Skip to main content

Methane in Marine Sediments

  • Living reference work entry
  • First Online:
  • 480 Accesses

Definition

Methane is the simplest hydrocarbon with the chemical formula CH4. At room temperature and standard pressure, methane is a colorless, odorless gas. It is the main component of natural gas and thus important as an energy source. Due to its ability to absorb energy on the infrared band, methane plays a direct role in the Earth’s greenhouse effect.

Methane Distribution

Methane represents a key component of the carbon cycle in marine sediments. The amount of carbon that presently occurs as methane in marine sediments is thought to be ~500–10,000 Gt (Kvenvolden and Lorenson, 2001; Milkov, 2004; 1 Gt = 1015g). The size of this reservoir is ultimately determined by a balance of organic carbon sources and sinks, which vary in time and space. The loci of large methane deposits are further controlled by thermal, lithological, and structural characteristics of the sediments. Methane production is fundamentally controlled by organic carbon rain to the sediments, which in turn depends...

This is a preview of subscription content, log in via an institution.

Bibliography

  • Arndt, S., Hetzel, A., and Brumsack, H. J., 2009. Evolution of organic matter degradation in Cretaceous black shales inferred from authigenic barite: a reaction-transport model. Geochimica et Cosmochimica Acta, 73(7), 2000–2022.

    Article  Google Scholar 

  • Boetius, A., and Wenzhöfer, F., 2013. Seafloor oxygen consumption fuelled by methane from cold seeps. Nature Geoscience, doi:10.1038/ngeo1926.

    Google Scholar 

  • Boetius, A., Ravenschlag, K., Schubert, C., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B. B., Witte, U., and Pfannkuche, O., 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407, 623–626.

    Article  Google Scholar 

  • Bohrmann, G., and Torres, M. E., 2006. Gas hydrates in marine sediments. In Schulz, H. D., and Zabel, M. (eds.), Marine Geochemistry. Berlin/Heidelberg: Springer, pp. 481–512.

    Chapter  Google Scholar 

  • Briggs, B. R., Inagaki, F., Morono, Y., Futagami, T., Huguet, C., Rosell-Mele, A., Lorenson, T., and Colwell, F. S., 2012. Bacterial dominance in subseafloor sediments characterized by gas hydrates. FEMS Microbiology Ecology, 81, 88–98.

    Article  Google Scholar 

  • Claypool, G. E., and Kaplan, I. R., 1974. The origin and distribution of methane in marine sediments. In Kaplan, I. R. (ed.), Natural Gases in Marine Sediments. New York: Plenum Press, pp. 99–139.

    Chapter  Google Scholar 

  • Colwell, F. S., Boyd, S., Delwiche, M. E., Reed, D. W., Phelps, T. J., and Newby, D. T., 2008. Estimates of biogenic methane production rates in deep marine sediments at Hydrate Ridge, Cascadia Margin. Applied and Environmental Microbiology, 74, 3444–3452.

    Article  Google Scholar 

  • Dickens, G. R., 2011. Down the Rabbit Hole: toward appropriate discussion of methane release from gas hydrate systems during the Paleocene-Eocene thermal maximum and other past hyperthermal events. Climate of the Past, 7, 831–846.

    Article  Google Scholar 

  • Hoehler, T., Alperin, M. J., Albert, D. B., and Martens, C., 1994. Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Global Biogeochemical Cycles, 8, 451–463.

    Article  Google Scholar 

  • Joye, S. B., 2012. A piece of the methane puzzle. Nature, 491, 538–539.

    Article  Google Scholar 

  • Kvenvolden, K. A., and Lorenson, T. D., 2001. The global occurrence of natural gas hydrate. Geophysical Monograph, 124, 87–98.

    Google Scholar 

  • Milkov, A. V., 2004. Global estimates of hydrate-bound gas in marine sediments: how much is really out there? Earth-Science Reviews, 66, 183–197.

    Article  Google Scholar 

  • Milucka, J., Ferdelmann, T. G., Polerecky, L., Franzke, D., Wegener, G., Schmid, M., Lieberwirth, I., Wagner, M., Widdel, F., and Kuypers, M. M. M., 2012. Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature, 491, 541–546.

    Article  Google Scholar 

  • Niemann, H., Lösekann, T., de Beer, D., Elvert, M., Nadalig, T., Knittel, K., Amann, R., Sauter, E. J., Schlüter, M., Klages, M., Foucher, J. P., and Boetius, A., 2006. Novel microbial communities of the Haakon Mosby mud volcano and their role as methane sink. Nature, 443, 854–858.

    Article  Google Scholar 

  • Reeburgh, W. S., 2007. Oceanic methane biogeochemistry. Chemical Reviews, 107, 486–513.

    Article  Google Scholar 

  • Römer, M., Sahling, H., Pape, T., Spieß, V., and Bohrmann, G., 2012. Quantification of gas bubble emissions from submarine hydrocarbon seeps at the Makran continental margin (offshore Pakistan). Journal of Geophysical Research, Oceans, 117, C10015, doi:10.1029/2011JC007424.

    Article  Google Scholar 

  • Schoell, M., 1988. Multiple origins of methane in the Earth. Chemical Geology, 71(1–3), 1–10.

    Article  Google Scholar 

  • Sommer, S., Pfannkuche, O., Linke, P., Luff, R., Greinert, J., Drews, M., Gubsch, S., Pieper, M., Poser, M., and Viergutz, T., 2006. Efficiency of benthic filter: biological control of the emission of dissolved methane from sediments containing shallow gas hydrates at Hydrate Ridge. Global Biogeochemical Cycles, 20, doi:10.1029/2004GB002389.

    Google Scholar 

  • Suess, E., 1980. Particulate organic carbon flux in the oceans – surface productivity and oxygen utilization. Nature, 288, 260–263.

    Article  Google Scholar 

  • Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, M., et al., 2008. Cell proliferation at 122 degrees C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proceedings of the National Academy of Sciences of the United States of America, 105, 10949–10954.

    Article  Google Scholar 

  • Valentine, D. L., 2011. Emerging topics in marine methane biogeochemistry. Annual Review of Marine Science, 3, 147–171.

    Article  Google Scholar 

  • Valentine, D. L., Blanton, D. C., Reeburgh, W. S., and Kastner, M., 2001. Water column methane oxidation adjacent to an area of active hydrate dissociation, Eel River Basin. Geochimica et Cosmochimica Acta, 65, 2633–2640.

    Article  Google Scholar 

  • Wellsbury, P., Goodman, K., Cragg, B.A., and Parkes, R.J., 2000. The geomicrobiology of deep marine sediments from Blake Ridge containing methane hydrate (Sites 994, 995 and 997). In Paull, C., Matsumoto, R., Wallace, P.J., and Dillon, W.P. (eds.), Proceeding of ODP, Vol. 164, pp. 379–391.

    Google Scholar 

  • Whiticar, M. J., 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology, 161, 291–314.

    Article  Google Scholar 

  • Whiticar, M. J., Faber, E., and Schoell, M., 1986. Biogenic methane formation in marine and freshwater environments. CO2 reduction vs. Acetate fermentation – Isotope evidence. Geochimica et Cosmochimica Acta, 50, 693–709.

    Article  Google Scholar 

  • Wilhelms, A., Larter, S. R., Head, I., Farrimond, P., di Primio, R., and Zwach, C., 2001. Biodegradation of oil in uplifted basins prevented by deep-burial sterilization. Nature, 411, 1034–1037.

    Article  Google Scholar 

  • Zonneveld, K. A. F., Versteegh, G. J. M., Kasten, S., Eglinton, T. I., Emeis, K. C., Huguet, C., Koch, B. P., de Lange, G. J., de Leeuw, J. W., Middelburg, J. J., Mollenhauer, G., Prahl, F., Rethemeyer, J., and Wakeham, S., 2010. Selective preservation of organic matter in marine environments; processes and impact on the fossil record. Biogeosciences, 7, 483–511.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Bohrmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Bohrmann, G., Torres, M.E. (2014). Methane in Marine Sediments. In: Harff, J., Meschede, M., Petersen, S., Thiede, J. (eds) Encyclopedia of Marine Geosciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6644-0_190-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6644-0_190-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6644-0

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics