Skip to main content

A Variational Approach to Multirate Integration for Constrained Systems

  • Chapter

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 28))

Abstract

The simulation of systems with dynamics on strongly varying time scales is quite challenging and demanding with regard to possible numerical methods. A rather naive approach is to use the smallest necessary time step to guarantee a stable integration of the fast frequencies. However, this typically leads to unacceptable computational loads. Alternatively, multirate methods integrate the slow part of the system with a relatively large step size while the fast part is integrated with a small time step. In this work, a multirate integrator for constrained dynamical systems is derived in closed form via a discrete variational principle on a time grid consisting of macro and micro time nodes. Being based on a discrete version of Hamilton’s principle, the resulting variational multirate integrator is a symplectic and momentum preserving integration scheme and also exhibits good energy behaviour. Depending on the discrete approximations for the Lagrangian function, one obtains different integrators, e.g. purely implicit or purely explicit schemes, or methods that treat the fast and slow parts in different ways. The performance of the multirate integrator is demonstrated by means of several examples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds, Tensor Analysis, and Applications. Springer, New York (1988)

    Book  MATH  Google Scholar 

  2. Arnold, M.: Multi-rate time integration for large scale multibody system models. In: Proceedings of the IUTAM Symposium on Multiscale Problems in Multibody System Contacts, Stuttgart, Germany (2006)

    Google Scholar 

  3. Barth, E., Schlick, T.: Extrapolation versus impulse in multiple-timestepping schemes. II. Linear analysis and applications to Newtonian and Langevin dynamics. J. Chem. Phys. 109, 1633–1642 (1998)

    Article  Google Scholar 

  4. Betsch, P., Leyendecker, S.: The discrete null space method for the energy consistent integration of constrained mechanical systems. Part II: Multibody dynamics. Int. J. Numer. Methods Eng. 67(4), 499–552 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bou-Rabee, N., Owhadi, H.: Stochastic variational integrators. IMA J. Numer. Anal. 29, 421–443 (2008)

    Article  MathSciNet  Google Scholar 

  6. Cohen, D., Jahnke, T., Lorenz, K., Lubich, C.: Numerical integrators for highly oscillatory Hamiltonian systems: a review. In: Analysis, Modeling and Simulation of Multiscale Problems, pp. 553–576 (2006)

    Chapter  Google Scholar 

  7. Fetecau, R.C., Marsden, J.E., Ortiz, M., West, M.: Nonsmooth Lagrangian mechanics and variational collision integrators. SIAM J. Appl. Dyn. Syst. 2(3), 381–416 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fong, W., Darve, E., Lew, A.: Stability of asynchronous variational integrators. J. Comput. Phys. 227, 8367–8394 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ge, Z., Marsden, J.E.: Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators. Phys. Lett. A 133(3), 134–139 (1988)

    Article  MathSciNet  Google Scholar 

  10. Gear, C.W., Wells, R.R.: Multirate linear multistep methods. BIT 24, 484–502 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Günther, M., Kærnø, A., Rentrop, P.: Multirate partitioned Runge-Kutta methods. BIT Numer. Math. 41(3), 504–514 (2001)

    Article  MATH  Google Scholar 

  12. Hairer, E., Wanner, G., Lubich, C.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, New York (2004)

    Google Scholar 

  13. Kane, C., Marsden, J.E., Ortiz, M., West, M.: Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems. Int. J. Numer. Methods Eng. 49(10), 1295–1325 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kobilarov, M., Marsden, J.E., Sukhatme, G.S.: Geometric discretization of nonholonomic systems with symmetries. Discrete Contin. Dyn. Syst., Ser. S 1(1), 61–84 (2010)

    MathSciNet  Google Scholar 

  15. Leimkuhler, B., Patrick, G.: A sympletic integrator for Riemannian manifolds. J. Nonlinear Sci. 6, 367–384 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Leimkuhler, B., Reich, S.: Symplectic integration of constrained Hamiltonian systems. Math. Comput. 63, 589–605 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  18. Lew, A., Marsden, J.E., Ortiz, M., West, M.: An overview of variational integrators. In: Finite Element Methods: 1970’s and Beyond, pp. 85–146. CIMNE, Barcelona (2003)

    Google Scholar 

  19. Lew, A., Marsden, J.E., Ortiz, M., West, M.: An overview of variational integrators. In: Franca, L.P., Tezduyar, T.E., Masud, A. (eds.) Finite Element Methods: 1970’s and Beyond, pp. 98–115. CIMNE, Barcelona (2004)

    Google Scholar 

  20. Lew, A., Marsden, J.E., Ortiz, M., West, M.: Variational time integrators. Int. J. Numer. Methods Eng. 60(1), 153–212 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Leyendecker, S., Marsden, J.E., Ortiz, M.: Variational integrators for constrained dynamical systems. Z. Angew. Math. Mech. 88, 677–708 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Leyendecker, S., Ober-Blöbaum, S., Marsden, J.E., Ortiz, M.: Discrete mechanics and optimal control for constrained systems. Optim. Control Appl. Methods 31(6), 505–528 (2010)

    Article  MATH  Google Scholar 

  23. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Springer, New York (1994)

    Book  MATH  Google Scholar 

  24. Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numer. 10, 357–514 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. McLachlan, R., Quispel, G.: Geometric integrators for ODEs. J. Phys. A 39(19), 5251–5286 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ober-Blöbaum, S., Junge, O., Marsden, J.E.: Discrete mechanics and optimal control: an analysis. ESAIM Control Optim. Calc. Var. 17(2), 322–352 (2010)

    Article  Google Scholar 

  27. Reich, S.: Momentum conserving symplectic integrations. Physica D 76(4), 375–383 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  28. Stern, A., Grinspun, E.: Implicit-explicit integration of highly oscillatory problems. Multiscale Model. Simul. 7, 1779–1794 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Striebel, M., Bartel, A., Günther, M.: A multirate ROW-scheme for index-1 network equations. Appl. Numer. Math. 59, 800–814 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tao, M., Owhadi, H., Marsden, J.E.: Nonintrusive and structure preserving multiscale integration of stiff ODEs, SDEs, and Hamiltonian systems with hidden slow dynamics via flow averaging. Multiscale Model. Simul. 8(4), 1269–1324 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Verhoeven, A., Tasić, B., Beelen, T.G.J., ter Maten, E.J.W, Mattheij, R.M.M.: BDF compound-fast multirate transient analysis with adaptive stepsize control. J. Numer. Anal. Ind. Appl. Math. 3(3–4), 275–297 (2008)

    MATH  Google Scholar 

  32. Weinan, E., Engquist, B., Li, X., Ren, W., Vanden-Eijnden, E.: Heterogeneous multiscale methods: a review. Commun. Comput. Phys. 2(3), 367–450 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This chapter was partly developed and published in the course of the Collaborative Research Centre 614 “Self-Optimizing Concepts and Structures in Mechanical Engineering” funded by the German Research Foundation (DFG) under grant number SFB 614.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigrid Leyendecker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Leyendecker, S., Ober-Blöbaum, S. (2013). A Variational Approach to Multirate Integration for Constrained Systems. In: Samin, JC., Fisette, P. (eds) Multibody Dynamics. Computational Methods in Applied Sciences, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5404-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5404-1_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5403-4

  • Online ISBN: 978-94-007-5404-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics