Skip to main content

System Biology Approach to Study Cancer Related Pathways

  • Chapter
  • First Online:
  • 1872 Accesses

Abstract

This chapter discusses a system biology approach to investigate the mechanism of cancer, especially the characteristic of the p53 pathway. Pathway modelling methods together with parameter estimation approaches are used to simulate the dynamic features of biological pathways. The core regulation part of the p53 pathway is analysed as an example, where its network motifs are identified by model selection methods based on the observation of experimental data. With the constructed mechanistic model, biological pathways can be simulated through in silicoexperiments to facilitate cancer research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

MS:

Mass spectrometry

Rb:

Retinoblastoma

MMS:

Methyl methane sulfonate

IR:

Ionising radiation

MDM2:

Murine double minute 2

GA:

Genetic algorithm

EKF:

Extended Kalman filter

UKF:

Unscented Kalman filter

WRN:

Werner’s syndrome protein

CHK1:

Serine/threonine-protein kinase

SMC:

Sequential Monte Carlo

CTMCs:

Continuous time Markov chains

ODEs:

Ordinary differential equations

SA:

Sensitivity analysis

References

  • Adams JM, Cory S (2002) Apoptosomes: engines for caspase activation. Curr Opin Cell Biol 14:715–720

    Article  CAS  PubMed  Google Scholar 

  • Agarwal ML, Agarwal A, Taylor WR et al (1995) p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc Natl Acad Sci 92:8493–8497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alon U (2007a) An introduction to systems biology: design principles of biological circuits. CRC press, Boca Raton

    Google Scholar 

  • Alon U (2007b) Network motifs: theory and experimental approaches. Nat Rev Genet 8:450–461

    Article  CAS  PubMed  Google Scholar 

  • Anand P, Kunnumakkara AB, Sundaram C et al (2008) Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 25:2097–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appella E, Anderson CW (2001) Post‐translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 268:2764–2772

    Article  CAS  PubMed  Google Scholar 

  • Arisi I, Cattaneo A, Rosato V (2006) Parameter estimate of signal transduction pathways. BMC Neurosci 7:S6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Babu MM, Luscombe NM, Aravind L et al (2004) Structure and evolution of transcriptional regulatory networks. Curr Opin Struct Biol 14:283–291

    Article  CAS  PubMed  Google Scholar 

  • Banin S, Moyal L, Shieh S et al (1998) Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281:1674–1677

    Article  CAS  PubMed  Google Scholar 

  • Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature 387:913–917

    Article  CAS  PubMed  Google Scholar 

  • Batchelor E, Mock CS, Bhan I et al (2008) Recurrent initiation: a mechanism for triggering p53 pulses in response to DNA damage. Mol Cell 30:277–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaumont MA, Zhang W, Balding DJ (2002) Approximate Bayesian computation in population genetics. Genetics 162:2025–2035

    PubMed  PubMed Central  Google Scholar 

  • Bhavsar P, Khorasani N, Hew M et al (2010) Effect of p38 MAPK inhibition on corticosteroid suppression of cytokine release in severe asthma. Eur Respir J 35:750–756

    Article  CAS  PubMed  Google Scholar 

  • Burns TF, El‐Deiry WS (1999) The p53 pathway and apoptosis. J Cell Physiol 181:231–239

    Article  CAS  PubMed  Google Scholar 

  • Calder M, Gilmore S, Hillston J et al (2010) Formal methods for biochemical signalling pathways. In: Boca PP, Bowen JP, Siddiqi JI (eds) Formal methods: state of the art and new directions. Springer, Dordrecht, pp 185–215

    Chapter  Google Scholar 

  • Cantley LC, Auger KR, Carpenter C et al (1991) Oncogenes and signal transduction. Cell 64:281–302

    Article  CAS  PubMed  Google Scholar 

  • Cardelli L (2005) Brane calculi; interactions of biological membranes. Springer, Heidelberg, pp 257–278

    Google Scholar 

  • Ciliberto A, Novak B, Tyson JJ (2005) Steady states and oscillations in the p53/Mdm2 network. Cell Cycle 4:488–493

    Article  CAS  PubMed  Google Scholar 

  • Ciocchetta F, Hillston J (2009) Bio-PEPA: a framework for the modelling and analysis of biological systems. Theor Comput Sci 410:3065–3084

    Article  Google Scholar 

  • Clarke E (1997) Model checking. Springer, Berlin/Heidelberg/New York, pp 54–56

    Google Scholar 

  • Colman MS, Afshari CA, Barrett JC (2000) Regulation of p53 stability and activity in response to genotoxic stress. Mutat Res Rev Mutat Res 462:179–188

    Article  CAS  Google Scholar 

  • Danos V, Krivine J (2004) Reversible communicating systems. In: Gardner P, Yoshida N (eds) CONCUR 2004-concurrency theory. Springer, Heidelberg, pp 292–307

    Chapter  Google Scholar 

  • Danos V, Laneve C (2004) Formal molecular biology. Theor Comput Sci 325:69–110

    Article  Google Scholar 

  • Donaldson R, Calde M (2010) Modelling and analysis of biochemical signalling pathway cross-talk. Arxiv preprint arXiv:1002.4062

    Google Scholar 

  • Donaldson R, Gilbert D (2008) A model checking approach to the parameter estimation of biochemical pathways. Springer, Heidelberg, pp 269–287

    Google Scholar 

  • Fey D, Findeisen R, Bullinger E (2008) Parameter estimation in kinetic reaction models using nonlinear observers facilitated by model extensions. In: International federation of automatic control. Seoul, Korea, pp 313–318

    Google Scholar 

  • Fridman JS, Lowe SW (2003) Control of apoptosis by p53. Oncogene 22:9030–9040

    Article  CAS  PubMed  Google Scholar 

  • Geva-Zatorsky N, Rosenfield N, Itzkovitz S et al (2006) Oscillations and variability in the p53 system. Mol Syst Biol 2:E1–E13

    Article  CAS  Google Scholar 

  • Giaccia AJ, Kastan MB (1998) The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev 12:2973–2983

    Article  CAS  PubMed  Google Scholar 

  • Gilbert D, Heiner M, Lehrack S (2007) A unifying framework for modelling and analysing biochemical pathways using Petri nets. Springer, Heidelberg, pp 200–216

    Google Scholar 

  • Gilbert D, Breitling R, Heiner M et al (2009) An introduction to biomodel engineering, illustrated for signal transduction pathways. Membr Comput 5391:13–28

    Article  Google Scholar 

  • Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361

    Article  CAS  Google Scholar 

  • Gilmore S, Hillston J (1994) The PEPA workbench: a tool to support a process algebra-based approach to performance modelling. In: Computer Performance Evaluation Modelling Techniques and Tools. Springer, Vienna, p 353–368

    Google Scholar 

  • Goldbeter A, Berridge M, Cambridge University Press (1996) Biochemical oscillations and cellular rhythms: the molecular bases of periodic and chaotic behaviour. Cambridge University Press, New York

    Book  Google Scholar 

  • Green DR, Kroemer G (2009) Cytoplasmic functions of the tumour suppressor p53. Nature 458:1127–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gudkov AV, Komarova EA (2003) The role of p53 in determining sensitivity to radiotherapy. Nat Rev Cancer 3:117–129

    Article  CAS  PubMed  Google Scholar 

  • Harris SL, Levine AJ (2005) The p53 pathway: positive and negative feedback loops. Oncogene 24:2899–2908

    Article  CAS  PubMed  Google Scholar 

  • Hendriks BS, Hua F, Chabot JR (2008) Analysis of mechanistic pathway models in drug discovery: p38 pathway. Biotechnol Prog 24:96–109

    Article  CAS  PubMed  Google Scholar 

  • Herlaar E, Brown Z (1999) p38 MAPK signalling cascades in inflammatory disease. Mol Med Today 5:439–447

    Article  CAS  PubMed  Google Scholar 

  • Hermeking H, Lengauer C, Polyak K et al (1997) 14-3-3 [sigma] is a p53-regulated inhibitor of G2/M progression. Mol Cell 1:3–11

    Article  CAS  PubMed  Google Scholar 

  • Hoare CAR (1981) A calculus of total correctness for communicating processes. Sci Compu Program 1:49–72

    Article  Google Scholar 

  • Hollstein M, Sidransky D, Vgelstein B et al (1991) p53 mutations in human cancers. Science 253:49–53

    Article  CAS  PubMed  Google Scholar 

  • Isobe M, Emanuel BS, Givol D et al (1986) Localization of gene for human p53 tumour antigen to band 17p13. Nature 320:84–85

    Article  CAS  PubMed  Google Scholar 

  • Jeffreys H (1935) Some tests of significance, treated by the theory of probability. Cambridge University Press, Cambridge, pp 203–222

    Google Scholar 

  • Jia J, Yue H (2009) Sensitivity analysis and parameter estimation of signal transduction pathways model. Asian Control Conference, Hong Kong, China. IEEE, pp. 1357–1362

    Google Scholar 

  • Jin S, Levine AJ (2001) The p53 functional circuit. J Cell Sci 114:4139–4140

    CAS  PubMed  Google Scholar 

  • Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90:773–795

    Article  Google Scholar 

  • Kastan MB, Zhang D, El-Deiry WS et al (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71:587–597

    Article  CAS  PubMed  Google Scholar 

  • Kern SE, Kinzler JW, Bruskin A et al (1991) Identification of p53 as a sequence-specific DNA-binding protein. Science 252:1708–1711

    Article  CAS  PubMed  Google Scholar 

  • Kitano H (2002) Computational systems biology. Nature 420:206–210

    Article  CAS  PubMed  Google Scholar 

  • Kitano H (2004) Biological robustness. Nat Rev Genet 5:826–837

    Article  CAS  PubMed  Google Scholar 

  • Klipp E, Liebermeister W (2006) Mathematical modeling of intracellular signaling pathways. BMC Neurosci 7:S10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knudson AG (1993) Antioncogenes and human cancer. Proc Natl Acad Sci 90:10914–10921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch I (2010) Modeling in systems biology: the Petri Net approach. Springer, New York

    Google Scholar 

  • Korsmeyer SJ (1999) BCL-2 gene family and the regulation of programmed cell death. Cancer Res 59:1693s–1700s

    CAS  PubMed  Google Scholar 

  • Kubbutat MHG, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387:299–303

    Article  CAS  PubMed  Google Scholar 

  • Lahav G, Rosenfield N, Sigal A et al (2004) Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat Genet 36:147–150

    Article  CAS  PubMed  Google Scholar 

  • Lakin ND, Jackson SP (1999) Regulation of p53 in response to DNA damage. Oncogene 18:7644–7655

    Article  CAS  PubMed  Google Scholar 

  • Lane DP (1992) Cancer. p53, guardian of the genome. Nature 358:15–16

    Article  CAS  PubMed  Google Scholar 

  • Lev Bar-Or R, Maya R, Segal LA et al (2000) Generation of oscillations by the p53-Mdm2 feedback loop: a theoretical and experimental study. Proc Natl Acad Sci 97:11250–11255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine AJ (1997) p53, the cellular gatekeeper review for growth and division. Cell 88:323–331

    Article  CAS  PubMed  Google Scholar 

  • Levine AJ, Hu W, Feng Z (2006) The P53 pathway: what questions remain to be explored? Cell Death Differ 13:1027–1036

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Agarwal P, Rajagopalan D (2008) A global pathway crosstalk network. Bioinformatics 24:1442–1447

    Article  CAS  PubMed  Google Scholar 

  • Lillacci G, Khammash M (2010) Parameter estimation and model selection in computational biology. PLoS Comput Biol 6:e1000696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lipshtat A, Purushothaman SP, Iyengar R et al (2008) Functions of bifans in context of multiple regulatory motifs in signaling networks. Biophys J 94:2566–2579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe SW, Cepero E, Evan G (2004) Intrinsic tumour suppression. Nature 432:307–315

    Article  CAS  PubMed  Google Scholar 

  • Macleod K (2000) Tumor suppressor genes. Curr Opin Genet Dev 10:81–93

    Article  CAS  PubMed  Google Scholar 

  • Malkin D, Li FP, Strong LC et al (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250:1233–1238

    Article  CAS  PubMed  Google Scholar 

  • Mangan S, Alon U (2003) Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci USA 100:1980–1985

    Article  CAS  Google Scholar 

  • Marjoram P, Tavaré S (2006) Modern computational approaches for analysing molecular genetic variation data. Nat Rev Genet 7:759–770

    Article  CAS  PubMed  Google Scholar 

  • Matlashewski G, Lamb P, Pim D et al (1984) Isolation and characterization of a human p53 cDNA clone: expression of the human p53 gene. EMBO J 3:3257–3262

    CAS  PubMed  PubMed Central  Google Scholar 

  • McBride O, Merry D, Givol D (1986) The gene for human p53 cellular tumor antigen is located on chromosome 17 short arm (17p13). Proc Natl Acad Sci 83:130–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meek DW (2004) The p53 response to DNA damage. DNA Repair 3:1049–1056

    Article  CAS  PubMed  Google Scholar 

  • Mihalcescu I, Hsing W, Leibler S (2004) Resilient circadian oscillator revealed in individual cyanobacteria. Nature 430:81–85

    Article  CAS  PubMed  Google Scholar 

  • Milner R (1989) Communication and concurrency. Prentice-Hall, New York

    Google Scholar 

  • Milo R, Shen-Orr S, Itzkovitz S et al (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827

    Article  CAS  PubMed  Google Scholar 

  • Moles CG, Mendes P, Banga JR (2003) Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res 13:2467–2474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Momand J, Wu HH, Dasgupta G (2000) MDM2–master regulator of the p53 tumor suppressor protein. Gene 242:15–29

    Article  CAS  PubMed  Google Scholar 

  • Nigro JM, Baker SJ, Preisinger AC et al (1989) Mutations in the p53 gene occur in diverse human tumour types. Nature 342:705–708

    Article  CAS  PubMed  Google Scholar 

  • Novak B, Tyson JJ (1993) Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. J Cell Sci 106:1153–1168

    CAS  PubMed  Google Scholar 

  • Oren M (2003) Decision making by p53: life, death and cancer. Cell Death Differ 10:431–442

    Article  CAS  PubMed  Google Scholar 

  • Overholtzer M, Rao PH, Favis R et al (2003) The presence of p53 mutations in human osteosarcomas correlates with high levels of genomic instability. Proc Natl Acad Sci USA 100:11547–11552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pomerening JR, Sontag ED, Ferrell JE (2003) Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nat Cell Biol 5:346–351

    Article  CAS  PubMed  Google Scholar 

  • Priami C (1995) Stochastic-calculus. Comput J 38:578–589

    Article  Google Scholar 

  • Prill RJ, Iglesias PA, Levchenko A (2005) Dynamic properties of network motifs contribute to biological network organization. PLoS Biol 3:e343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prives C, Hall PA (1999) The p53 pathway. J Pathol 187:112–126

    Article  CAS  PubMed  Google Scholar 

  • Proctor C, Gray D (2008) Explaining oscillations and variability in the p53-Mdm2 system. BMC Syst Biol 2:75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quach M, Brunel N, d’Alché-Buc F (2007) Estimating parameters and hidden variables in non-linear state-space models based on ODEs for biological networks inference. Bioinformatics 23:3209–3212

    Article  CAS  PubMed  Google Scholar 

  • Regev A, Panina EM, Silverman W et al (2004) BioAmbients: an abstraction for biological compartments. Theor Comput Sci 325:141–167

    Article  Google Scholar 

  • Reich N, Oren M, Levine A (1983) Two distinct mechanisms regulate the levels of a cellular tumor antigen, p53. Mol Cell Biol 3:2143–2150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro D, Pinto JM (2009) An integrated network-based mechanistic model for tumor growth dynamics under drug administration. Comput Biol Med 3:368–384

    Article  CAS  Google Scholar 

  • Riley T, Sontag E, Chen P et al (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9:402–412

    Article  CAS  PubMed  Google Scholar 

  • Rozan L, El-Deiry W (2006) p53 downstream target genes and tumor suppression: a classical view in evolution. Cell Death Differ 14:3–9

    Article  PubMed  CAS  Google Scholar 

  • Ryan KM, Phillips AC, Vousden KH (2001) Regulation and function of the p53 tumor suppressor protein. Curr Opin Cell Biol 13:332–337

    Article  CAS  PubMed  Google Scholar 

  • Sax J, El-Deiry W (2003) p53 downstream targets and chemosensitivity. Cell Death Differ 10:413–417

    Article  CAS  PubMed  Google Scholar 

  • Schneider K (2012) Counseling about cancer: strategies for genetic counseling. Wiley-Blackwell, Hoboken

    Google Scholar 

  • Shen-Orr SS, Milo R, Mangan S et al (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31:64–68

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ (2004) Principles of tumor suppression. Cell 116:235–246

    Article  CAS  PubMed  Google Scholar 

  • Sisson SA, Fan Y, Tanaka MM (2007) Sequential Monte Carlo without likelihoods. Proc Natl Acad Sci 104:1760–1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivas M, Patnaik LM (1994) Genetic algorithms: a survey. Computer 27:7–26

    Article  Google Scholar 

  • Sun X, Jin L, Xiong M (2008) Extended Kalman filter for estimation of parameters in nonlinear state-space models of biochemical networks. PLoS One 3:e3758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thron C (1996) A model for a bistable biochemical trigger of mitosis. Biophys Chem 57:239–251

    Article  CAS  PubMed  Google Scholar 

  • Toni T, Welch D, Strelkowa N et al (2009) Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J R Soc Interface 6:187–202

    Article  PubMed  PubMed Central  Google Scholar 

  • Tyson J (2002) Biochemical oscillations. In: Computational cell biology. Springer, New York, pp 230–260

    Google Scholar 

  • Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15:221–231

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8:275–283

    Article  CAS  PubMed  Google Scholar 

  • Wade Harper J, Adami GR, Wei N et al (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816

    Article  Google Scholar 

  • Wood RD, Mitchell M, Sgours J et al (2001) Human DNA repair genes. Science 291:1284–1289

    Article  CAS  PubMed  Google Scholar 

  • Yaffe MB (2008) Signaling networks and mathematics. Sci Signal 1(143):eg7

    PubMed  Google Scholar 

  • Yee KS, Vousden KH (2005) Complicating the complexity of p53. Carcinogenesis 26:1317–1322

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Zhang L (2005) The transcriptional targets of p53 in apoptosis control. Biochem Biophys Res Commun 331:851–858

    Article  CAS  PubMed  Google Scholar 

  • Zambetti GP (2005) The p53 tumor suppressor pathway and cancer. Springer, New York

    Book  Google Scholar 

  • Zilfou JT, Lowe SW (2009) Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol 1(15)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yike Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Guo, Y., Yang, X. (2012). System Biology Approach to Study Cancer Related Pathways. In: Azmi, A.S. (eds) Systems Biology in Cancer Research and Drug Discovery. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4819-4_2

Download citation

Publish with us

Policies and ethics