Skip to main content

Biofuel Production from Algae Through Integrated Biorefinery

  • Chapter
  • First Online:

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 25))

Abstract

Energy is going to be one of the greatest challenges of the twenty-first century. High demand for energy and concern for the global climate change have forced scientists and policy makers around the world to search for new alternative renewable sources of energy. Amongst these, biofuels are generally considered to be the most safe and eco-friendly; hence, demand for biofuel has increased by several folds in the recent years. However, diversion of food crops for transportation fuel has created a food crisis in some parts of the world and also initiated a “food vs. fuel” debate. Algae have been proposed as one of the potential feedstocks for the production of biofuels and other useful products and can capture carbon dioxide in an algal biorefinery which is being discussed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

 References

  • American Society for Testing and Materials (ASTM) D6751 (2008) Standard specification for biodiesel fuel blend stock B100 for middle distillate fuels, Annual Book of ASTM Standards, Vol. 05.04, ASTM International, West Conshohocken, PA

    Google Scholar 

  • Atchley AA (1984) Nutritional value of palms. Principes 28(3):138–143

    Google Scholar 

  • Azza AAA, Abu-Salem FM (2010) Nutritional quality of Jatropha curcas seeds and effect of some physical and chemical treatments on their anti-nutritional factors. Afr J Food Sci 4(3):93–103

    Google Scholar 

  • Biofuels platform (2010) Production of biofuels in the world in 2009. url: http://www.biofuels-platform.ch/en/infos/production.php?id=biodiesel

  • Brennan L, Owende P (2010) Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14(2):557–577

    Article  CAS  Google Scholar 

  • Butler DM, OØstgaard K, Boyen C, Evans LV, Jensen A, Kloareg B (1989) Isolation conditions for high yields of protoplasts from Laminaria saccharina and L. digitata. (Phaeophyceae). J Exp Bot 40:1237–1246

    Article  CAS  Google Scholar 

  • Carioca JOB, Hiluy Filho JJ, Leal MRLV, Macambira FS (2009) The hard choice for alternative biofuels to diesel in Brazil. Biotechnol Adv 27:1043–1050

    Article  CAS  Google Scholar 

  • Charles AL, Sriroth K, Huang T (2005) Proximate composition, mineral contents, hydrogen cyanide and phytic acid of 5 cassava genotypes. Food Chem 92:615–625

    Article  CAS  Google Scholar 

  • Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51:1412–1421

    Article  CAS  Google Scholar 

  • Demirbas AH (2009) Inexpensive oil and fats feedstocks for production of biodiesel. Energy Educ Sci Technol A 23:1–13

    CAS  Google Scholar 

  • Demirbas MF (2010) Microalgae as a feedstock for biodiesel. Energy Educ Sci Technol A 25:31–43

    CAS  Google Scholar 

  • Demirbas A (2011) Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: a solution to pollution problems. Appl Energy 88:3541–3547

    Article  CAS  Google Scholar 

  • Desmorieux H, Decaen N (2006) Convective drying of spirulina in thin layer. J Food Eng 66(4):497–503

    Article  Google Scholar 

  • Devi SS (2008) Screening, isolation and laboratory scale culture of microalgae for biodiesel production. M.Phil. dissertation, Delhi University, Delhi, India

    Google Scholar 

  • Devi SS, Elangbam G, Sahoo D (2009) Screening of potential algal strains for biodiesel production. 7APCAB ABSTRACT BOOK, pp 91

    Google Scholar 

  • Divakaran R, Pillai VNS (2002) Flocculation of algae using chitosan. J Appl Phycol 14(5):419–422

    Article  CAS  Google Scholar 

  • Dumsday GJ, Jones K, Stanley GA, Pamment NB (1997) Recombinant organisms for ethanol production from hemicelluloseic hydrolyzates – a review of recent progress. Australas Biotechnol 7:285–295

    CAS  Google Scholar 

  • Eduardo BS, Sturm W, de Carvalho JC, Thomaz-Soccol V, Larroche C, Pandey A, Soccol CR (2010) Potential carbon dioxide fixation by industrially important microalgae. Biores Technol 101:5892–5896

    Article  Google Scholar 

  • FAO (1993) Maize in human nutrition. url: http://www.fao.org/docrep/T0395E/T0395E00.htm

  • Faus RD, Powers S, Burken JG, Alvarez PJ (2009) The water footprint of biofuels: a drink or drive issue? Environ Sci Technol 43:3005–3010

    Article  Google Scholar 

  • Fleurence J (1999) Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends Food Sci Technol 10:25–28

    Article  CAS  Google Scholar 

  • Forro J (1987) Microbial degradation of marine biomass. In: Bird KT, Benson PH (eds) Seaweed cultivation for renewable resources. Elsevier, Amsterdam, pp 305–325

    Google Scholar 

  • Ge L, Wang P, Mou H (2011) Study on saccharification techniques of seaweed wastes for the transformation of ethanol. Renew Energy 35:84–89

    Article  Google Scholar 

  • Ghosh S, Klass DL, Chynoweth DP (1981) Biconversion of Macrocystis pyrifera to methane. J Chem Tech Biotechnol 31:791–807

    Article  CAS  Google Scholar 

  • Goh CS, Lee KT (2010) A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development. Renew Sustain Energy Rev 14:842–848

    Article  CAS  Google Scholar 

  • Grima ME, Medina A, Giménez A, Sánchez Pérez J, Camacho F, Garcίa Sánchez J (1994) Comparison between extraction of lipids and fatty acids from microalgal biomass. J Am Oil Chem Soc 71(9):955–959

    Article  Google Scholar 

  • Gunaseelan VN (1997) Anaerobic digestion of biomass for methane production: a review. Biomass Bioenergy 13:83–114

    Article  CAS  Google Scholar 

  • Hacisalihoglu B, Kirtay E, Demirbas A (2009) Historical role of Turkey in petroleum between Caspian Sea Basin and the Middle East. Soc Polit Econ Cultural Res 1:1–25

    Google Scholar 

  • Han YW, Catalano EA, Ciegler A (1983) A chemical and physical properties of sugarcane bagasse irradiated with gamma rays. J Agric Food Chem 31(1):4–38

    Article  Google Scholar 

  • Horn SJ (2000) Bioenergy from brown seaweeds. PhD thesis department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway

    Google Scholar 

  • Horn SJ, Aasen IM, Østgaard K (2000) Production of ethanol from mannitol by Zymobacter palmae. J Ind Microbiol Biotechnol 24:51–57

    Article  CAS  Google Scholar 

  • Huang G, Chen F, Wei D, Zhang X, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87:38–46

    Article  CAS  Google Scholar 

  • IEA (2008) IEA (International Energy Agency) Bioenergy task 42 on biorefineries. Minutes of the third task meeting, Copenhagen, Denmark, 25 and 26 March 2008. www.biorefinery.nl\IEABioenergy-Task42

    Google Scholar 

  • Kloareg B, Quatrano RS (1988) Structure of cell walls of marine algae and ecophysiology functions of the matrix polysaccharides. Ocenogr Mar Biol Annu Rev 26:259–315

    Google Scholar 

  • Kloareg B, Demarty M, Mabeau S (1986) Polyanionic characteristics of purified sulphated homofucans from brown algae. Int J Biol Macromol 8:380–386

    Article  CAS  Google Scholar 

  • Kumar S, Sahoo D (2012) Seaweeds as a source of Bioethanol. In: Algal biotechnology and environment. I. K. International publishing house Pvt. Ltd., pp 101–111

    Google Scholar 

  • Leach G, Oliveira G, Morais R (1998) Spray-drying of Dunaliella salina to produce a β-carotene rich powder. J Ind Microbiol Biotechnol 20(2):82–85

    Article  CAS  Google Scholar 

  • Lee AK, Lewis DM, Ashman PJ (2009) Microbial flocculation, a potentially low-cost Harvesting technique for marine microalgae for the production of biodiesel. J Appl Phycol 21:559–567

    Article  CAS  Google Scholar 

  • Lin S, Teong LK (2010) Recent trends, opportunities and challenges of biodiesel in Malaysia: an overview. Renew Sustain Energy Rev 14:938–954

    Article  Google Scholar 

  • Marinho-Soriano E, Fonseca PC, Carneiro MAA, Moreira WSC (2006) Seasonal variation in the chemical composition of two tropical seaweeds. Bioresour Technol 97:2402–2406

    Article  CAS  Google Scholar 

  • Martin P, Mair C, Kraan S (2010) Seaweeds for second generation bioethanol; can we compete with corn? In: XX international seaweed symposium, México, p 77

    Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  • Matanjun P, Mohamed S, Mustapha NM, Muhammad K (2009) Nutrient content of tropical edible seaweeds, Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum. J Appl Phycol 21:75–80

    Article  CAS  Google Scholar 

  • Metting B, Pyne JW (1986) Biologically active compounds from microalgae. Enzyme Microb Technol 8(7):386–394

    Article  CAS  Google Scholar 

  • Michel C, Lahaye M, Bonnet C, Mabeau S, Barry JL (1996) In vitro fermentation by human faecal bacteria of total and purified dietary fibres from brown seaweeds. Br J Nutr 75:263–280

    Article  CAS  Google Scholar 

  • Neucere NJ, Sumrell G (1980) Chemical composition of different varieties of grain sorghum. J Agric Food Chem 1980(28):19–21

    Article  Google Scholar 

  • Nikolić N, Lazić M (2011) The main components content, rheology properties and lipid profile of wheat-soybean flour. In: Krezhova D (ed) Recent trends for enhancing the diversity and quality of soybean products. InTech publisher, Rijeka, Croatia pp 81–94

    Google Scholar 

  • Nindo CI, Tang J (2007) Refractance window dehydration technology: a novel contact drying method. Drying Technol 25:37–48

    Article  CAS  Google Scholar 

  • OECD FAO (2011–2020). Biofuels-OECD-FAO Agricultural outlook. url: http://www.agri-outlook.org/document/0/0,3746,en_36774715_36775671_47877696_1_1_1_1,00.html

  • Posten C, Schaub G (2009) Microalgae and terrestrial biomass as source for fuels-a process view. J Biotechnol 142:64–69

    Article  CAS  Google Scholar 

  • Prakash J, Pushparaj B, Carlozzi P, Torzillo G, Montaini E, Materassi R (1997) Microalgae drying by a simple solar device. Int J Solar Energy 18(4):303–311

    Article  Google Scholar 

  • Renewables (2011) REN 21. Global status report. Version 2.0 | 07/2011. Paris REN 21 Secretary pp. 115

    Google Scholar 

  • Renaud SM, Thinh LV, Parry DL (1999) The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. Aquaculture 170:147–159

    Article  CAS  Google Scholar 

  • Sahoo D (2000) Farming the ocean: seaweeds cultivation and utilization. Aravali publication corporation, New Delhi

    Google Scholar 

  • Sahoo D (2010) Algae biofuel will take over Jatropha soon. Biospectrum 8(12):74–75

    Google Scholar 

  • Sahoo D, Elangbam G, Devi SS (2012) Using algae for carbon dioxide capture and bio- fuel production to combat climate change. Phykos 42(1):32–38

    Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    Article  Google Scholar 

  • Shields R, Flynn K, Lovitt B, Greenwell C, Ratcliffe I, Facey P, Jarvis R (2008) A technology review and roadmap for microalgal biotechnology in Wales pp. 47

    Google Scholar 

  • Singh A, Nigam PS, Murphy JD (2011) Renewable fuels from algae: an answer to debatable land based fuels. Biores Technol 102:10–16

    Article  CAS  Google Scholar 

  • Spolaore P, Joannis CC, Duran E, Isambert A (2006) Commercial application of microalgae: a review. J Biosci Bioeng 101:87–96

    Article  CAS  Google Scholar 

  • Subhadra B, Grinson-George (2011) Algal biorefinery-based industry: an approach to address fuel and food insecurity for a carbon-smart world. J Sci Food Agric 91(1):2–13

    Article  CAS  Google Scholar 

  • Vonshak A, Abeliovich A, Boussiba A, Arad S, Richmond A (1982) Production of Spirulina biomass: effects of environmental factors and population density. Biomass 2:175–185

    Article  Google Scholar 

  • Wong KH, Cheung PCK (2000) Nutritional evaluation of some subtropical red and green seaweeds Part I proximate composition, amino acid profiles and some physico-chemical properties. Food Chem 71:475–482

    Article  CAS  Google Scholar 

  • World Energy Outlook (2008) World Energy Outlook Fact Sheet: Global energy trends. OECD/IEA, Paris; 2008. url: http://www.worldenergyoutlook.org/media/weowebsite/2008–1994/WEO2008.pdf

  • Yokoyama S, Jonouchi K, Imou K (2007) Energy production from marine biomass: fuel cell power generation driven by methane produce from seaweed. Proc World Acad Sci Eng Technol 22:320–323

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinabandhu Sahoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sahoo, D., Kumar, S., Elangbam, G., Devi, S.S. (2012). Biofuel Production from Algae Through Integrated Biorefinery. In: Gordon, R., Seckbach, J. (eds) The Science of Algal Fuels. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5110-1_12

Download citation

Publish with us

Policies and ethics