Skip to main content

Gravitational Energy-Momentum Density

  • Chapter
  • 1887 Accesses

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 173))

Abstract

In Teleparallel Gravity it is possible to obtain separate expressions for the energy-momentum density of gravity and of the interaction of gravity with inertial effects of the frame. The energy-momentum density of gravity shows up as a true tensor, and satisfies a covariant conservation law. The energy-momentum density associated to the inertial effects is neither conserved nor covariant. Together, they form a pseudotensor conserved in the ordinary sense. This means that the non-covariance of the usual expressions for the gravitational energy-momentum density is not an intrinsic property of gravity, but a consequence of the fact that they include also the energy-momentum density related to the inertial effects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Synge, J.L.: Relativity: The General Theory. Wiley, New York (1960)

    MATH  Google Scholar 

  2. Bondi, H.: Proc. R. Soc. Lond. Ser. A 427, 249 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  3. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, San Francisco (1973)

    Google Scholar 

  4. Trautman, A.: In: Witten, L. (ed.) Gravitation: An Introduction to Current Research. Wiley, New York (1962)

    Google Scholar 

  5. Damour, T.: Questioning the equivalence principle. C. R. Acad. Sci., Sér. IV 2, 1249 (2001). gr-qc/0109063 (Contribution to the workshop Missions spatiales en physique fondamentale, Chatillon, France, 18–19 January 2001, edited by C. Bordé and P. Touboul)

    Google Scholar 

  6. Brown, J.D., York, J.W.: Phys. Rev. D 47, 1407 (1993). gr-qc/9209012

    Article  MathSciNet  ADS  Google Scholar 

  7. Chang, C.C., Nester, J.M.: Phys. Rev. Lett. 83, 1897 (1999). gr-qc/9809040

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Szabados, L.B.: Living Rev. Relativ. 7, 4 (2004)

    ADS  Google Scholar 

  9. Møller, C.: K. Dan. Vidensk. Selsk. Mat. Fys. Skr. 89, 13 (1978)

    Google Scholar 

  10. Maluf, J.W., Veiga, M.V.O., da Rocha-Neto, J.F.: Gen. Relativ. Gravit. 39, 227 (2007). gr-qc/0507122

    Article  ADS  MATH  Google Scholar 

  11. Gribl Lucas, T., Obukhov, Yu.N., Pereira, J.G.: Phys. Rev. D 80, 064043 (2009). 0909.2418 [gr-qc]

    Article  ADS  Google Scholar 

  12. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Pergamon, Oxford (1975)

    Google Scholar 

  13. Papapetrou, A.: Proc. R. Ir. Acad. A 52, 11 (1948)

    MathSciNet  Google Scholar 

  14. Bergmann, P.G., Thompson, R.: Phys. Rev. 89, 400 (1953)

    Article  ADS  MATH  Google Scholar 

  15. Møller, C.: Ann. Phys. 4, 347 (1958)

    Article  ADS  Google Scholar 

  16. Dubois-Violette, M., Madore, J.: Commun. Math. Phys. 108, 213 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Szabados, L.B.: Class. Quantum Gravity 9, 2521 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Aguirregabiria, J.M., Chamorro, A., Virbhadra, K.S.: Gen. Relativ. Gravit. 28, 1393 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Maluf, J.W.: Gen. Relativ. Gravit. 30, 413 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Deser, S., Franklin, J.S., Seminara, D.: Class. Quantum Gravity 16, 2815 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Babak, S.V., Grishchuk, L.P.: Phys. Rev. D 61, 024038 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  22. Itin, Y.: Class. Quantum Gravity 19, 173 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Aragone, C., Deser, S.: Nuovo Cimento A 3, 4 (1971)

    Article  Google Scholar 

  24. Aragone, C., Deser, S.: Nuovo Cimento B 57, 1 (1980)

    MathSciNet  Google Scholar 

  25. Levi-Civita, T.: Rend. R. Accad. Lincei 26, 381 (1917). For an English translation (with a foreword), see Antocci, S., Loinger, A.: physics/9906004

    MATH  Google Scholar 

  26. Belinfante, F.J.: Physica 6, 687 (1939)

    Google Scholar 

  27. Rosenfeld, L.: Mém. Acad. R. Belg. Sci. 18, 1 (1940)

    MathSciNet  Google Scholar 

  28. Itzykson, C., Zuber, J.B.: Quantum Field Theory. McGraw-Hill, New York (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Aldrovandi, R., Pereira, J.G. (2013). Gravitational Energy-Momentum Density. In: Teleparallel Gravity. Fundamental Theories of Physics, vol 173. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5143-9_10

Download citation

Publish with us

Policies and ethics