Skip to main content

Biosensors for Sleep Technology

  • Chapter
  • First Online:
Introduction to Modern Sleep Technology

Abstract

Biosensing is an essential technique for monitoring and analyzing responses related to sleep status, and is undergoing rapid development. In this chapter, biosensing systems for sleep technology are introduced. First, we describe in detail non-invasive sensing methods such as polysomnography, MRI and contact/non-contact sensors. We then discuss biomolecular analysis. Finally, biochip technology is presented as we explore the potential development of nano/micro biotechnologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fisch BJ (1999) EEG primer: basic principles of digital and analog EEG, 3rd edn. Elsevier, Amsterdam/New York

    Google Scholar 

  2. Preston DC, Shapiro B (2005) Electromyography and neuromuscular disorders: clinical-electrophysiologic correlations, 2nd edn. Butterworth-Heinemann, Philadelphia

    Google Scholar 

  3. O’keefe J, Hammill S, Freed M, Pogwizd S (2008) The complete guide to ECGs, 3rd edn. Jones & Bartlett Learning, Royal Oak

    Google Scholar 

  4. Duchowski AT (2003) Eye tracking methodology: theory and practice, 1st edn. Springer, London

    MATH  Google Scholar 

  5. Wilson SB, Emerson R (2002) Spike detection: a review and comparison of algorithms. Clin Neurophysiol 113:1873–1881

    Article  Google Scholar 

  6. Casson AJ, Yates DC, Smith SJM, Duncan JS, Rodrigues-Villegas E (2010) Wearable electroencephalography. IEEE Eng Med Biol 29(3):44–56

    Article  Google Scholar 

  7. Ruffini G, Dunne S, Fuentemilla L, Grau C, Farres E, Marco-Pallares J, Watts PCP, Silva SRP (2008) First human trials of a dry electrophysiology sensor using a carbon nanotube array interface. Sens Actuator A – Phys 144:275–279

    Article  Google Scholar 

  8. Yazicioglu RF, Merken P, Puers R, Van Hoof C (2008) A 200 μW eight-channel EEG acquisition ASIC for ambulatory EEG systems. IEEE J Solid-State Circuit 43:3025–3038

    Article  Google Scholar 

  9. Casson AJ, Rodrigues-Villegas E (2007) A key power trade-off in wireless EEG headset design. In: Proceedings of the 3rd international IEEE EMBS conference neural engineering, EMBS NER, HI, pp 453–456

    Google Scholar 

  10. Wheeler KR, Jorgensen CC (2003) Gestures as input: neuroelectrics joysticks and keyboards. IEEE Pervasive Comput 2:56–61

    Article  Google Scholar 

  11. Wheeler KR, Chang MH, Knuth KH (2006) Gesture-based control and EMG decomposition. IEEE Tran Syst Man Cybern Part C 36:503–514

    Article  Google Scholar 

  12. Kamavuako EN, Farina D, Yoshida K, Jensen W (2009) Relationship between grasping force and features of single-channel intramuscular EMG signals. J Neurosci Methods 185:143–150

    Article  Google Scholar 

  13. Coote JH (1982) Respiratory and circulatory control during sleep. J Exp Biol 100:223–244

    Google Scholar 

  14. Van de Borne P, Nguyen H, Biston P, Linkowski P, Degaute JP (1994) Effects of wake and sleep stages on the 24-h autonomic control of blood pressure and heart rate in recumbent men. Am J Physiol 266:H548–H554

    Google Scholar 

  15. Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology (1996) Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93:1043–1065

    Article  Google Scholar 

  16. Burton AR, Rahman K, Kadota Y, Lloyd A, Vollmer-Conna U (2010) Reduced heart rate variability predicts poor sleep quality in a case–control study of chronic fatigue syndrome. Exp Brain Res 204(1):71–78

    Article  Google Scholar 

  17. Keyl C, Lemberger P, Rodig G, Dambacher M, Frey AW (1996) Changes in cardiac autonomic control during nocturnal repetitive oxygen desaturation episodes in patients with coronary artery disease. J Cardiovasc Risk 3:221–227

    Article  Google Scholar 

  18. Zemaityte D, Varoneckas G, Plauska K, Kaukenas J (1986) Components of the heart rhythm power spectrum in wakefulness and individual sleep stages. Int J Psychophysiol 4:129–141

    Article  Google Scholar 

  19. Vanoli E, Adamson PB, Ba L, Pinna GD, Lazzara R, Orr WC (1995) Heart rate variability during specific sleep stages. A comparison of healthy subjects with patients after myocardial infarction. Circulation 91:1918–1922

    Article  Google Scholar 

  20. Mendez MO, Bianchi AM, Matteucci M, Cerutti S, Penzel T (2009) Sleep apnea screening by autoregressive models from a single ECG lead. Trans Biomed Eng 56:2828–2850

    Article  Google Scholar 

  21. Somers VK, Dyken ME, Clary MP, Abboud FM (1995) Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest 96:1897–1904

    Article  Google Scholar 

  22. Kesek M, Franklin KA, Sahlin C, Lindberg E (2009) Heart rate variability during sleep and sleep apnoea in a population based study of 387 women. Clin Physiol Funct Imaging 29(4):309–315, Epub 2009 Apr 28

    Article  Google Scholar 

  23. Itsuki N, Yamada M, Kubo M, Shinomiya K (2004) Improved method for measuring electrooculogram and its evaluation. In: 2004 8th international conference on control, automation, robotics and vision

    Google Scholar 

  24. Snyder F, Hobson JA, Morrison DF, Goldfrank F (1964) Changes in respiration, heart rate, and systolic blood pressure in human sleep. J Appl Physiol 19:417–422

    Google Scholar 

  25. Rechtschaffen A, Kales A (1968) A manual of standardized terminology, techniques, and scoring system for sleep stages of human subjects. U.S. Government Printing Office, Washington, DC

    Google Scholar 

  26. Sakai K, Sano K, Iwahara S (1973) Eye movements and hipocampal theta activity in cats. Electroencephalogr Clin Neurophysiol 34:547–549

    Article  Google Scholar 

  27. Kuo TB, Yang CC (2009) Frequency domain analysis of electrooculogram and its correlation with cardiac sympathetic function. Exp Neurol 217(1):38–45

    Article  Google Scholar 

  28. Buchsbaum MS, Gillin JC, Wu J et al (1989) Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography. Life Sci 45:1349–1356

    Article  Google Scholar 

  29. Maquet P (1997) Positron emission tomography studies of sleep and sleep disorders. J Neurol 244(Suppl 1):S23–S28

    Article  Google Scholar 

  30. Maquet P, Phillips C (1998) Functional brain imaging of human sleep. J Sleep Res 7(Suppl 1):42–47

    Article  Google Scholar 

  31. Maquet P (2000) Functional neuroimaging of normal human sleep by positron emission tomography. J Sleep Res 9(3):207–231

    Article  Google Scholar 

  32. Maquet P (1999) Brain mechanisms of sleep: contribution of neuroimaging techniques. J Psychopharmacol 13(Suppl 1):S25–S28

    Google Scholar 

  33. Buchsbaum MS, Hazlett EA, Wu J, Bunney WE Jr (2001) Positron emission tomography with deoxyglucose-F18 imaging of sleep. Neuropsychopharmacology 25(5 Suppl):S50–S56

    Article  Google Scholar 

  34. Maquet P, Peters J, Aerts J et al (1996) Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature 383:163–166

    Article  Google Scholar 

  35. Braun AR, Balkin TJ, Wesenten NJ et al (1997) Regional cerebral blood flow throughout the sleep–wake cycle. An H2(15)O PET study. Brain 120:1173–1797

    Article  Google Scholar 

  36. Braun AR, Balkin TJ, Wesenten NJ et al (1998) Dissociated pattern of activity in visual cortices and their projections during human rapid eye movement sleep. Science 279:91–95

    Article  Google Scholar 

  37. Nofzinger EA, Mintun MA, Wiseman MB et al (1997) Forebrain activation in REM sleep: an FDG PET study. Brain Res 770:192–201

    Article  Google Scholar 

  38. Kajimura N, Uchiyama M, Takayama Y, Uchida S, Uema T, Kato M et al (1999) Activity of midbrain reticular formation and neocortex during the progression of human non-rapid eye movement sleep. J Neurosci 19(22):10065–10073

    Google Scholar 

  39. Andersson JL, Onoe H, Hetta J, Lidstrom K, Valind S, Lilja A et al (1998) Brain networks affected by synchronized sleep visualized by positron emission tomography. J Cereb Blood Flow Metab 18(7):701–715

    Article  Google Scholar 

  40. Steriade M, McCarley RW (1990) Brainstem control of wakefulness and sleep. Plenum Press, New York

    Google Scholar 

  41. Jones BE (1991) Paradoxical sleep and its chemical/structural substrates in the brain. Neuroscience 40(3):637–656

    Article  Google Scholar 

  42. Maquet P, Dive D, Salmon E, Sadzot B, Franco G, Poirrier R et al (1990) Cerebral glucose utilization during sleep-wake cycle in man determined by positron emission tomography and [18F]2-fluoro-2-deoxy-d-glucose method. Brain Res 513(1):136–143

    Article  Google Scholar 

  43. Madsen PL, Vorstrup S (1991) Cerebral blood flow and metabolism during sleep. Cerebrovasc Brain Metab Rev 3(4):281–296, View Record in Scopus|Cited By in Scopus (43)

    Google Scholar 

  44. Madsen PL, Holm S, Vorstrup S, Friberg L, Lassen NA, Wildschiodtz G (1991) Human regional cerebral blood flow during rapid-eye-movement sleep. J Cereb Blood Flow Metab 11(3):502–507

    Article  Google Scholar 

  45. Dang-Vu TT, Desseilles M, Petit D, Mazza S, Montplaisir J, Maquet P (2007) Neuroimaging in sleep medicine. Sleep Med 8(4):349–372

    Article  Google Scholar 

  46. Smith MT, Perlis ML, Chengazi VU, Pennington J, Soeffing J, Ryan JM et al (2002) Neuroimaging of NREM sleep in primary insomnia: a Tc-99-HMPAO single photon emission computed tomography study. Sleep 25(3):325–335

    Google Scholar 

  47. Smith MT, Perlis ML, Chengazi VU, Soeffing J, McCann U (2005) NREM sleep cerebral blood flow before and after behavior therapy for chronic primary insomnia: preliminary single photon emission computed tomography (SPECT) data. Sleep Med 6(1):93–94

    Article  Google Scholar 

  48. Macey PM, Henderson LA, Macey KE, Alger JR, Frysinger RC, Woo MA et al (2002) Brain morphology associated with obstructive sleep apnea. Am J Respir Crit Care Med 166(10):1382–1387

    Article  Google Scholar 

  49. Kamba M, Inoue Y, Higami S, Suto Y, Ogawa T, Chen W (2001) Cerebral metabolic impairment in patients with obstructive sleep apnoea: an independent association of obstructive sleep apnoea with white matter change. J Neurol Neurosurg Psychiatry 71(3):334–339

    Article  Google Scholar 

  50. Alchanatis M, Deligiorgis N, Zias N, Amfilochiou A, Gotsis E, Karakatsani A et al (2004) Frontal brain lobe impairment in obstructive sleep apnoea: a proton MR spectroscopy study. Eur Respir J 24(6):980–986

    Article  Google Scholar 

  51. Sato I, Nakajima M (2005) Non-contact breath motion monitoring system in full automation. In: Proceedings of the 2005 IEEE, engineering in medicine and biology 27th annual conference

    Google Scholar 

  52. Alihanka J, Vaahtoranta K, Saarikivi I (1981) A new method for long-term monitoring of the ballistocardiogram, heart rate, and respiration. Am J Physiol 240:384–392

    Google Scholar 

  53. Salmi T, Leinonen L (1986) Automatic analysis of sleep records with static charge sensitive bed. Electroencephalogr Clin Neurophysiol 64:84–87

    Article  Google Scholar 

  54. Nishida Y et al (1998) Unrestrained and non-invasive monitoring of human’s respiration and posture in sleep using pressure sensor. J Robot Soc Jpn 16(5):705–711

    Article  Google Scholar 

  55. Tanaka S (2000) Unconstrained and noninvasive automatic measurement of respiration and heart rates using a strain gauge. Trans SICE 36(3):227–233

    Google Scholar 

  56. Watanabe H, Watanabe K (2000) Study on the non-restrictive vital bio-measurement by the air mattress methods. Trans SICE 36(11):894–900

    Google Scholar 

  57. Monk TH, Reynolds CF, Kupfer DJ et al (1994) The Pittsburgh sleep diary. J Sleep Res 3(2):111–120

    Article  Google Scholar 

  58. de Chazal P, O’Hare E, Fox N, Heneghan C (2008) Assessment of sleep/wake patterns using a non-contact biomotion sensor. Conf Proc IEEE Eng Med Biol Soc 2008:514–517

    Google Scholar 

  59. Benington JH, Heller HC (1995) Restoration of brain energy metabolism as the function of sleep. Prog Neurobiol 45:347–360

    Article  Google Scholar 

  60. Dworak M, McCarley RW, Kim T, Kalinchuk AV, Basheer RJ (2010) Sleep and brain energy levels: ATP changes during sleep. Neuroscience 30(26):9007–9016

    Article  Google Scholar 

  61. Cirelli C (2009) The genetic and molecular regulation of sleep: from fruit flies to humans. Nat Rev Neurosci 10:549–560

    Article  Google Scholar 

  62. Honma S, Kawamoto T, Takagi Y, Fujimoto K, Sato F, Noshiro M, Kato Y, Honma K (2002) Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature 419:841–844

    Article  Google Scholar 

  63. Hartmann G, Tschop M, Fischer R, Bidlingmaier C, Riepl R, Tschop K et al (2000) High altitude increases circulating interleukin-6, interleukin-1 receptor antagonist and C-reactive protein. Cytokine 12(3):246–252

    Article  Google Scholar 

  64. Vgontzas AN, Papanicolaou DA, Bixler EO, Kales A, Tyson K, Chrousos GP (1997) Elevation of plasma cytokines in disorders of excessive daytime sleepiness: role of sleep disturbance and obesity. J Clin Endocrinol Metab 82(5):1313–1316

    Article  Google Scholar 

  65. Vgontzas AN, Papanicolaou DA, Bixler EO, Lotsikas A, Zachman K, Kales A et al (1999) Circadian interleukin-6 secretion and quantity and depth of sleep. J Clin Endocrinol Metab 84(8):2603–2607

    Article  Google Scholar 

  66. Mirkin CA, Letsinger RK, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  Google Scholar 

  67. Taton TA, Mirkin CA, Letsinger RL (2000) Scanometric DNA array detection with nanoparticle probes. Science 289:1757–1760

    Article  Google Scholar 

  68. Nam J-M, Thaxton CS, Mirkin CA (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301:1884–1886

    Article  Google Scholar 

  69. Wu G, Datar RH, Hansen KM, Thundat T, Cote RJ, Majumdar A (2001) Bioassay of porstate-specific antigen (PSA) using microcantilevers. Nat Biotechnol 19:856–860

    Article  Google Scholar 

  70. Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23:1294–1301

    Article  Google Scholar 

  71. He B (1997) Principles and applications of the laplacian electrocardiogram. IEEE Eng Med Biol 16(5):133–138

    Article  Google Scholar 

  72. Gu JJ, Meng M, Cook A, Faulkner MG (2001) A study of natural eye movement detection and ocular implant movement control using processed EOG signals. In: Proceedings of the IEEE international conference on robotics & automation, Seoul, Korea, May 2001, pp 1555–1560

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Ting Lin Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lee, JK., Lin, CT. (2012). Biosensors for Sleep Technology. In: Chiang, RY., Kang, SC. (eds) Introduction to Modern Sleep Technology. Intelligent Systems, Control and Automation: Science and Engineering, vol 64. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5470-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5470-6_11

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5469-0

  • Online ISBN: 978-94-007-5470-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics