  • 1898 Accesses

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 203))

Abstract

This chapter reviews the creep or viscoelastic deformation behavior of soft materials under nanoindentation-type testing. Analysis protocols of nanoindentation based on the Hertzian elastic contact theory, linear viscoelasticity analyses, and a more recent rate-jump method, are described and assessed. In addition to continuous viscoelasticity, a special type of discrete creep deformation, often observed in a wide range of materials during nanomechanical testing, is also highlighted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Chan YL, Ngan AHW (2010) Invariant elastic modulus of viscoelastic materials measured by rate-jump tests. Polym Test 29:558–564

    Article  Google Scholar 

  • Cheng YT, Cheng CM (2005) Relationships between initial unloading slope, contact depth, and mechanical properties for spherical indentation in linear viscoelastic solids. Mater Sci Eng A 409:93–99

    Article  Google Scholar 

  • Chiu YL, Ngan AHW (2002) Time-dependent characteristics of incipient plasticity in nanoindentation of Ni3Al single crystal. Acta Mater 50:1599–1611

    Article  Google Scholar 

  • Cross SE, Jin YS, Rao J, Gimzewski JK (2007) Nanomechanical analysis of cells from cancer patients. Nat Nano 2:780–783

    Article  Google Scholar 

  • Feng G, Ngan AHW (2002) Effects of creep and thermal drift on modulus measurement using depth-sensing Indentation. J Mater Res 17:660–668

    Article  Google Scholar 

  • Herbert EG, Oliver WC, Pharr GM (2008) Nanoindentation and the dynamic characterization of viscoelastic solids. J Phys D Appl Phys 41:074021

    Article  Google Scholar 

  • Hertz H (1882) Über die Berührung fester elastischer Körper. J Reine Angew Math 92:156–171

    MATH  Google Scholar 

  • Johnson KL (1999) Contact mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  • Lekka M, Lekki J, Marszalek M, Golonka P, Stachura P, Cleff B, Hrynkiewicz AZ (1999) Local elastic properties of cells studied by SFM. Appl Surf Sci 141:345–350

    Article  Google Scholar 

  • Li JY, Ngan AHW (2010) Nano-scale fast relaxation events in polyethylene. Scripta Mater 62:488–491

    Article  Google Scholar 

  • Li QS, Lee GYH, Ong CN, Lim CT (2008) AFM indentation study of breast cancer cells. Biochem Biophys Res Comm 374:609–613

    Article  Google Scholar 

  • Ng KS, Ngan AHW (2007) Creep of micron-sized aluminum columns. Phil Mag Lett 87:967–977

    Article  Google Scholar 

  • Ngan AHW, Tang B (2009) Response of power-law-viscoelastic and time-dependent materials to rate jumps. J Mater Res 24:853–862

    Article  Google Scholar 

  • Ngan AHW, Wang HT, Tang B, Sze KY (2005) Correcting power-law viscoelastic effects in elastic modulus measurement using depth-sensing indentation. Int J Solids Strut 42:1831–1846

    Article  MATH  Google Scholar 

  • Ngan AHW, Zuo L, Wo PC (2006) Size dependence and stochastic nature of yield strength of micron-sized crystals: a case study on Ni3Al. Proc Roy Soc Lond A 462:1661–1681

    Article  MATH  Google Scholar 

  • Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583

    Article  Google Scholar 

  • Oyen ML (2006) Analytical techniques for indentation of viscoelastic materials. Phil Mag 86:5625–5641

    Article  Google Scholar 

  • Radok JRM (1957) Visco-elastic stress analysis. Q App Math 15:198–202

    MathSciNet  MATH  Google Scholar 

  • Rosenbluth MJ, Lam WA, Fletcher DA (2006) Force microscopy of nonadherent cells: a comparison of leukemia cell deformability. Biophys J 90:2994–3003

    Article  Google Scholar 

  • Sakai M (2002) Time-dependent viscoelastic relation between load and penetration for an axisymmetric intenter. Phil Mag A 82:1841–1849

    Article  Google Scholar 

  • Sneddon IN (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3:47–57

    Article  MathSciNet  MATH  Google Scholar 

  • Tang B (2005) Nanoindentation of viscoelastic materials. PhD thesis, University of Hong Kong, Hong kong

    Google Scholar 

  • Tang B, Ngan AHW (2005) Investigation of viscoelastic properties of amorphous selenium near glass transition using depth-sensing indentation. Soft Mater 2:125–144

    Article  Google Scholar 

  • Tang B, Ngan AHW (2011) Nanoindentation using an atomic force microscope. Phil Mag 91:1329–1338

    Article  Google Scholar 

  • Tang B, Ngan AHW, Lu WW (2006) Viscoelastic effects during depth-sensing indentation of cortical bone tissues. Phil Mag 86:5653–5666

    Article  Google Scholar 

  • Wo PC, Zuo L, Ngan AHW (2005) Time-dependent incipient plasticity in Ni3Al as observed in nanoindentation. J Mater Res 20:489–495

    Article  Google Scholar 

  • Xu ZW (2008) Phase transformation and properties of magnetron sputtered GeSi thin films. PhD thesis, University of Hong Kong, Hong Kong

    Google Scholar 

  • Zhou ZL, Ngan AHW, Tang B, Wang AX (2012) Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope. J Mech Behav Biomed Mater 8:134–142

    Article  Google Scholar 

Download references

Acknowledgments

This review covers the work of previous group members, including B. Tang, G. Feng, P. C. Wo, Y. L. Chan, K. S. Ng, Z. W. Xu, J. Y. Li and Z. L. Zhou, to whom thanks are given. Some of the work was also supported by grants from the Research Grants Council (Project No. 7159/10E) as well as from the University Grants Committee (Project No. SEG-HKU06) of the Hong Kong Special Administrative Region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. W. Ngan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ngan, A.H.W. (2014). Nanomechanical Characterization of Soft Materials. In: Tiwari, A. (eds) Nanomechanical Analysis of High Performance Materials. Solid Mechanics and Its Applications, vol 203. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6919-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6919-9_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6918-2

  • Online ISBN: 978-94-007-6919-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics