Skip to main content

Amino Acid Racemization Dating

  • Living reference work entry
  • First Online:
Encyclopedia of Scientific Dating Methods

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Abelson, P., 1954. Paleobiochemistry: organic constituents of fossils. Washington DC: Carnegie Institution of Washington, Yearbook, 53, pp. 97–101.

    Google Scholar 

  • Allen, A. P., Kosnik, M. A., and Kaufman, D. S., 2013. Characterizing the dynamics of amino acid racemization using time-dependent reaction kinetics: a Bayesian approach to fitting age-calibration models. Quaternary Geochronology, 18, 63–77.

    Google Scholar 

  • Andrews, J. T., Bowen, D. Q., and Kidson, C., 1979. Amino acid ratios and the correlation of raised beach deposits in south-west England and Wales. Nature, 281, 556–558.

    Google Scholar 

  • Andrews, J. T., Miller, G. H., Davies, D. C., and Davies, K. H., 1985. Generic identification of fragmentary Quaternary molluscs by amino acid chromatography: a tool for Quaternary and palaeontological research. Geological Journal, 20, 1–20.

    Google Scholar 

  • Bada, J., 1985. Racemization of amino acids. In Barrett, G.C. (ed.), Chemistry and Biochemistry of the Amino Acids. London: Chapman and Hall, pp. 399–414.

    Google Scholar 

  • Bada, J. L., 1991. Amino acid cosmogeochemistry. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 333, 349–358.

    Google Scholar 

  • Bada, J. L., and Schroeder, R. A., 1972. Racemization of isoleucine in calcareous marine sediments: kinetics and mechanism. Earth and Planetary Science Letters, 15, 1–11.

    Google Scholar 

  • Bada, J. L., and Schroeder, R. A., 1975. Amino acid racemization reactions and their geochemical implications. Naturwissenschaften, 62, 71–79.

    Google Scholar 

  • Bada, J. L., Luyendyk, B. P., and Maynard, J. B., 1970. Marine sediments: dating by the racemization of amino acids. Science, 170, 730–732.

    Google Scholar 

  • Bada, J. L., Schroeder, R. A., and Carter, G. F., 1974. New evidence for the antiquity of man in North America deduced from aspartic acid racemization. Science, 184, 791–793.

    Google Scholar 

  • Bada, J. L., Shou, M.-Y., Man, E. H., and Schroeder, R. A., 1978. Decomposition of hydroxy amino acids in foraminiferal tests; kinetics, mechanism and geochronological implications. Earth and Planetary Science Letters, 41, 67–76.

    Google Scholar 

  • Bada, J. L., Gillespie, R., Gowlett, J. A. J., and Hedges, R. E. M., 1984. Accelerator mass spectrometry radiocarbon ages of amino acid extracts from Californian palaeoindian skeletons. Nature, 312, 442–444.

    Google Scholar 

  • Barbour Wood, S. L., Krause, R. A., Jr., Kowalewski, M., Wehmiller, J., and Simões, M. G., 2006. Aspartic acid racemization dating of Holocene brachiopods and bivalves from the southern Brazilian shelf, South Atlantic. Quaternary Research, 66, 323–331.

    Google Scholar 

  • Bates, M. R., 1993. Quaternary aminostratigraphy in Northwestern France. Quaternary Science Reviews, 12, 793–809.

    Google Scholar 

  • Bowen, D. Q., and Sykes, G. A., 1994. How old is Boxgrove man? Nature, 371, 751.

    Google Scholar 

  • Bowen, D., Sykes, G., Miller, G., Andrews, J., Brew, J., and Hare, P., 1985. Amino acid geochronology of raised beaches in south west Britain. Quaternary Science Reviews, 4, 279–318.

    Google Scholar 

  • Bowen, D., Sykes, G., and Turner, C., 1988. Correlation of marine events and glaciations on the Northeast Atlantic margin [and discussion]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 318, 619–635.

    Google Scholar 

  • Bright, J., and Kaufman, D. S., 2011. Amino acid racemization in lacustrine ostracodes, part I: effect of oxidizing pre-treatments on amino acid composition. Quaternary Geochronology, 6, 154–173.

    Google Scholar 

  • Brooks, A. S., Hare, P. E., Kokis, J. E., Miller, G. H., Ernst, R., and Wendorf, F., 1990. Dating Pleistocene archaeological sites by protein diagenesis in ostrich eggshell. Science, 248, 60–64.

    Google Scholar 

  • Brooks, A., Hare, P., Kokis, J., and Durana, K., 1991. A burning question: differences between laboratory-induced and natural diagenesis in Ostrich eggshell proteins. Carnegie Institute of Washington Yearbook, 2250, 176–179.

    Google Scholar 

  • Brückner, H., Wittner, R., and Godel, H., 1991. Fully automated high-performance liquid chromatographic separation of DL-amino acids derivatized with o-phthaldialdehyde together with N-isobutyryl-cysteine. Application to food samples. Chromatographia, 32, 383–388.

    Google Scholar 

  • Clarke, S. J., and Murray-Wallace, C. V., 2006. Mathematical expressions used in amino acid racemisation geochronology – a review. Quaternary Geochronology, 1, 261–278.

    Google Scholar 

  • Cölfen, H., and Antonietti, M., 2005. Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angewandte Chemie International Edition, 44, 5576–5591.

    Google Scholar 

  • Collins, M. J., and Riley, M. S., 2000. Amino acid racemization in biominerals: the impact of protein degradation and loss. In Goodfriend, G. A., Collins M. J., Fogel M. L., Macko S .A., Wehmiller J. F. (eds.), Perspectives in Amino Acid and Protein Geochemistry. Oxford: Oxford University Press, pp. 120–142.

    Google Scholar 

  • Collins, M. J., Westbroek, P., Muyzer, G., and de Leeuw, J. W., 1992. Experimental evidence for condensation reactions between sugars and proteins in carbonate skeletons. Geochimica et Cosmochimica Acta, 56, 1539–1544.

    Google Scholar 

  • Crisp, M. K., 2013. Amino Acid Racemization Dating: Method Development Using African Ostrich (Struthio camelus) Eggshell. Unpublished PhD thesis, York, Department of Chemistry, University of York.

    Google Scholar 

  • Crisp, M., Demarchi, B., Collins, M., Morgan-Williams, M., Pilgrim, E., and Penkman, K., 2013. Isolation of the intra-crystalline proteins and kinetic studies in Struthio camelus (ostrich) eggshell for amino acid geochronology. Quaternary Geochronology, 16, 110–128.

    Google Scholar 

  • Davies, K. H., 1983. Amino acid analysis of Pleistocene marine molluscs from the Gower Peninsula. Nature, 302, 137–139.

    Google Scholar 

  • Demarchi, B., Williams, M. G., Milner, N., Russell, N., Bailey, G., and Penkman, K., 2011. Amino acid racemization dating of marine shells: a mound of possibilities. Quaternary International, 239, 114–124.

    Google Scholar 

  • Demarchi, B., Rogers, K., Fa, D. A., Finlayson, C. J., Milner, N., and Penkman, K. E. H., 2013a. Intra-crystalline protein diagenesis (IcPD) in Patella vulgata. Part I: Isolation and testing of the closed system. Quaternary Geochronology, 16, 144–157.

    Google Scholar 

  • Demarchi, B., Collins, M. J., Tomiak, P. J., Davies, B. J., and Penkman, K. E. H., 2013b. Intra-crystalline protein diagenesis (IcPD) in Patella vulgata. Part II: Breakdown and temperature sensitivity. Quaternary Geochronology, 16, 158–172.

    Google Scholar 

  • Demarchi, B., Collins, M. J., Bergstrom, E., Dowle, A., Penkman, K. E. H., Thomas-Oates, J., and Wilson, J., 2013c. New experimental evidence for in-chain amino acid racemization of serine in a model peptide. Analytical Chemistry, 85(12), 5835–5842.

    Google Scholar 

  • Engel, M. H., and Nagy, B., 1982. Distribution and enantiomeric composition of amino acids in the Murchison meteorite. Nature, 296, 837–840.

    Google Scholar 

  • Engel, M. H., Zumberge, J. E., and Nagy, B., 1977. Kinetics of amino acid racemization in Sequoiadendron giganteum heartwood. Analytical Biochemistry, 82, 415–422.

    Google Scholar 

  • Freeman, C. L., Harding, J. H., Quigley, D., and Rodger, P. M., 2010. Structural control of crystal nuclei by an eggshell protein. Angewandte Chemie, International Edition, 49, 5135–5137.

    Google Scholar 

  • Gaffey, S. J., 1988. Water in skeletal carbonates. Journal of Sedimentary Research, 58, 397–414.

    Google Scholar 

  • Geiger, T., and Clarke, S., 1987. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides – succinimide-linked reactions that contribute to protein-degradation. Journal of Biological Chemistry, 262, 785–794.

    Google Scholar 

  • Goodfriend, G. A., 1991. Patterns of racemization and epimerization of amino acids in land snail shells over the course of the Holocene. Geochimica et Cosmochimica Acta, 55, 293–302.

    Google Scholar 

  • Goodfriend, G. A., 1992. Rapid racemization of aspartic acid in mollusc shells and potential for dating over recent centuries. Nature, 357, 399–401.

    Google Scholar 

  • Goodfriend, G. A., Brigham-Grette, J., and Miller, G. H., 1996. Enhanced age resolution of the marine Quaternary record in the Arctic using aspartic acid racemization dating of bivalve shells. Quaternary Research, 45, 176–187.

    Google Scholar 

  • Goodfriend, G. A., Flessa, K. W., and Hare, P., 1997. Variation in amino acid epimerization rates and amino acid composition among shell layers in the bivalve Chione from the Gulf of California. Geochimica et Cosmochimica Acta, 61, 1487–1493.

    Google Scholar 

  • Goodfriend, G. A., Collins, M. J., Fogel, M. L., Macko, S. A., and Wehmiller, J. F. (eds.), 2000. Perspectives in Amino Acid and Protein Geochemistry. New York: Oxford University Press.

    Google Scholar 

  • Griffin, R., Chamberlain, A., Hotz, G., Penkman, K., and Collins, M., 2009. Age estimation of archaeological remains using amino acid racemization in dental enamel: a comparison of morphological, biochemical, and known ages-at-death. American Journal of Physical Anthropology, 140, 244–252.

    Google Scholar 

  • Harada, N., Kondo, T., Fukuma, K., Uchida, M., Nakamura, T., Iwai, M., Murayama, M., Sugawara, T., and Kusakabe, M., 2002. Is amino acid chronology applicable to the estimation of the geological age of siliceous sediments? Earth and Planetary Science Letters, 198, 257–266.

    Google Scholar 

  • Hare, P., 1988. Organic geochemistry of bone and its relation to the survival of bone in the natural environment. In Behrensmeyer, A., and Hill, A. P. (eds.), Fossils in the Making: Vertebrate Taphonomy and Paleoecology. Chicago: Chicago University Press, pp. 208–219.

    Google Scholar 

  • Hare, P. E., and Mitterer, R. M., 1969. Laboratory simulation of amino acid diagenesis in fossils. Carnegie Institute of Washington Yearbook, 67, 205–208.

    Google Scholar 

  • Hare, P. E., Hoering, T. C., and King, K., Jr. (eds.), 1980. Biogeochemistry of Amino Acids. New York: Wiley.

    Google Scholar 

  • Hearty, P. J., and Kaufman, D. S., 2000. Whole-rock aminostratigraphy and Quaternary sea-level history of the Bahamas. Quaternary Research, 54, 163–173.

    Google Scholar 

  • Hearty, P. J., Miller, G. H., Stearns, C. E., and Szabo, B. J., 1986. Aminostratigraphy of Quaternary shorelines in the Mediterranean basin. Geological Society of America Bulletin, 97, 850–858.

    Google Scholar 

  • Hendy, E. J., Tomiak, P. J., Collins, M. J., Hellstrom, J., Tudhope, A. W., Lough, J. M., and Penkman, K. E. H., 2012. Assessing amino acid racemization variability in coral intra-crystalline protein for geochronological applications. Geochimica and Cosmochimica Acta, 86, 338–353.

    Google Scholar 

  • Hsu, J. T., Leonard, E. M., and Wehmiller, J. F., 1989. Aminostratigraphy of Peruvian and Chilean Quaternary marine terraces. Quaternary Science Reviews, 8, 255–262.

    Google Scholar 

  • Hudson, J., 1967. The elemental composition of the organic fraction, and the water content, of some recent and fossil mollusc shells. Geochimica et Cosmochimica Acta, 31, 2361–2378.

    Google Scholar 

  • Johnson, B. J., and Miller, G. H., 1997. Archaeological applications of amino acid racemization. Archaeometry, 39, 265–287.

    Google Scholar 

  • Kahne, D., and Still, W. C., 1988. Hydrolysis of a peptide bond in neutral water. Journal of the American Chemical Society, 110, 7529–7534.

    Google Scholar 

  • Kaufman, D. S., 2003. Amino acid paleothermometry of Quaternary ostracodes from the Bonneville Basin, Utah. Quaternary Science Reviews, 22, 899–914.

    Google Scholar 

  • Kaufman, D. S., and Brigham-Grette, J., 1993. Aminostratigraphic correlations and paleotemperature implications, Pliocene-Pleistocene high-sea-level deposits, northwestern Alaska. Quaternary Science Reviews, 12, 21–33.

    Google Scholar 

  • Kaufman, D. S., and Manley, W. F., 1998. A new procedure for determining dl amino acid ratios in fossils using reverse phase liquid chromatography. Quaternary Science Reviews, 17, 987–1000.

    Google Scholar 

  • Kaufman, D. S., and Sejrup, H.-P., 1995. Isoleucine epimerization in the high-molecular-weight fraction of pleistocene Arctica. Quaternary Science Reviews, 14, 337–350.

    Google Scholar 

  • Kaufman, D. S., Miller, G. H., and Andrews, J. T., 1992. Amino acid composition as a taxonomic tool for molluscan fossils: an example from Pliocene-Pleistocene Arctic marine deposits. Geochimica et Cosmochimica Acta, 56, 2445–2453.

    Google Scholar 

  • Kaufman, D.S., Polyak, L., Adler, R., Channell, J. E., and Xuan, C., 2008. Dating late Quaternary planktonic foraminifer Neogloboquadrina pachyderma from the Arctic Ocean using amino acid racemization. Paleoceanography, 23, PA3224, doi:10.1029/2008PA001618.

    Google Scholar 

  • Kaufman, D. S., Cooper, K., Behl, R., Billups, K., Bright, J., Gardner, K., Hearty, P., Jakobsson, M., Mendes, I., O'Leary, M., Polyak, L., Rasmussen, T., Rosa, F., and Schmidt, M., 2013. Amino acid racemization in mono-specific foraminifera from Quaternary deep-sea sediments. Quaternary Geochronology, 16, 50–61.

    Google Scholar 

  • Kennedy, G. L., Lajoie, K. R., and Wehmiller, J. F., 1982. Aminostratigraphy and faunal correlations of late Quaternary marine terraces, Pacific Coast, USA. Nature, 299, 545–547.

    Google Scholar 

  • Kimber, R., Kennedy, N., and Milnes, A., 1994. Amino acid racemization dating of a 140,000 year old tephra-loess-palaeosol sequence on the Mamaku Plateau near Rotorua, New Zealand. Australian Journal of Earth Sciences, 41, 19–26.

    Google Scholar 

  • Kosnik, M. A., Kaufman, D. S., and Hua, Q., 2008. Identifying outliers and assessing the accuracy of amino acid racemization measurements for geochronology: I. Age calibration curves. Quaternary Geochronology, 3, 308–327.

    Google Scholar 

  • Kosnik, M. A., Kaufman, D. S., and Hua, Q., 2013. Radiocarbon-calibrated multiple amino acid geochronology of Holocene molluscs from Bramble and Rib Reefs (Great Barrier Reef, Australia). Quaternary Geochronology, 16, 73–86.

    Google Scholar 

  • Krause, R. A., Jr., Barbour, S. L., Kowalewski, M., Kaufman, D. S., Romanek, C. S., Simões, M. G., and Wehmiller, J. F., 2010. Quantitative comparisons and models of time-averaging in bivalve and brachiopod shell accumulations. Paleobiology, 36, 428–452.

    Google Scholar 

  • Kvenvolden, K. A., Peterson, E., Wehmiller, J., and Hare, P., 1973. Racemization of amino acids in marine sediments determined by gas chromatography. Geochimica et Cosmochimica Acta, 37, 2215–2225.

    Google Scholar 

  • Lajoie, K. R., Wehmiller, J. F., and Kennedy, G. L., 1980. Inter- and intra-generic trends in apparent racemization kinetics of amino acids in Quaternary mollusks. In Hare, P. E., Hoering, T., and King, K. (eds.), Biogeochemistry of Amino Acids. New York: Wiley, pp. 305–340.

    Google Scholar 

  • Li, H., Xin, H. L., Kunitake, M. E., Keene, E. C., Muller, D. A., and Estroff, L. A., 2011. Calcite prisms from Mollusk shells (Atrina rigida): swiss-cheese-like organic–inorganic single-crystal composites. Advanced Functional Materials, 21, 2028–2034.

    Google Scholar 

  • Marshall, E., 1990. Racemization dating: great expectations. Science, 247, 799.

    Google Scholar 

  • Masters, P. M., and Bada, J. L., 1977. Racemization of isoleucine in fossil molluscs from Indian middens and interglacial terraces in southern California. Earth and Planetary Science Letters, 37, 173–183.

    Google Scholar 

  • Masters, P. M., and Bada, J. L., 1978. Amino acid racemization dating of bone and shell. Advances in Chemistry Series, 171, 117–138.

    Google Scholar 

  • Meijer, T., and Cleveringa, P., 2009. Aminostratigraphy of Middle and Late Pleistocene deposits in The Netherlands and the southern part of the North Sea Basin. Global and Planetary Change, 68, 326–345.

    Google Scholar 

  • Miller, G. H., and Brigham-Grette, J., 1989. Amino acid geochronology: resolution and precision in carbonate fossils. Quaternary International, 1, 111–128.

    Google Scholar 

  • Miller, G. H., and Hare, P., 1980. Amino acid geochronology: integrity of the carbonate matrix and potential of molluscan fossils. In Hare, P. E., Hoering, T. C., and King, K., Jr. (eds.), Biogeochemistry of Amino Acids. New York: Wiley, pp. 415–443.

    Google Scholar 

  • Miller, G. H., Hollin, J. T., and Andrews, J. T., 1979. Aminostratigraphy of UK Pleistocene deposits. Nature, 281, 539–543.

    Google Scholar 

  • Miller, G. H., Sejrup, H. P., Mangerud, J., and Andersen, B. G., 1983. Amino acid ratios in Quaternary molluscs and foraminifera from western Norway: correlation, geochronology and paleotemperature estimates. Boreas, 12, 107–124.

    Google Scholar 

  • Miller, G. H., Magee, J. W., and Jull, A., 1997. Low-latitude glacial cooling in the Southern Hemisphere from amino-acid racemization in emu eggshells. Nature, 385, 241–244.

    Google Scholar 

  • Miller, G. H., Beaumont, P. B., Deacon, H. J., Brooks, A. S., Hare, P. E., and Jull, A., 1999. Earliest modern humans in southern Africa dated by isoleucine epimerization in ostrich eggshell. Quaternary Science Reviews, 18, 1537–1548.

    Google Scholar 

  • Miller, G. H., Fogel, M. L., Magee, J. W., Gagan, M. K., Clarke, S. J., and Johnson, B. J., 2005. Ecosystem collapse in Pleistocene Australia and a human role in megafaunal extinction. Science, 309, 287–290.

    Google Scholar 

  • Mitterer, R. M., 1993. The diagenesis of proteins and amino acids in fossil shells. In Engel, M. H., and Macko, S. A. (eds.), Organic Geochemistry. New York: Springer, pp. 739–753.

    Google Scholar 

  • Mitterer, R. M., and Kriausakul, N., 1984. Comparison of rates and degrees of isoleucine epimerization in dipeptides and tripeptides. Organic Geochemistry, 7, 91–98.

    Google Scholar 

  • Moini, M., Klauenberg, K., and Ballard, M., 2011. Dating silk by capillary electrophoresis mass spectrometry. Analytical Chemistry, 83, 7577–7581.

    Google Scholar 

  • Müller, P., 1984. Isoleucine epimerization in Quaternary planktonic foraminifera: effects of diagenetic hydrolysis and leaching, and Atlantic–Pacific intercore correlations. Meteor Forschungsergebnisse Reihe C Geologie und Geophysik, 38, 25–47.

    Google Scholar 

  • Murray-Wallace, C., and Kimber, R., 1987. Evaluation of the amino acid racemization reaction in studies of Quaternary marine sediments in South Australia. Australian Journal of Earth Sciences, 34, 279–292.

    Google Scholar 

  • Murray-Wallace, C., Belperio, A., Gostin, V., and Cann, J., 1993. Amino acid racemization and radiocarbon dating of interstadial marine strata (oxygen isotope stage 3), Gulf St. Vincent, South Australia. Marine Geology, 110, 83–92.

    Google Scholar 

  • Murray-Wallace, C., Brooke, B., Cann, J., Belperio, A., and Bourman, R., 2001. Whole-rock aminostratigraphy of the Coorong Coastal Plain, South Australia: towards a 1 million year record of sea-level highstands. Journal of the Geological Society, 158, 111–124.

    Google Scholar 

  • Nardi, S., Binda, P. L., Baccelle, L. S., and Concheri, G., 1994. Amino acids of Proterozoic and Ordovician sulphide-coated grains from western Canada: record of biologically-mediated pyrite precipitation. Chemical Geology, 111, 1–15.

    Google Scholar 

  • Neuberger, A., 1948. Stereochemistry of amino acids. Advances in Protein Chemistry, 4, 297–383.

    Google Scholar 

  • Oches, E. A., and McCoy, W. D., 2001. Historical developments and recent advances in amino acid geochronology applied to loess research: examples from North America, Europe, and China. Earth-Science Reviews, 54, 173–192.

    Google Scholar 

  • Ohtani, S., and Yamamoto, K., 1991. Age estimation using the racemization of amino acid in human dentin. Journal of Forensic Sciences, 36, 792–800.

    Google Scholar 

  • Okumura, T., Suzuki, M., Nagasawa, H., and Kogure, T., 2013. Microstructural control of calcite via incorporation of intracrystalline organic molecules in shells. Journal of Crystal Growth, 381, 114–120.

    Google Scholar 

  • Ortiz, J. E., Torres, T., and Pérez-González, A., 2013. Amino acid racemization in four species of ostracodes: taxonomic, environmental, and microstructural controls. Quaternary Geochronology, 16, 129–143.

    Google Scholar 

  • Penkman, K. E. H., Preece, R. C., Keen, D. H., Maddy, D., Schreve, D. C., and Collins, M. J., 2007. Testing the aminostratigraphy of fluvial archives: the evidence from intra-crystalline proteins within freshwater shells. Quaternary Science Reviews, 26, 2958–2969.

    Google Scholar 

  • Penkman, K. E. H., Kaufman, D. S., Maddy, D., and Collins, M. J., 2008. Closed-system behaviour of the intra-crystalline fraction of amino acids in mollusc shells. Quaternary Geochronology, 3, 2–25.

    Google Scholar 

  • Penkman, K. E., Preece, R. C., Bridgland, D. R., Keen, D. H., Meijer, T., Parfitt, S. A., White, T. S., and Collins, M. J., 2011. A chronological framework for the British Quaternary based on Bithynia opercula. Nature, 476, 446–449.

    Google Scholar 

  • Penkman, K. E. H., Preece, R. C., Bridgland, D. R., Keen, D. H., Meijer, T., Parfitt, S. A., White, T. S., and Collins, M. J., 2013. An aminostratigraphy for the British Quaternary based on Bithynia opercula. Quaternary Science Reviews, 61, 111–134.

    Google Scholar 

  • Powell, J., Collins, M. J., Cussens, J., MacLeod, N., and Penkman, K. E. H., 2013. Results from an amino acid racemization inter-laboratory proficiency study; design and performance evaluation. Quaternary Geochronology, 16, 183–197.

    Google Scholar 

  • Ritz-Timme, S., and Collins, M. J., 2002. Racemization of aspartic acid in human proteins. Ageing Research Reviews, 1, 43–59.

    Google Scholar 

  • Ritz-Timme, S., Rochholz, G., Schütz, H., Collins, M., Waite, E., Cattaneo, C., and Kaatsch, H.-J., 2000. Quality assurance in age estimation based on aspartic acid racemisation. International Journal of Legal Medicine, 114, 83–86.

    Google Scholar 

  • Rockwell, T. K., 1992. Ages and deformation of marine terraces between point conception and Gaviota: Western Transverse Ranges, California. In Fletcher, C. H. I., and Wehmiller, J. F. (eds.), Quaternary Coasts of the United States, Marine and Lacustrine Systems. Tulsa: SEPM, pp. 333–341.

    Google Scholar 

  • Rutter, N. W., and Blackwell, B., 1995. Amino acid racemization dating. In Rutter, N. W., and Catto, N. R. (eds.), Dating Methods for Quaternary Deposits. St. John’s: Geological Association of Canada, pp. 125–167.

    Google Scholar 

  • Rutter, N., Schnack, E. J., Rio, J. D., Fasano, J. L., Isla, F. I., and Radtke, U., 1989. Correlation and dating of Quaternary littoral zones along the Patagonian coast, Argentina. Quaternary Science Reviews, 8, 213–234.

    Google Scholar 

  • Salamon, M., Tuross, N., Arensburg, B., and Weiner, S., 2005. Relatively well preserved DNA is present in the crystal aggregates of fossil bones. Proceedings of the National Academy of Sciences of the United States of America, 102, 13783–13788.

    Google Scholar 

  • Sejrup, H. P., and Haugen, J.-E., 1994. Amino acid diagenesis in the marine bivalve Arctica islandica Linné from northwest European sites: only time and temperature? Journal of Quaternary Science, 9, 301–309.

    Google Scholar 

  • Steinberg, S., and Bada, J. L., 1981. Diketopiperazine formation during investigations of amino acid racemization in dipeptides. Science, 213, 544–545.

    Google Scholar 

  • Suzuki, M., Okumura, T., Nagasawa, H., and Kogure, T., 2011. Localization of intracrystalline organic macromolecules in mollusk shells. Journal of Crystal Growth, 337, 24–29.

    Google Scholar 

  • Sykes, G. A., Collins, M. J., and Walton, D. I., 1995. The significance of a geochemically isolated intracrystalline organic fraction within biominerals. Organic Geochemistry, 23, 1059–1065.

    Google Scholar 

  • Tomiak, P. J., Penkman, K. E. H., Hendy, E. J., Demarchi, B., Murrells, S., Davis, S. A., McCullagh, P., and Collins, M. J., 2013. Testing the limitations of artificial protein degradation kinetics using known-age massive Porites coral skeletons. Quaternary Geochronology, 16, 87–109.

    Google Scholar 

  • Torres, T., Llamas, J., Canoira, L., Coello, F., García-Alonso, P., and Ortiz, J., 2000. Aminostratigraphy of two Pleistocene marine sequences from the Mediterranean coast of Spain: Cabo de Huertas (Alicante) and Garrucha (Almería). In Goodfriend, G. A., Collins, M. J., Fogel, M. L., Macko, S. A., and Wehmiller, J. F. (eds.), Perspectives in Amino Acids and Protein Geochemistry. Oxford: Oxford University Press, pp. 263–278.

    Google Scholar 

  • Towe, K. M., and Thompson, G. R., 1972. The structure of some bivalve shell carbonates prepared by ion-beam thinning. Calcified Tissue Research, 10, 38–48.

    Google Scholar 

  • Walton, D., 1998. Degradation of intracrystalline proteins and amino acids in fossil brachiopods. Organic Geochemistry, 28, 389–410.

    Google Scholar 

  • Wehmiller, J., 1976. Amino acids in fossil corals: racemization (epimerization) reactions and their implications for diagenetic models and geochronological studies. Geochimica and Cosmochimica Acta, 40, 763–776.

    Google Scholar 

  • Wehmiller, J. F., 1977. Amino acid studies of the Del Mar, California, midden site: apparent rate constants, ground temperature models, and chronological implications. Earth and Planetary Science Letters, 37, 184–196.

    Google Scholar 

  • Wehmiller, J. F., 1980. Intergeneric differences in apparent racemization kinetics in mollusks and foraminifera: implications for models of diagenetic racemization. In Hare, P. E., Hoering, T., and King, K. (eds.), Biogeochemistry of Amino Acids. New York: Wiley, pp. 341–345.

    Google Scholar 

  • Wehmiller, J. F., 1982. A review of amino acid racemization studies in Quaternary mollusks: Stratigraphic and chronologic applications in coastal and interglacial sites, pacific and Atlantic coasts, United States, United Kingdom, Baffin Island, and tropical islands. Quaternary Science Reviews, 1, 83–120.

    Google Scholar 

  • Wehmiller, J. F., 1984. Interlaboratory comparison of amino acid enantiomeric ratios in fossil Pleistocene mollusks. Quaternary Research, 22, 109–120.

    Google Scholar 

  • Wehmiller, J. F., 1989. Amino acid racemization: applications in chemical taxonomy and chronostratigraphy of Quaternary fossils. Short Courses in Geology, 5, 287–313.

    Google Scholar 

  • Wehmiller, J. F., 2013. Interlaboratory comparison of amino acid enantiomeric ratios in Pleistocene fossils. Quaternary Geochronology, 16, 173–182.

    Google Scholar 

  • Wehmiller, J., and Belknap, D., 1982. Amino acid age estimates, Quaternary Atlantic coastal plain: comparison with U-series dates, biostratigraphy, and paleomagnetic control. Quaternary Research, 18, 311–336.

    Google Scholar 

  • Wehmiller, J., and Hare, P., 1971. Racemization of amino acids in marine sediments. Science, 173, 907–911.

    Google Scholar 

  • Wehmiller, J. F., and Miller, G. H., 2000. Aminostratigraphic dating methods in Quaternary Geology. In Noller, J. S., Sowers, J. M., and Lettis, W. R. (eds.), Quaternary Geochronology: Methods and Applications. Washington DC: American Geophysical Union, pp. 187–222.

    Google Scholar 

  • Wehmiller, J. F., Lajoie, K. R., Kvenvolden, K. A., Peterson, E., Belknap, D. F., Kennedy, G. L., Addicott, W. O., Vedder, J. G., and Wright, R. W., 1977. Correlation and chronology of Pacific Coast marine terrace deposits of continental United States by fossil Amino Acid Stereochemistry – technique, evaluation, relative ages, kinetic model ages, and geological implications, U.S. Geological Survey. Open-file report, pp. 77–680.

    Google Scholar 

  • Wehmiller, J. F., York, L. L., and Bart, M. L., 1995. Amino acid racemization geochronology of reworked Quaternary mollusks on U.S. Atlantic coast beaches: implications for chronostratigraphy, taphonomy, and coastal sediment transport. Marine Geology, 124, 303–337.

    Google Scholar 

  • Wehmiller, J. F., Harris, W. B., Boutin, B. S., and Farrell, K. M., 2012. Calibration of amino acid racemization (AAR) kinetics in United States mid-Atlantic Coastal Plain Quaternary mollusks using 87Sr/86Sr analyses: evaluation of kinetic models and estimation of regional Late Pleistocene temperature history. Quaternary Geochronology, 7, 21–36.

    Google Scholar 

  • Wilson, L., and Pollard, A. M., 2002. Here today, gone tomorrow? Integrated experimentation and geochemical modeling in studies of archaeological diagenetic change. Accounts of Chemical Research, 35, 644–651.

    Google Scholar 

  • York, L. L., and Wehmiller, J. F., 1992. Aminostratigraphic results from Cape Lookout, NC, and their relation to the preserved Quaternary marine record of SE North Carolina. Sedimentary Geology, 80, 279–291.

    Google Scholar 

Download references

Acknowledgments

We are truly indebted to two anonymous reviewers for their comments on this manuscript. Their insight in the earlier phases of development of the technique, which they were willing to share with us, has been of invaluable help in compiling this review. The responsibility for any errors or inaccuracies still present is entirely ours.

Kirsty Penkman and the AAR group in York are thanked for their help, support, and discussion over the years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatrice Demarchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Demarchi, B., Collins, M. (2014). Amino Acid Racemization Dating. In: Rink, W., Thompson, J. (eds) Encyclopedia of Scientific Dating Methods. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6326-5_73-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6326-5_73-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6326-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics