Skip to main content

Biotechnology of Hydrogen Production with the Microalga Chlamydomonas reinhardtii

  • Chapter
  • First Online:

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 25))

Abstract

The increase in the cost of energy and the problem of global warming have fostered considerable international efforts to discover a sustainable way to produce energy with zero CO2 emission. One eco-friendly way of producing energy is the photobiological production of H2 using the microalga Chlamydomonas reinhardtii. In specific conditions, this organism can direct electrons and protons obtained from water biophotolysis toward a specific enzyme, an [Fe]-hydrogenase, so as to obtain molecular H2. The process was discovered by Gaffron and Rubin (1942), who observed a transient H2 production with Scenedesmus. A way to prolong H2 production by means of inorganic sulfur deprivation was discovered by Melis and coworkers (Melis et al., 2000). In the past 10 years, considerable progress has been achieved in the photobiological production of hydrogen using Chlamydomonas under sulfur starvation conditions, and this has resulted in a number of papers being published on this subject (Melis et al., 2000; Kosourov et al., 2002, 2005, 2007; Tsygankov et al., 2002, 2006; Zhang et al., 2002).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

 References

  • Antal TK, Krendeleva TE, Laurinavichene TV, Makarova VV, Ghirardi ML, Rubin AB, Tsygankov AA, Seibert M (2003) The dependence of algal H2 production on photosystem II and O2 consumption activities in sulfur-deprived Chlamydomonas reinhardtii cells. Biochim Biophys Acta 1607:153–160

    Article  CAS  Google Scholar 

  • Bocci F, Torzillo G, Vincenzini M, Materassi R (1987) Growth physiology of Spirulina platensis in tubular photobioreactor under natural light. In: Stadler T, Mollion J, Verdus MC, Karamanos Y, Morvan H, Christiaen D (eds) Algal biotechnology. Elsevier Applied Science, London, p 219

    Google Scholar 

  • Burgess G, Ferrnández-Velasco JG, Lovegrove K (2006) Material, geometry, and net energy ratio of tubular photobioreactors for microalgal hydrogen production. In: Proceedings of the world hydrogen energy conference (WHE), vol 16. Lyon, France, 13–16 June 2006

    Google Scholar 

  • Cardol P, Gloire G, Havaux M, Remacle C, Matagne R, Franck F (2003) Photosynthesis and state transitions in mitochondrial mutants of Chlamydomonas reinhardtii affected in respiration. Plant Physiol 133:2010–2020

    Article  CAS  Google Scholar 

  • Chen HC, Melis A (2004) Localization and function of SulP, a nuclear-encoded chloroplast sulfate permease in Chlamydomonas reinhardtii. Planta 220:198–210

    Article  CAS  Google Scholar 

  • Chen HC, Newton AJ, Melis A (2005) Role of SulP, a nuclear-encoded chloroplast sulfate permease, in sulfate transport and H2 evolution in Chlamydomonas reinhardtii. Photosynth Res 84:289–296

    Article  CAS  Google Scholar 

  • Chochois V, Dauvillée D, Beyly A, Tolleter D, Cuiné S, Timpano H, Ball S, Cournac L, Peltier G (2009) Hydrogen Production in Chlamydomonas: photosystem II-dependent and-independent pathways differ in their requirement for starch metabolism. Plant Physiol 151:631–640

    Article  CAS  Google Scholar 

  • Cournac L, Latouche G, Cerovic Z, Redding K, Ravenel J, Peltier G (2002) In vivo interactions between photosynthesis, mitorespiration, and chlororespiration in Chlamydomonas reinhardtii. Plant Physiol 129:1921–1928

    Article  CAS  Google Scholar 

  • Endo T, Asada K (1996) Dark induction of the non-photochemical quenching of chlorophyll fluorescence by acetate in Chlamydomonas reinhardtii. Plant Cell Physiol 37(4):551–555

    Article  CAS  Google Scholar 

  • Faraloni C, Torzillo G (2010) Phenotypic characterization and hydrogen production in Chlamydomonas reinhardtii QB binding D1 protein mutants under sulfur starvation: changes in chlorophyll fluorescence and pigment composition. J Phycol 46:788–799

    Article  CAS  Google Scholar 

  • Finazzi G, Furia A, Barbagallo RM, Forti G (1999) State transitions, cyclic and linear transport and photophorylation in Chlamydomonas reinhardtii. Biochim Biophys Acta 1413:117–129

    Article  CAS  Google Scholar 

  • Fouchard S, Hemschemeier A, Caruana A, Pruvost J, Legrand J, Happe T, Peltier G, Cournac L (2005) Autotrophic and mixotrophic hydrogen photoproduction in sulfur-deprived Chlamydomonas cells. Appl Environ Microbiol 71(10):6199–6205

    Article  CAS  Google Scholar 

  • Fouchard S, Pruvost J, Degrenne B, Legrand J (2008) Investigation of H2 production using the green microalga Chlamydomonas reinhardtii in a fully controlled photobioreactor fitted with on-line gas analysis. Int J Hydrogen Energy 33:3302–3310

    Article  CAS  Google Scholar 

  • Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26:219–240

    Article  CAS  Google Scholar 

  • Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M, Greenbaum E, Melis A (2000) Microalgae: a green source of renewable H2. Trends Biotechnol 18:506–511

    Article  CAS  Google Scholar 

  • Giannelli L, Scoma A, Torzillo G (2009) Interplay between light intensity, chlorophyll concentration and culture mixing on the hydrogen production in sulfur-deprived Chlamydomonas reinhardtii cultures grown in laboratory photobioreactors. Biotecnol Bioeng 104(1):76–90

    Article  CAS  Google Scholar 

  • Hahn JJ, Ghirardi ML, Jacoby WA (2004) Effects of process variables on photosynthetic algal hydrogen production. Biotechnol Prog 20:989–991

    Article  CAS  Google Scholar 

  • Hallenbeck PC, Benemann JR (2002) Biological hydrogen production: fundamentals and limiting processes. Int J Hydrogen Energy 27:1185–1193

    Article  CAS  Google Scholar 

  • Hankamer B, Lehr F, Rupprecht J, Mussgnug JH, Posten C, Kruse O (2007) Photosynthetic biomass and hydrogen production by green algae: from bioengineering to bioreactor scale-up. Physiol Plant 131:10–21

    Article  CAS  Google Scholar 

  • Jans F, Mignolet E, Houyoux PA, Cardol P, Ghysels B, Cuine S, Cournac L, Peltier G, Remacle C, Franck F (2008) A type II NAD(P)H dehydrogenase mediates light-independent plastoquinone reduction in the chloroplast of Chlamydomonas. Proc Natl Acad Sci USA 105:20546–20551

    Article  CAS  Google Scholar 

  • Johanningmeier U, Heiss S (1993) Construction of a Chlamydomonas reinhardtii mutant with an intronless psbA gene. Plant Mol Biol 22(1):91–99

    Article  CAS  Google Scholar 

  • Kim JP, Kang CD, Park TH, Kim MS, Sim SJ (2006) Enhanced hydrogen production by controlling light intensity in sulfur-deprived Chlamydomonas reinhardtii culture. Int J Hydrogen Energy 31:1585–1590

    Article  CAS  Google Scholar 

  • Kosourov S, Tsygankov A, Seibert M, Ghirardi ML (2002) Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: effects of culture parameters. Biotech Bioeng 78(7):731–740

    Article  CAS  Google Scholar 

  • Kosourov S, Seibert M, Ghirardi ML (2003) Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H2-producing Chlamydomonas reinhardtii cultures. Plant Cell Physiol 44(2):146–155

    Article  CAS  Google Scholar 

  • Kosourov S, Makarova V, Fedorov AS, Tsygankov A, Seibert M, Ghirardi ML (2005) The effect of sulfur re-addition on H2 photoproduction by sulfur-deprived green algae. Photosynth Res 85:295–305

    Article  CAS  Google Scholar 

  • Kosourov S, Petrusheva E, Ghirardi ML, Seibert M, Tsygankov A (2007) A comparison of hydrogen photoproduction by sulfur-deprived Chlamydomonas reinhardtii under different growth conditions. J Biotechnol 128:776–787

    Article  CAS  Google Scholar 

  • Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B (2005) Improved photobiological H2 production in engineered green algal cells. J Biol Chem 280(40):34170–34177

    Article  CAS  Google Scholar 

  • Laurinavichene TV, Tolstygina IV, Galiulina RR, Ghirardi ML, Seibert M, Tsygankov A (2002) Dilution methods to deprive Chlamydomonas reinhardtii cultures of sulfur for subsequent hydrogen photoproduction. Int J Hydrogen Energy 27:1245–1249

    Article  CAS  Google Scholar 

  • Laurinavichene TV, Tolstygina IV, Tsygankov A (2004) The effect of light intensity on hydrogen production by sulfur-deprived Chlamydomonas reinhardtii. J Biotechnol 114:143–151

    Article  CAS  Google Scholar 

  • Makarova VV, Kosourov S, Krendeleva T, Semin BK, Kukarskikh GP, Rubin AB, Sayre RT, Ghirardi ML, Seibert M (2007) Photoproduction of hydrogen by sulfur-deprived C. reinhardtii mutants with impaired photosystem II photochemical activity. Photosynth Res 94:79–89

    Article  CAS  Google Scholar 

  • Melis A (2007) Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae). Planta 226:1075–1086

    Article  CAS  Google Scholar 

  • Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–136

    Article  CAS  Google Scholar 

  • Mus F, Cournac L, Cardettini V, Caruana A, Peltier G (2005) Inhibitor studies on non-photochemical PQ reduction and H2 photoproduction in Chlamydomonas reinhardtii. Biochim Biophys Acta 1708:322–332

    Article  CAS  Google Scholar 

  • Posewitz MC, Smolinski SL, Kanakagiri S, Melis A, Seibert M, Ghirardi ML (2004) Hydrogen- photoproduction is attenuated by disruption of an isoamylase gene in Chlamydomonas reinhardtii. Plant Cell 16:2151–2163

    Article  CAS  Google Scholar 

  • Pottier L, Pruvost J, Deremtz J, Cornet JF, Legrand J, Dussap CG (2005) A fully predictive model for one-dimensional light attenuation by Chlamydomonas reinhardtii in a torus photobioreactor. Biotechnol Bioeng 91:569–582

    Article  CAS  Google Scholar 

  • Pruvost J, Pottier L, Legrand J (2006) Numerical investigation of hydrodynamic and mixing conditions in a torus photobioreactor. Chem Eng Sci 61:4476–4489

    Article  CAS  Google Scholar 

  • Scoma A, Giannelli L, Faraloni C, Torzillo G (2010) Solar-light driven hydrogen production with the microalga Chlamydomonas reinhardtii in an outdoor photobioreactor. In: Proceedings of the 14th IBS, Rimini, Italy, 14–18 Sept 2010, doi:10.1016/j.jbiotec.2010.08.435

  • Surzycki R, Cournac L, Peltier G, Rochaix JD (2007) Potential for hydrogen production with inducible chloroplast gene expression in Chlamydomonas. Proc Natl Acad Sci USA 104(44):17548–17553

    Article  CAS  Google Scholar 

  • Torzillo G, Scoma A, Faraloni C, Ena A, Johanningmeier U (2009) Increased hydrogen photoproduction by means of a sulfur-deprived Chlamydomonas reinhardtii D1 protein mutant. Int J Hydrogen Energy 10:4529–4536

    Article  Google Scholar 

  • Tredici MR, Chini Zittelli G, Benemann JR (1999) A tubular integral gas exchange photobioreactor for biological hydrogen production. In: Zaborsky OR (ed) BioHydrogen. Plenum press, New York, pp 391–401

    Chapter  Google Scholar 

  • Tsygankov A, Kosourov S, Seibert M, Ghirardi ML (2002) Hydrogen photoproduction under continuous illumination by sulfur-deprived, synchronous Chlamydomonas reinhardtii cultures. Int J Hydrogen Energy 27:1239–1244

    Article  CAS  Google Scholar 

  • Tsygankov A, Kosourov S, Tolsygina IV, Ghirardi ML, Seibert M (2006) Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions. Int J Hydrogen Energy 31:1574–1584

    Article  CAS  Google Scholar 

  • Wykoff DD, Davies JP, Melis A, Grossman AR (1998) The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol 117:129–139

    Article  CAS  Google Scholar 

  • Zhang L, Happe T, Melis A (2002) Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta 214:552–561

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Torzillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Torzillo, G., Faraloni, C., Giannelli, L. (2012). Biotechnology of Hydrogen Production with the Microalga Chlamydomonas reinhardtii . In: Gordon, R., Seckbach, J. (eds) The Science of Algal Fuels. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5110-1_17

Download citation

Publish with us

Policies and ethics