Skip to main content

Molecular Dating of Evolutionary Events

  • Living reference work entry
  • First Online:

Definition

Inference of the age of evolutionary events using statistical analysis of rates of change of DNA or amino acid sequences.

Introduction

Molecular dating is used in the biological sciences to estimate the age of evolutionary events. Changes to DNA and amino acid sequences accumulate continuously in the genome over time, so comparing DNA sequences between lineages allows us to estimate the time since they last shared a common ancestor. However, the rate of change varies across the genome and among species. So in order to use molecular data to date evolutionary events, we need a way of estimating the rate of change in genetic sequences over time for any given dataset. Molecular dating requires a set of homologous genetic sequences (all related by descent from a single ancestral sequence), a method for inferring the number of changes that have occurred during the evolution of these sequences, and calibrating information to estimate their rate of change.

An increasing variety of...

This is a preview of subscription content, log in via an institution.

Bibliography

  • Baele, G., Lemey, P., Bedford, T., et al., 2012. Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Molecular Biology and Evolution, 29, 2157–2167, doi:10.1093/molbev/mss084.

    Article  Google Scholar 

  • Benton, M. J., and Donoghue, P. C. J., 2007. Paleontological evidence to date the tree of life. Molecular Biology and Evolution, 24, 26–53, doi:10.1093/molbev/msl150.

    Article  Google Scholar 

  • Bromham, L., Phillips, M., and Penny, D., 1999. Growing up with dinosaurs: molecular dates and the mammalian radiation. Trends in Ecology & Evolution, 14, 113–118.

    Article  Google Scholar 

  • Brown, R. P., and Yang, Z., 2011. Rate variation and estimation of divergence times using strict and relaxed clocks. BMC Evolutionary Biology, 11, 271, doi:10.1186/1471-2148-11-271.

    Article  Google Scholar 

  • Drummond, A. J., and Suchard, M. A., 2010. Bayesian random local clocks, or one rate to rule them all. BMC Evolutionary Biology, 8, 114, doi:10.1186/1741-7007-8-114.

    Google Scholar 

  • Drummond, A. J., Ho, S. Y. W., Phillips, M. J., and Rambaut, A., 2006. Relaxed phylogenetics and dating with confidence. PLoS Biology, 4, e88, doi:10.1371/journal.pbio.0040088.

    Article  Google Scholar 

  • Duchêne, S., Archer, F. I., Vilstrup, J., et al., 2011. Mitogenome phylogenetics: the impact of using single regions and partitioning schemes on topology, substitution rate and divergence time estimation. PloS One, 6, e27138, doi:10.1371/journal.pone.0027138.

    Article  Google Scholar 

  • Ho, S. Y. W., and Phillips, M. J., 2009. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Systematic Biology, 58, 367–380, doi:10.1093/sysbio/syp035.

    Article  Google Scholar 

  • Ho, S. Y. W., Phillips, M. J., Drummond, A. J., and Cooper, A., 2005. Accuracy of rate estimation using relaxed-clock models with a critical focus on the early metazoan radiation. Molecular Biology and Evolution, 22, 1355–1363, doi:10.1093/molbev/msi125.

    Article  Google Scholar 

  • Hug, L. A., and Roger, A. J., 2007. The impact of fossils and taxon sampling on ancient molecular dating analyses. Molecular Biology and Evolution, 24, 1889–1897, doi:10.1093/molbev/msm115.

    Article  Google Scholar 

  • Jukes, T. H., and Cantor, C. R., 1969. Evolution of protein molecules. In Munro, H. (ed.), Mammalian Protein Metabolism. New York: Academic, pp. 21–132.

    Chapter  Google Scholar 

  • Langley, C. H., and Fitch, W. M., 1973. The Constancy of Evolution: A Statistical Analysis of a and b Haemoglobins, Cytochrome c, and Fibrinopeptide A. Genetic Structure of Populations. Honolulu, HI: University of Hawaii Press, pp. 246–262.

    Google Scholar 

  • Lartillot, N., and Philippe, H., 2006. Computing Bayes factors using thermodynamic integration. Systematic Biology, 55, 195–207, doi:10.1080/10635150500433722.

    Article  Google Scholar 

  • Magallón, S., 2004. Dating lineages: molecular and paleontological approaches to the temporal framework of clades. International Journal of Plant Sciences, 165, S7–S21.

    Article  Google Scholar 

  • Rambaut, A., and Bromham, L., 1998. Estimating divergence dates from molecular sequences. Molecular Biology and Evolution, 15, 442–448.

    Article  Google Scholar 

  • Rutschmann, F., 2006. Molecular dating of phylogenetic trees: a brief review of current methods that estimate divergence times. Diversity and Distributions, 12, 35–48, doi:10.1111/j.1366-9516.2006.00210.x.

    Article  Google Scholar 

  • Sauquet, H., Ho, S. Y. W., Gandolfo, M. A., et al., 2012. Testing the impact of calibration on molecular divergence times using a fossil-rich group: the case of Nothofagus (Fagales). Systematic Biology, 61, 289–313, doi:10.1093/sysbio/syr116.

    Article  Google Scholar 

  • Takezaki, N., Rzhetsky, A., and Nei, M., 1995. Phylogenetic test of the molecular clock and linearized trees. Molecular Biology and Evolution, 12, 823–833.

    Google Scholar 

  • Welch, J. J., and Bromham, L., 2005. Molecular dating when rates vary. Trends in Ecology & Evolution, 20, 320–327, doi:10.1016/j.tree.2005.02.007.

    Article  Google Scholar 

  • Xie, W., Lewis, P. O., Fan, Y., et al., 2011. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Systematic Biology, 60, 150–160, doi:10.1093/sysbio/syq085.

    Article  Google Scholar 

  • Yang, Z., 1994. Estimating the pattern of nucleotide substitution. Journal of Molecular Evolution, 39, 105–111.

    Google Scholar 

  • Yang, Z., 2006. Computational Molecular Evolution. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Yang, Z., 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24, 1586–1591, doi:10.1093/molbev/msm088.

    Article  Google Scholar 

  • Yang, Z., and Rannala, B., 2006. Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Molecular Biology and Evolution, 23, 212–226, doi:10.1093/molbev/msj024.

    Article  Google Scholar 

  • Yoder, A. D., and Yang, Z., 2000. Estimation of primate speciation dates using local molecular clocks. Molecular Biology and Evolution, 17, 1081–1090.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Duchene .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Duchene, D., Bromham, L. (2013). Molecular Dating of Evolutionary Events. In: Rink, W., Thompson, J. (eds) Encyclopedia of Scientific Dating Methods. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6326-5_18-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6326-5_18-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6326-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics