Skip to main content

Wastewater Treatment and Algal Biofuel Production

  • Chapter
  • First Online:
Algae for Biofuels and Energy

Part of the book series: Developments in Applied Phycology ((DAPH,volume 5))

Abstract

Promoting algal production in wastewater treatment high rate algal ponds (HRAPs) by CO2 addition enables cost effective near tertiary-level wastewater treatment to be achieved and the harvested algal biomass by-product can be used for biofuel production. Naturally occurring algae thrive on wastewater providing the oxygen for aerobic bacteria to break down the waste to ammonia, phosphate and CO2 which are then assimilated into new algal biomass. Low C:N ratios in wastewater mean that additional CO2 added to HRAP will enable all the wastewater N to be assimilated into algal biomass. CO2 may be easily obtained at the treatment plant as exhaust gas from biogas power generation. CO2 addition to wastewater treatment HRAPs has a further benefit in enhancing bioflocculation of the algal-bacterial biomass to enable low-cost harvest by gravity settling. Although there are several options to convert harvested algal biomass to biofuel, processes that use the entire biomass with little or no dewatering are preferable, and for wastewater treatment plants, anaerobic digestion of the algal biomass along with settled primary sludge is the most easily implemented and economic technology. Since the capital and operation costs of wastewater treatment HRAP are covered by their wastewater treatment role, they provide a cost-effective, even if niche, opportunity for algal biofuel production that could be of great value to the local community. Moreover, GHG abatement and nutrient fertilizer recovery provide additional environmental and financial incentives. Upgrading existing wastewater treatment facultative ponds (used world-over for secondary-level wastewater treatment) to tertiary treatment HRAPs provides an avenue to refine operation and performance issues of these ponds at large(hectare)-scale, for future application to standalone algal biofuel systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Apt KE, Behrens PW (1999) Commercial developments in microalgal biotechnology. J Phycol 35:215–226

    Article  Google Scholar 

  • Azov Y, Goldman JC (1982) Free ammonia inhibition of algal photosynthesis in intensive cultures. Appl Environ Microbiol 43:735–739

    CAS  Google Scholar 

  • Azov Y, Shelef G, Moraine R (1982) Carbon limitation of biomass production in high-rate oxidation ponds. Biotechnol Bioeng 24:579–594

    Article  CAS  Google Scholar 

  • Banat I, Puskas K, Esen I, Daher RA (1990) Wastewater treatment and algal productivity in an integrated ponding system. Biol Waste 32:265–275

    Article  CAS  Google Scholar 

  • Barclay B, Nagle N, Terry K (1987) Screening microalgae for biomass production potential: protocol modification and evaluation. FY 1986 Aquatic species program annual report, Solar Energy Research Institute, Golden, Colorado, SERI/CP-231-3071, pp 23–40

    Google Scholar 

  • Becker EW (1988) Micro-algae for human and animal consumption. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal Biotechnology. University Press Cambridge, Cambridge, pp 222–256

    Google Scholar 

  • Benemann JR (2003) Biofixation of CO2 and greenhouse gas abatement with microalgae – technology roadmap. Report No. 701026 prepared for the U.S. Department of Energy National Energy Technology Laboratory

    Google Scholar 

  • Benemann JR, Oswald WJ (1996) Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. Final report. US DOE-NETL No: DOE/PC/93204-T5. Prepared for the Energy Technology Center, Pittsburgh

    Google Scholar 

  • Benemann JR, Koopman BL, Baker DC, Goebel RP, Oswald WJ (1980) Design of the algal pond subsystem of the photosynthetic energy factory. Final report for the US energy research and development administration contract number. EX-76-(−01-2548). Report No. 78–4. SERL, Colorado

    Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    Article  CAS  Google Scholar 

  • Borowitzka MA (2005) Culturing microalgae in outdoor ponds. In: Andersen RA (ed) Algal culturing techniques. Elsevier/Academic Press, New York, pp 205–218

    Google Scholar 

  • Borowitzka MA, Borowitzka LJ (eds) (1988) Micro-algal Biotechnology. Cambridge University Press, Cambridge, p 390

    Google Scholar 

  • Bouterfas R, Belkoura M, Dauta A (2002) Light and temperature effects on the growth rate of three freshwater algae isolated from a eutrophic lake. Hydrobiologia 489:207–217

    Article  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energ Rev 14:557–577

    Article  CAS  Google Scholar 

  • Cauchie HM, Hoffmann L, Jaspar-Versali MF, Salvia M, Thomé JP (1995) Daphnia magna Straus living in an aerated sewage lagoon as a source of chitin: ecological aspects. J Zool 125:67–78

    Google Scholar 

  • Chandler K, Liotta CL, Eckert CA, Schiraldi D (1998) Tuning alkylation reactions with temperature in near-critical water. AIChE J 44:2080–2087

    Article  CAS  Google Scholar 

  • Chelf P (1990) Environmental control of lipid and biomass production in two diatom species. J Appl Phycol 2:121–129

    Article  Google Scholar 

  • Chen P, Oswald WJ (1998) Thermochemical treatment for algal fermentation. Environ Int 24:889–897

    Article  CAS  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    Article  CAS  Google Scholar 

  • Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environ-mental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819

    Article  CAS  Google Scholar 

  • Coleman LW, Rosen BH, Schwartzbach SD (1987) Biochemistry of neutral lipid synthesis in microalgae. In: Johnson DA (ed) FY 1986 Aquatic species program annual report. Solar Energy Research Institute, Golden, Colorado, SERI/SP-231-3071, p 255

    Google Scholar 

  • Conde JL, Moro LE, Travieso L, Sanchez EP, Leiva A, Dupeiron R, Escobedo R (1993) Biogas purification using intensive microalgae cultures. Biotechnol Lett 15:317–320

    Article  CAS  Google Scholar 

  • Cooksey KE, Guckert JB, Williams SA, Collis PR (1987) Fluorometric determination of the neutral lipid content of microalgal cells using Nile Red. J Microbiol Methods 6:333–345

    Article  CAS  Google Scholar 

  • Craggs RJ (2005) Advanced integrated wastewater ponds. In: Shilton A (ed) Pond treatment technology. IWA scientific and technical report series. IWA, London, pp 282–310

    Google Scholar 

  • Craggs RJ, Green FB, Oswald WJ (1999) Economic and energy requirements of advanced integrated wastewater pond systems (AIWPS). In: Proceedings of the NZWWA annual conference, pp 1–7

    Google Scholar 

  • Craggs RJ, Davies-Colley RJ, Tanner CC, Sukias JPS (2003) Advanced ponds systems: performance with high rate ponds of different depths and areas. Water Sci Technol 48:259–267

    CAS  Google Scholar 

  • Davies-Colley RJ (2005) Pond disinfection. In: Shilton A (ed) Pond treatment technology. IWA Scientific and technical report series. IWA, London, pp 100–136

    Google Scholar 

  • Davies-Colley RJ, Hickey CW, Quinn JM (1995) Organic matter, nutrients and optical characteristics of sewage lagoon effluents. NZ J Mar Freshw Res 29:235–250

    Article  CAS  Google Scholar 

  • de la Noüe J, De Pauw N (1988) The potential of microalgal biotechnology: a review of production and uses of microalgae. Biotechnol Adv 6:725–770

    Article  Google Scholar 

  • Downing JB, Bracco E, Green FB, Ku AY, Lundquist TJ, Zubieta IX, Oswald WJ (2002) Low cost reclamation using the advanced integrated wastewater pond systems technology and reverse osmosis. Water Sci Technol 45:117–125

    CAS  Google Scholar 

  • Eisenberg DM, Koopman BL, Benemann JR, Oswald WJ (1981) Algal bioflocculation and energy conservation in microalgae sewage ponds. Biotechnol Bioeng 11:429–448

    Google Scholar 

  • Feinberg DA (1984) Technical and economic analysis of liquid fuel production from microalgae. Solar Energy Research Institute, Golden

    Google Scholar 

  • Garcia J, Mujeriego R, Hernandez-Marine M (2000) High rate algal pond operating strategies for urban wastewater nitrogen removal. J Appl Phycol 12:331–339

    Article  CAS  Google Scholar 

  • Gerhardt MB, Green FB, Newman RD, Lundquist TJ, Tresan RB (1991) Removal of selenium using a novel algal-bacterial process. Res J Water Pollut Control 63:799–805

    CAS  Google Scholar 

  • Golueke CG, Oswald WJ (1959) Biological conversion of light energy to the chemical energy of methane. Appl Microbiol 7:219–227

    CAS  Google Scholar 

  • Green FB, Lundquist TJ, Oswald WJ (1995) Energetics of advanced integrated wastewater pond systems. Water Sci Technol 31:9–20

    CAS  Google Scholar 

  • Green FB, Bernstone L, Lundquist TJ, Oswald WJ (1996) Advanced integrated wastewater pond systems for nitrogen removal. Water Sci Technol 33:207–217

    CAS  Google Scholar 

  • Guckert JB, Cooksey KE (1990) Triglyceride accumulation and fatty aid profile changes in Chlorella (Chlorophyta) during high pH-induced cell cycle inhibition. J Phycol 26:72–79

    Article  CAS  Google Scholar 

  • Heubeck S, Craggs RJ, Shilton A (2007) Influence of CO2 scrubbing from biogas on the treatment performance of a high rate algal pond. Water Sci Technol 55:193–200

    CAS  Google Scholar 

  • Jeon YC, Cho CW, Yun YS (2005) Measurement of microalgal photosynthetic activity depending on light intensity and quality. Biochem Eng J 27:127–131

    Article  CAS  Google Scholar 

  • Kagami M, de Bruin A, Ibelings B, Van Donk E (2007) Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 578:113–129

    Article  Google Scholar 

  • Kong Q-X, Li L, Martinez B, Chen P, Ruan R (2010) Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl Biochem Biotechnol 160:9–18

    Article  CAS  Google Scholar 

  • Konig A, Pearson HW, Silva SA (1987) Ammonia toxicity to algal growth in waste stabilisation ponds. Water Sci Technol 19:115–122

    CAS  Google Scholar 

  • Lardon L, Hlias A, Sialve B, Steyer JP, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43:6475–6481

    Article  CAS  Google Scholar 

  • Lavoie A, de la Noue J (1987) Harvesting of Scenedesmus obliquus in wastewaters: auto- or bioflocculation. Biotechnol Bioeng 30:852–859

    Article  CAS  Google Scholar 

  • Lundquist TJ (2008) Production of algae in conjunction with wastewater treatment. In: Proceedings of the 11th International Conference on Applied Phycology, National University of Ireland, Galway, June 22–27

    Google Scholar 

  • Mandeno G, Craggs R, Tanner C, Sukias J, Webster-Brown J (2005) Potential biogas scrubbing using a high rate pond. Water Sci Technol 51:153–161

    Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energ Rev 14:217–232

    Article  CAS  Google Scholar 

  • Matsumura Y, Minowa T, Potic B, Kersten S, Prins W, van Swaaij W, van de Beld B, Elliott D, Neuenschwander G, Kruse A, Antal M (2005) Biomass gasification in near- and super-critical water: status and prospects. Biomass Bioenerg 29:269–292

    Article  CAS  Google Scholar 

  • Metcalf & Eddy, Inc (1991) Wastewater engineering: treatment, disposal, and reuse, 3rd edn. McGraw-Hill Inc, New York

    Google Scholar 

  • Metting B, Pyne JW (1986) Biologically active compounds from microalgae. Enzyme Microbiol Technol 8:386–394

    Article  CAS  Google Scholar 

  • Molina Grima E, Belarbi E-H, Acién Fernández FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  CAS  Google Scholar 

  • Moraine R, Shelef G, Meydan A, Levi A (1979) Algal single cell protein from wastewater treatment and renovation process. Biotechnol Bioeng 21:1191–1207

    Article  CAS  Google Scholar 

  • New Zealand Ministry of Economic Development (2007) New Zealand energy greenhouse gas emissions 1990–2006. Report. Wellington, New Zealand

    Google Scholar 

  • Nurdogan Y, Oswald WJ (1995) Enhanced nutrient removal in high rate ponds. Water Sci Technol 31:33–43

    CAS  Google Scholar 

  • O’Brien WJ, De Noyelles F (1972) Photosynthetically elevated pH as a factor in zooplankton mortality in nutrient enriched ponds. Ecology 53:605–624

    Article  Google Scholar 

  • Oswald WJ (1980) Algal production- problems, achievements and potential. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier North/Holland/Biomedical Press, Amsterdam, pp 1–8

    Google Scholar 

  • Oswald WJ (1988a) Micro-algae and waste-water treatment. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal Biotechnology. Cambridge University Press, Cambridge, pp 305–328

    Google Scholar 

  • Oswald WJ (1988b) Large-scale algal culture systems (engineering aspects). In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal Biotechnology. Cambridge University Press, Cambridge, pp 357–395

    Google Scholar 

  • Oswald WJ, Golueke CG (1960) Biological transformation of solar energy. Adv Appl Microbiol 2:223–262

    Article  CAS  Google Scholar 

  • Oswald WJ, Gotaas HB, Golueke CG, Kellen WR (1957) Algae in waste treatment. Sew Indl Waste 29:437–457

    Google Scholar 

  • Owen WF (1982) Energy in wastewater treatment. Prentice-Hall, Englewood Cliffs, pp 71–72

    Google Scholar 

  • Park JBK, Craggs RJ (2010a) Wastewater treatment and algal production in high rate algal ponds with carbon dioxide addition. Water Sci Technol 61:633–639

    Article  CAS  Google Scholar 

  • Park JBK, Craggs RJ (2010b) Nutrient removal and nitrogen balances in high rate algal ponds with carbon dioxide addition. Water Sci Technol 61:633–639

    Article  CAS  Google Scholar 

  • Picot B, El Halouani H, Casellas C, Moersidik S, Bontoux J (1991) Nutrient removal by high rate pond system in a Mediterranean climate (France). Water Sci Technol 23:1535–1541

    CAS  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioeng Res 1:20–43

    Article  Google Scholar 

  • Schluter M, Groeneweg J (1981) Mass production of freshwater rotifers on liquid wastes: I. The influence of some environmental factors on population growth of Brachionus rubens. Aquaculture 25:17–24

    Article  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy’s aquatic species program – biodiesel from algae. National Renewable Energy Laboratory, Golden, CO, 80401 NERL/TP-580-24190

    Google Scholar 

  • Shen Y, Yuan W, Pei ZJ, Wu Q, Mao E (2009) Microalgae mass production methods. Trans ASABE 52:1275–1287

    Google Scholar 

  • Short SM, Suttle CA (2002) Sequence analysis of marine virus communities reveals that groups of related algal viruses are widely distributed in nature. Appl Environ Microbiol 63:1290–1296

    Article  Google Scholar 

  • Siegrist H, Hunziker W, Hofer H (2005) Anaerobic digestion of slaughterhouse waste with UF – membrane separation and recycling of permeate after free ammonia stripping. Water Sci Technol 52:531–536

    CAS  Google Scholar 

  • Smith VH, Sturm BSM, de Noyelles FJ, Billings SA (2009) The ecology of algal biodiesel production. Trends Ecol Evol 25:301–309

    Article  Google Scholar 

  • Sukias JPS, Craggs RJ (2011) Digestion of wastewater pond microalgae and potential inhibition by alum and ammoniacal-N. Water Sci Technol 63:835–840

    Article  CAS  Google Scholar 

  • Tampier M (2009) Microalgae technologies & processes for biofuels/bioenergy production in British Columbia: current technology, suitability & barriers to implementation. Prepared for The British Columbia Innovation Council, 14 Jan 2009

    Google Scholar 

  • Tillett DM (1988) Lipid productivity and species competition in laboratory models of algae mass cultures. PhD thesis. The School of Chemical Engineering, Georgia Institute of Technology

    Google Scholar 

  • USDoE (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion ton supply (DOE/GO-102005-2135. Oak Ridge National Laboratory, Oak Ridge

    Google Scholar 

  • van Harmelen T, Oonk H (2006) Microalgae biofixation processes: applications and potential contributions to greenhouse gas mitigation options TNO Built Environmental and Geosciences, Apeldoorn, The Netherlands

    Google Scholar 

  • Voltolina D, Gómez-Villa H, Correa G (2005) Nitrogen removal and recycling by Scenedesmus obliquus in semicontinuous cultures using artificial wastewater and a simulated light and temperature cycle. Bioresour Technol 96:359–362

    Article  CAS  Google Scholar 

  • Weissman JC, Goebel RP (1987) Factors affecting the photosynthetic yield of microalgae. In: Johnson DA (ed) FY 1986 Aquatic species program annual report, Solar Energy Research Institute, Golden, Colorado, SERI/SP-231-3071, pp 139–168

    Google Scholar 

  • Weissman JC, Goebel RP, Benemann JR (1988) Photobioreactor design: mixing, carbon utilization and oxygen accumulation. Biotech Bioeng 31:336–344

    Article  CAS  Google Scholar 

  • Wells CD (2005) Tertiary treatment in integrated algal ponding systems. Master of Science thesis, Biotechnology, Rhodes University, South Africa

    Google Scholar 

  • West TO, Marland G (2001) A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agric Ecosyst Environ 1812:1–16

    Google Scholar 

  • Weyer KM, Bush DR, Darzins A, Willson BD (2009) Theoretical maximum algal oil production. Bioenerg Res 3:204–213

    Article  Google Scholar 

  • Wickfors G, Ohno M (2001) Impact of algal research in aquaculture. J Phycol 37:968–974

    Article  Google Scholar 

  • Woertz IC (2007) Lipid productivity of algae grown on dairy wastewater as a possible feedstock for biodiesel. Masters thesis, Faculty of Civil and Environmental Engineering, California Polytechnic University, San Luis Obispo

    Google Scholar 

  • Woertz I, Feffer A, Lundquist T, Nelson Y (2009) Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J Environ Eng 135:1115–1122

    Article  CAS  Google Scholar 

  • Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64:69–114

    Article  CAS  Google Scholar 

  • Wood S, Cowie A (2004) A review of greenhouse gas emission factors for fertiliser production. Prepared for the Research and Development Division, State Forests of New South Wales. Cooperative Research Centre for Greenhouse Accounting. For IEA Bioenergy Task 38

    Google Scholar 

  • Yen HW, Brune DE (2007) Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour Technol 98:130–134

    Article  CAS  Google Scholar 

  • Yesodharan S (2002) Supercritical water oxidation: an environmentally safe method for the disposal of organic wastes. Curr Sci 82:1112–1122

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Jason Park, Stephan Heubeck and Ian Woertz who provided valuable contributions to this chapter. NIWA funding was provided by the New Zealand Foundation for Research Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupert J. Craggs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Craggs, R.J., Lundquist, T.J., Benemann, J.R. (2013). Wastewater Treatment and Algal Biofuel Production. In: Borowitzka, M., Moheimani, N. (eds) Algae for Biofuels and Energy. Developments in Applied Phycology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5479-9_9

Download citation

Publish with us

Policies and ethics