Skip to main content

HOx and ROx Radicals in Atmospheric Chemistry

  • Conference paper
  • First Online:
Disposal of Dangerous Chemicals in Urban Areas and Mega Cities

Abstract

Work on the relevance of the reaction of excited NO2 with water vapour as an atmospheric source of OH radicals is presented and measurement of absolute absorption cross sections of HONO in the near infrared are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akimoto H (2003) Global air quality and pollution. Science 302:1716–1719

    Article  CAS  Google Scholar 

  2. Aluculesei A, Tomas A, Schoemaecker C, Fittschen C (2008) On the direct formation of HO2 radicals after 248 nm irradiation of benzene C6H6 in the presence of O2. Appl Phys B Laser Opt 92:379–385

    Article  CAS  Google Scholar 

  3. Amedro D, Miyazaki K, Parker AE, Schoemaecker C, Fittschen C (2011) Atmospheric and kinetic studies of OH and HO2 by the LIF technique. JES. doi:10.1016/S1001-0742(11)60723-7

  4. Amedro D, Parker AE, Schoemaecker C, Fittschen C (2011) Direct observation of OH radicals after 565 nm multi-photon excitation of NO2 in the presence of H2O. Chem Phys Lett 513:12–16

    Article  CAS  Google Scholar 

  5. Barney WS, Wingen LM, Lakin MJ, Brauers T, Stutz J, Finlayson-Pitts BJ (2000) Infrared absorption cross-section measurements for nitrous acid (HONO) at room temperature. J Phys Chem A 104:1692–1699

    Article  CAS  Google Scholar 

  6. Cantrell CA, Shetter RE, Lind JA, McDaniel AH, Calvert JG, Parrish DD, Fehsenfeld FC, Buhr MP, Trainer M (1993) An improved chemical amplifier technique for peroxy radical measurements. J Geophys Res 98:2897–2909

    Article  CAS  Google Scholar 

  7. Carr S, Heard DE, Blitz MA (2009) Comment on “atmospheric hydroxyl radical production from electronically excited NO2 and H2O”. Science 324:336

    Article  CAS  Google Scholar 

  8. Clemitshaw KC, Carpenter LJ, Penkett SA, Jenkin ME (1997) A calibrated peroxy radical chemical amplifier for ground-based tropospheric measurements. J Geophys Res 102:25405–25416

    Article  CAS  Google Scholar 

  9. Crowley JN, Carl SA (1997) OH formation in the photoexcitation of NO2 beyond the dissociation threshold in the presence of water vapor. J Phys Chem A 101:4178–4184

    Article  CAS  Google Scholar 

  10. Djehiche M, Tomas A, Fittschen C, Coddeville P (2011) First direct detection of HONO in the reaction of methylnitrite (CH3ONO) with OH radicals. Environ Sci Technol 45:608–614

    Article  CAS  Google Scholar 

  11. Febo A, Perrino C, Gherardi M, Sparapani R (1995) Evaluation of a high-purity and high-stability continuous generation system for nitrous acid. Environ Sci Technol 29:2390–2395

    Article  CAS  Google Scholar 

  12. Fuchs H, Holland F, Hofzumahaus A (2008) Measurement of tropospheric RO2 and HO2 radicals by a laser-induced fluorescence instrument. Rev Sci Instrum 79:084104

    Article  Google Scholar 

  13. Guilmot JM, Godefroid M, Herman M (1993) Rovibrational parameters for trans-nitrous acid. J Mol Spectrosc 160:387–400

    Article  CAS  Google Scholar 

  14. Guilmot JM, Melen F, Herman M (1993) Rovibrational parameters for cis-nitrous acid. J Mol Spectrosc 160:401–410

    Article  CAS  Google Scholar 

  15. Heard DE, Pilling MJ (2003) Measurement of OH and HO2 in the troposphere. Chem Rev 103:5163–5198

    Article  CAS  Google Scholar 

  16. Hellebust S, Roddis T, Sodeau JR (2007) Potential role of the nitroacidium ion on HONO emissions from the snowpack. J Phys Chem A 111:1167–1171

    Article  CAS  Google Scholar 

  17. Ibrahim N, Thiebaud J, Orphal J, Fittschen C (2007) Air-broadening coefficients of the HO2 radical in the 2v1 band measured using cw-CRDS. J Mol Spectrosc 242:64–69

    Article  CAS  Google Scholar 

  18. Jain C, Parker AE, Schoemaecker C, Fittschen C (2010) HO2 formation from the photoexcitation of benzene/O2 mixtures at 248 nm: an energy dependence study. Chemphyschem 11:3867–3873

    Article  CAS  Google Scholar 

  19. Jain C, Morajkar P, Schoemaecker C, Viskolcz B, Fittschen C (2011) Measurement of absolute absorption cross sections for nitrous acid (HONO) in the near-infrared region by the continuous wave cavity ring-down spectroscopy (cw-CRDS) technique coupled to laser photolysis. J Phys Chem A 115:10720–10728

    Article  CAS  Google Scholar 

  20. Kanaya Y, Sadanaga Y, Hirokawa J, Kajii Y, Akimoto H (2001) Development of a ground-based LIF instrument for measuring HOx radicals: instrumentation and calibrations. J Atmos Chem 38:73–110

    Article  CAS  Google Scholar 

  21. Kanaya Y, Cao R, Akimoto H, Fukuda M, Komazaki Y, Yokouchi Y, Koike M, Tanimoto H, Takegawa N, Kondo Y (2007) Urban photochemistry in central Tokyo: 1. Observed and modeled OH and HO2 radical concentrations during the winter and summer of 2004. J Geophys Res 112:D21312

    Article  Google Scholar 

  22. Karlsson RS, Ljungstrom EB (1996) Laboratory study of CINO hydrolysis. Environ Sci Technol 30:2008–2013

    Article  CAS  Google Scholar 

  23. Langridge JM, Gustafsson RJ, Griffiths PT, Cox RA, Lambert RM, Jones RL (2009) Solar driven nitrous acid formation on building material surfaces containing titanium dioxide: a concern for air quality in urban areas? Atmos Environ 43:5128–5131

    Article  CAS  Google Scholar 

  24. Li S, Matthews J, Sinha A (2008) Atmospheric hydroxyl radical production from electronically excited NO2 and H2O. Science 319:1657–1660

    Article  CAS  Google Scholar 

  25. Li S, Matthews J, Sinha A (2009) Response to comment on “atmospheric hydroxyl radical production from electronically excited NO2 and H2O”. Science 324:336c

    Article  Google Scholar 

  26. Liao W, Case AT, Mastromarino J, Tan D, Dibb JE (2006) Observations of HONO by laser-induced fluorescence at the South Pole during ANTCI 2003. Geophys Res Lett 33:L09810

    Article  Google Scholar 

  27. Mihele CM, Mozurkewich M, Hastie DR (1999) Radical loss in a chain reaction of CO and NO in the presence of water: implications for the radical amplifier and atmospheric chemistry. Int J Chem Kinet 31:145–152

    Article  CAS  Google Scholar 

  28. Miyazaki K, Matsumoto J, Kato S, Kajii Y (2008) Development of atmospheric NO analyzer by using a laser-induced fluorescence NO2 detector. Atmos Environ 42:7812–7820

    Article  CAS  Google Scholar 

  29. Miyazaki K, Parker AE, Fittschen C, Monks PS, Kajii Y (2010) A new technique for the selective measurement of atmospheric peroxy radical concentrations of HO2 and RO2 using a denuding method. Atmos Meas Tech 3:1547–1554

    Article  Google Scholar 

  30. Monge ME, D’Anna B, George C (2010) Nitrogen dioxide removal and nitrous acid formation on titanium oxide surfaces-an air quality remediation process? Phys Chem Chem Phys 12:8991–8998

    Article  CAS  Google Scholar 

  31. Parker A, Amedro D, Schoemaecker C, Fittschen C (2011) OH reactivity measurements by FAGE. JEEM 10:107–114

    CAS  Google Scholar 

  32. Parker A, Jain C, Schoemaecker C, Szriftgiser P, Votava O, Fittschen C (2011) Simultaneous, time-resolved measurements of OH and HO2 radicals by coupling of high repetition rate LIF and cw-CRDS techniques to a laser photolysis reactor and its application to the photolysis of H2O2. Appl Phys B Laser Opt 103:725–733

    Article  CAS  Google Scholar 

  33. Perner D, Platt U (1979) Detection of nitrous acid in the atmosphere by differential optical absorption. Geophys Res Lett 6:917–920

    Article  CAS  Google Scholar 

  34. Rohrer F, Bohn B, Brauers T, Bröning D, Johnen F-J, Wahner A, Kleffmann J (2005) Characterisation of the photolytic HONO-source in the atmosphere simulation chamber SAPHIR. Atmos Chem Phys 5:2189–2201

    Article  CAS  Google Scholar 

  35. Sadanaga Y, Matsumoto J, Sakurai K, Isozaki R, Kato S, Nomaguchi T, Bandow H, Kajii Y (2004) Development of a measurement system of peroxy radicals using a chemical amplification/laser-induced fluorescence technique. Rev Sci Instrum 75:864–872

    Article  CAS  Google Scholar 

  36. Sironneau V, Orphal J, Demaison J, Chelin P (2008) High-resolution infrared spectroscopy of trans- and cis-H18ON18O: equilibrium structures of the nitrous acid isomers. J Phys Chem A 112:10697–10702

    Article  CAS  Google Scholar 

  37. Stockwell WR, Calvert JG (1978) The near ultraviolet absorption spectrum of gaseous HONO and N2O3. J Photochem 8:193–203

    Article  CAS  Google Scholar 

  38. Stutz J, Kim ES, Platt U, Bruno P, Perrino C, Febo A (2000) UV-visible absorption cross sections of nitrous acid. J Geophys Res 105:14585–14592

    Article  CAS  Google Scholar 

  39. Tang Y, Tyndall GS, Orlando JJ (2010) Spectroscopic and kinetic properties of HO2 radicals and the enhancement of the HO2 self reaction by CH3OH and H2O. J Phys Chem A 114:369–378

    Article  CAS  Google Scholar 

  40. Thiebaud J, Fittschen C (2006) Near infrared cw-CRDS coupled to laser photolysis: spectroscopy and kinetics of the HO2 radical. Appl Phys B Laser Opt 85:383–389

    Article  CAS  Google Scholar 

  41. Thiebaud J, Crunaire S, Fittschen C (2007) Measurement of line strengths in the 2v1 band of the HO2 radical using laser photolysis/continuous wave cavity ring down spectroscopy (cw-CRDS). J Phys Chem A 111:6959–6966

    Article  CAS  Google Scholar 

  42. Varma R, Curl RF (1976) Study of the dinitrogen trioxide-water-nitrous acid equilibrium by intensity measurements in microwave spectroscopy. J Phys Chem 80:402–409

    Article  CAS  Google Scholar 

  43. Volkamer R, Sheehy P, Molina LT, Molina MJ (2010) Oxidative capacity of the Mexico City atmosphere – part 1: a radical source perspective. Atmos Chem Phys 10:6969–6991

    Article  CAS  Google Scholar 

  44. Wennberg PO, Dabdub D (2008) Rethinking ozone production. Science 319:1624–1625

    Article  CAS  Google Scholar 

  45. Yamano D, Yabushita A, Kawasaki M, Perrin A (2010) Absorption spectrum of nitrous acid for the ν1 + 2ν3 band studied with continuous-wave cavity ring-down spectroscopy and theoretical calculations. J Quant Spectrosc Radiat Transf 111:45–51

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christa Fittschen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Amedro, D. et al. (2013). HOx and ROx Radicals in Atmospheric Chemistry. In: Barnes, I., Rudziński, K. (eds) Disposal of Dangerous Chemicals in Urban Areas and Mega Cities. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5034-0_6

Download citation

Publish with us

Policies and ethics