Skip to main content

Network Pharmacology: An Emerging Area in Anti-Cancer Drug Discovery

  • Chapter
  • First Online:
Book cover Systems Biology in Cancer Research and Drug Discovery

Abstract

A decade into the twenty-first century, the biomedical field has witnessed tremendous advancements in cancer biomarker discovery technologies that have driven the development of newer classes of targeted anti-cancer drugs. In spite of this rapid progress, the global burden of cancer continues to increase. This is largely because of the growth of the world’s ageing population alongside an increasing adoption of detrimental lifestyles, particularly smoking and unhealthy dietary habits in economically developing countries. According to the GLOBOCAN estimates, about 12.7 million cancer cases and 7.6 million cancer deaths are estimated to have occurred in the year 2008. Of these, 56 % of the cases and 64 % of the deaths occurred in the economically developing world indicating that the existing approaches to cancer treatment are not capable of containing cancer. Such dismal statistics point to the urgent need for drastic changes in the field of medicine and that would require researchers to acquire (a) out of the box thinking and (b) to embrace next generation technologies by harnessing their full potential in future diagnostic, prognostic and therapeutics strategies for cancer. In this chapter, we will present emerging concepts in drug discovery that utilize the power of systems and network biology to rationally design clinically successful cancer therapeutics.

An erratum to this chapter can be found at 10.1007/978-94-007-4819-4_18

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DIM:

3,3′ Diindolylmethane

B-DIM:

Bio-response 33′diindolylmethane

CDF:

Di-fluoro curcumin

EGFR:

Epidermal growth factor receptor

HIV:

Human immune deficiency virus

NF-kB:

Nuclear factor kappa B

RDRD:

Rare disease repurposing database

KCI:

K-ras-Pdx-Cre-Ink

TFs:

Transcription factors

MT1:

Melatonin receptor 1

MMP:

Matrix metalloprotease

miRNAs:

MicroRNAs

ncRNAs:

Non-coding RNAs

ADRs:

Adverse drug reactions

MDM2:

Murine double minute two

HNF4A:

Hepatocyte nuclear factor 4 alpha

CREBBP:

CREB binding protein

PDAC:

Pancreatic ductal adenocarcinoma

SOSA:

Selective optimization of side activities

References

  • Ahmad A, Kong D, Sarkar SH, Wang Z, Banerjee S, Sarkar FH (2009a) Inactivation of uPA and its receptor uPAR by 3,3′-diindolylmethane (DIM) leads to the inhibition of prostate cancer cell growth and migration. J Cell Biochem 107:516–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad A, Kong D, Wang Z, Sarkar SH, Banerjee S, Sarkar FH (2009b) Down-regulation of uPA and uPAR by 3,3′-diindolylmethane contributes to the inhibition of cell growth and migration of breast cancer cells. J Cell Biochem 108:916–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali S, Banerjee S, Logna F, Bao B, Philip PA, Korc M, Sarkar FH (2011) Inactivation of Ink4a/Arf leads to deregulated expression of miRNAs in K-Ras transgenic mouse model of pancreatic cancer. J Cell Physiol 227(10):3373–80

    Google Scholar 

  • Ali S, Ahmad A, Aboukameel A, Bao B, Padhye S, Philip PA, Sarkar FH (2012) Increased Ras GTPase activity is regulated by miRNAs that can be attenuated by CDF treatment in pancreatic cancer cells. Cancer Lett 319:173–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almhanna K, Philip PA (2011) Defining new paradigms for the treatment of pancreatic cancer. Curr Treat Options Oncol 12:111–125

    Article  PubMed  Google Scholar 

  • Anderson AR, Quaranta V (2008) Integrative mathematical oncology. Nat Rev Cancer 8:227–234

    Article  CAS  PubMed  Google Scholar 

  • Assouline S, Lipton JH (2011) Monitoring response and resistance to treatment in chronic myeloid leukemia. Curr Oncol 18:e71–e83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assouline S, Benemacher V, Gambacorti-Passerini C (2006) Simultaneous development of Philadelphia chromosome-positive and -negative leukemias in the same patient. Am J Hematol 81:646

    Article  PubMed  Google Scholar 

  • Axtell MJ (2008) Evolution of microRNAs and their targets: are all microRNAs biologically relevant? Biochim Biophys Acta 1779:725–734

    Article  CAS  PubMed  Google Scholar 

  • Azmi AS, Ahmad A, Banerjee S, Rangnekar VM, Mohammad RM, Sarkar FH (2008) Chemoprevention of pancreatic cancer: characterization of Par-4 and its modulation by 3,3′ diindolylmethane (DIM). Pharm Res 25:2117–2124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azmi AS, Aboukameel A, Banerjee S, Wang Z, Mohammad M, Wu J, Wang S, Yang D, Philip PA, Sarkar FH, Mohammad RM (2010a) MDM2 inhibitor MI-319 in combination with cisplatin is an effective treatment for pancreatic cancer independent of p53 function. Eur J Cancer 46(6):1122–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azmi AS, Philip PA, Aboukameel A, Wang Z, Banerjee S, Zafar SF, Goustin AS, Almhanna K, Yang D, Sarkar FH, Mohammad RM (2010b) Reactivation of p53 by novel MDM2 inhibitors: implications for pancreatic cancer therapy. Curr Cancer Drug Targets 10:319–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azmi AS, Wang Z, Philip PA, Mohammad RM, Sarkar FH (2010c) Proof of concept: network and systems biology approaches aid in the discovery of potent anticancer drug combinations. Mol Cancer Ther 9:3137–3144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azmi AS, Ali S, Banerjee S, Bao B, Maitah MN, Padhye S, Philip PA, Mohammad RM, Sarkar FH (2011a) Network modeling of CDF treated pancreatic cancer cells reveals a novel c-myc-p73 dependent apoptotic mechanism. Am J Transl Res 3(4):374–382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Azmi AS, Banerjee S, Ali S, Wang Z, Bao B, Beck FW, Maitah M, Choi M, Shields TF, Philip PA, Sarkar FH, Mohammad RM (2011b) Network modeling of MDM2 inhibitor-oxaliplatin combination reveals biological synergy in wt-p53 solid tumors. Oncotarget 2(5):378–92

    Article  PubMed  PubMed Central  Google Scholar 

  • Azmi AS, Beck FW, Bao B, Mohammad RM, Sarkar FH (2011c) Aberrant epigenetic grooming of miRNAs in pancreatic cancer: a systems biology perspective. Epigenomics 3:747–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azmi AS, Beck FW, Sarkar FH, Mohammad RM (2011d) Network perspectives on HDM2 inhibitor chemotherapy combinations. Curr Pharm Des 17:640–652

    Article  CAS  PubMed  Google Scholar 

  • Bao B, Ali S, Banerjee S, Wang Z, Logna F, Azmi AS, Kong D, Ahmad A, Li Y, Padhye S, Sarkar FH (2012) Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. Cancer Res 72:335–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barabasi AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bond RA (2001) Is paradoxical pharmacology a strategy worth pursuing? Trends Pharmacol Sci 22:273–276

    Article  CAS  PubMed  Google Scholar 

  • Bond RA (2002) Can intellectualism stifle scientific discovery? Nat Rev Drug Discov 1:825–829

    Article  CAS  PubMed  Google Scholar 

  • Borisy AA, Elliott PJ, Hurst NW, Lee MS, Lehar J, Price ER, Serbedzija G, Zimmermann GR, Foley MA, Stockwell BR, Keith CT (2003) Systematic discovery of multicomponent therapeutics. Proc Natl Acad Sci U S A 100:7977–7982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown D, Superti-Furga G (2003) Rediscovering the sweet spot in drug discovery. Drug Discov Today 8:1067–1077

    Article  PubMed  Google Scholar 

  • Brown CJ, Lain S, Verma CS, Fersht AR, Lane DP (2009) Awakening guardian angels: drugging the p53 pathway. Nat Rev Cancer 9:862–873

    Article  CAS  PubMed  Google Scholar 

  • Butcher EC (2007) Can cell systems biology rescue drug discovery? Ernst Schering Res Found Workshop 61:153–172

    Article  CAS  PubMed  Google Scholar 

  • Campillos M, Kuhn M, Gavin AC, Jensen LJ, Bork P (2008) Drug target identification using side-effect similarity. Science 321:263–266

    Article  CAS  PubMed  Google Scholar 

  • Chow WA, Jiang C, Guan M (2009) Anti-HIV drugs for cancer therapeutics: back to the future? Lancet Oncol 10:61–71

    Article  CAS  PubMed  Google Scholar 

  • Cokol M, Chua HN, Tasan M, Mutlu B, Weinstein ZB, Suzuki Y, Nergiz ME, Costanzo M, Baryshnikova A, Giaever G, Nislow C, Myers CL, Andrews BJ, Boone C, Roth FP (2011) Systematic exploration of synergistic drug pairs. Mol Syst Biol 7:544

    Article  PubMed  PubMed Central  Google Scholar 

  • Dandawate PR, Vyas A, Ahmad A, Banerjee S, Deshpande J, Swamy KV, Jamadar A, Dumhe-Klaire AC, Padhye S, Sarkar FH (2012) Inclusion complex of novel curcumin analogue CDF and β-Cyclodextrin (1:2) and its enhanced in vivo anticancer activity against pancreatic cancer. Pharm Res 29(7):1775–1786 (http://www.ncbi.nlm.nih.gov/pubmed/22322899)

    Google Scholar 

  • Eltarhouny SA, Elsawy WH, Radpour R, Hahn S, Holzgreve W, Zhong XY (2008) Genes controlling spread of breast cancer to lung “gang of 4”. Exp Oncol 30:91–95

    CAS  PubMed  Google Scholar 

  • Fitter S, James R (2005) Deconvolution of a complex target using DNA aptamers. J Biol Chem 280:34193–34201

    Article  CAS  PubMed  Google Scholar 

  • Garzon R, Marcucci G, Croce CM (2010) Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 9:775–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P, Varela I, Phillimore B, Begum S, McDonald NQ, Butler A, Jones D, Raine K, Latimer C, Santos CR, Nohadani M, Eklund AC, Spencer-Dene B, Clark G, Pickering L, Stamp G, Gore M, Szallasi Z, Downward J, Futreal PA, Swanton C (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892

    Article  CAS  PubMed  Google Scholar 

  • Gills JJ, Lopiccolo J, Tsurutani J, Shoemaker RH, Best CJ, bu-Asab MS, Borojerdi J, Warfel NA, Gardner ER, Danish M, Hollander MC, Kawabata S, Tsokos M, Figg WD, Steeg PS, Dennis PA (2007) Nelfinavir, A lead HIV protease inhibitor, is a broad-spectrum, anticancer agent that induces endoplasmic reticulum stress, autophagy, and apoptosis in vitro and in vivo. Clin Cancer Res 13:5183–5194

    Article  CAS  PubMed  Google Scholar 

  • Guilford JM, Pezzuto JM (2008) Natural products as inhibitors of carcinogenesis. Expert Opin Investig Drugs 17:1341–1352

    Article  CAS  PubMed  Google Scholar 

  • Gullett NP, Ruhul Amin AR, Bayraktar S, Pezzuto JM, Shin DM, Khuri FR, Aggarwal BB, Surh YJ, Kucuk O (2010) Cancer prevention with natural compounds. Semin Oncol 37:258–281

    Article  CAS  PubMed  Google Scholar 

  • Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127:679–695

    Article  CAS  PubMed  Google Scholar 

  • Gupta GP, Nguyen DX, Chiang AC, Bos PD, Kim JY, Nadal C, Gomis RR, Manova-Todorova K, Massague J (2007) Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446:765–770

    Article  CAS  PubMed  Google Scholar 

  • Hieronymus H, Silver PA (2004) A systems view of mRNP biology. Genes Dev 18:2845–2860

    Article  CAS  PubMed  Google Scholar 

  • Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4:682–690

    Article  CAS  PubMed  Google Scholar 

  • Huang LC, Wu X, Chen JY (2011) Predicting adverse side effects of drugs. BMC Genomics 12(Suppl 5):S11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanwar SS, Yu Y, Nautiyal J, Patel BB, Padhye S, Sarkar FH, Majumdar AP (2011) Difluorinated-curcumin (CDF): a novel curcumin analog is a potent inhibitor of colon cancer stem-like cells. Pharm Res 28:827–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keith CT, Borisy AA, Stockwell BR (2005) Multicomponent therapeutics for networked systems. Nat Rev Drug Discov 4:71–78

    Article  CAS  PubMed  Google Scholar 

  • Kim EJ, Simeone DM (2011) Advances in pancreatic cancer. Curr Opin Gastroenterol 27(5):460–4656

    Article  PubMed  Google Scholar 

  • Kinnings SL, Liu N, Buchmeier N, Tonge PJ, Xie L, Bourne PE (2009) Drug discovery using chemical systems biology: repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis. PLoS Comput Biol 5(7):e1000423

    Article  PubMed  PubMed Central  Google Scholar 

  • Kong D, Li Y, Wang Z, Banerjee S, Sarkar FH (2007) Inhibition of angiogenesis and invasion by 3,3′-diindolylmethane is mediated by the nuclear factor-kappaB downstream target genes MMP-9 and uPA that regulated bioavailability of vascular endothelial growth factor in prostate cancer. Cancer Res 67(7):3310–3319

    Article  CAS  PubMed  Google Scholar 

  • Kong D, Banerjee S, Huang W, Li Y, Wang Z, Kim HR, Sarkar FH (2008) Mammalian target of rapamycin repression by 3,3′-diindolylmethane inhibits invasion and angiogenesis in platelet-derived growth factor-D-overexpressing PC3 cells. Cancer Res 68:1927–1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehar J, Zimmermann GR, Krueger AS, Molnar RA, Ledell JT, Heilbut AM, Short GF III, Giusti LC, Nolan GP, Magid OA, Lee MS, Borisy AA, Stockwell BR, Keith CT (2007) Chemical combination effects predict connectivity in biological systems. Mol Syst Biol 3:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehar J, Krueger AS, Avery W, Heilbut AM, Johansen LM, Price ER, Rickles RJ, Short GF III, Staunton JE, Jin X, Lee MS, Zimmermann GR, Borisy AA (2009a) Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat Biotechnol 27(7):659–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehar J, Krueger AS, Zimmermann GR, Borisy AA (2009b) Therapeutic selectivity and the multi-node drug target. Discov Med 8:185–190

    PubMed  Google Scholar 

  • Lewandowski C, Pezzuto JM (2012) Pharmaceutical biology: a retrospective. Pharm Biol 50:1–5

    Article  PubMed  Google Scholar 

  • Li Y, Wang Z, Kong D, Murthy S, Dou QP, Sheng S, Reddy GP, Sarkar FH (2007) Regulation of FOXO3a/beta-catenin/GSK-3beta signaling by 3,3′-diindolylmethane contributes to inhibition of cell proliferation and induction of apoptosis in prostate cancer cells. J Biol Chem 282:21542–21550

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wang Z, Kong D, Li R, Sarkar SH, Sarkar FH (2008) Regulation of Akt/FOXO3a/GSK-3beta/AR signaling network by isoflavone in prostate cancer cells. J Biol Chem 283:27707–27716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Zhu X, Chen JY (2009) Building disease-specific drug-protein connectivity maps from molecular interaction networks and PubMed abstracts. PLoS Comput Biol 5:e1000450

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Kong D, Ahmad A, Bao B, Sarkar FH (2012) Targeting bone remodeling by isoflavone and 3,3′-diindolylmethane in the context of prostate cancer bone metastasis. PLoS One 7:e33011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina PP, Slack FJ (2009) Inhibiting microRNA function in vivo. Nat Methods 6:37–38

    Article  CAS  PubMed  Google Scholar 

  • Ohyashiki K, Kuriyama Y, Nakajima A, Tauchi T, Ito Y, Miyazawa H, Kimura Y, Serizawa H, Ebihara Y (2002) Imatinib mesylate-induced hepato-toxicity in chronic myeloid leukemia demonstrated focal necrosis resembling acute viral hepatitis. Leukemia 16:2160–2161

    Article  CAS  PubMed  Google Scholar 

  • Padhye S, Banerjee S, Chavan D, Pandye S, Swamy KV, Ali S, Li J, Dou QP, Sarkar FH (2009a) Fluorocurcumins as cyclooxygenase-2 inhibitor: molecular docking, pharmacokinetics and tissue distribution in mice. Pharm Res 26:2438–2445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padhye S, Yang H, Jamadar A, Cui QC, Chavan D, Dominiak K, McKinney J, Banerjee S, Dou QP, Sarkar FH (2009b) New difluoro Knoevenagel condensates of curcumin, their Schiff bases and copper complexes as proteasome inhibitors and apoptosis inducers in cancer cells. Pharm Res 26:1874–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park EJ, Pezzuto JM (2012) Flavonoids in cancer prevention. Anticancer Agents Med Chem [ePub ahead of print]

    Google Scholar 

  • Peters JU, Hert J, Bissantz C, Hillebrecht A, Gerebtzoff G, Bendels S, Tillier F, Migeon J, Fischer H, Guba W, Kansy M (2012) Can we discover pharmacological promiscuity early in the drug discovery process? Drug Discov Today 17:325–335

    Article  PubMed  Google Scholar 

  • Pezzuto JM (2011) The phenomenon of resveratrol: redefining the virtues of promiscuity. Ann N Y Acad Sci 1215:123–130

    Article  CAS  PubMed  Google Scholar 

  • Philip PA (2011) Development of targeted therapies for pancreatic cancer. Lancet Oncol 12:206–207

    Article  PubMed  Google Scholar 

  • Proulx SR, Promislow DE, Phillips PC (2005) Network thinking in ecology and evolution. Trends Ecol Evol 20:345–353

    Article  PubMed  Google Scholar 

  • Pujol A, Mosca R, Farres J, Aloy P (2010) Unveiling the role of network and systems biology in drug discovery. Trends Pharmacol Sci 31:115–123

    Article  CAS  PubMed  Google Scholar 

  • Rupaimoole R, Han HD, Lopez-Berestein G, Sood AK (2011) MicroRNA therapeutics: principles, expectations, and challenges. Chin J Cancer 30:368–370

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarkar FH (2010a) Current trends in the chemoprevention of cancer. Pharm Res 27:945–949

    Article  CAS  PubMed  Google Scholar 

  • Sarkar FH (2010b) Nutraceuticals and cancer. Preface. Cancer Metastasis Rev 29:381–382

    Article  PubMed  Google Scholar 

  • Sarkar FH, Li Y, Wang Z, Padhye S (2010) Lesson learned from nature for the development of novel anti-cancer agents: implication of isoflavone, curcumin, and their synthetic analogs. Curr Pharm Des 16:1801–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato F, Tsuchiya S, Meltzer SJ, Shimizu K (2011) MicroRNAs and epigenetics. FEBS J 278:1598–1609

    Article  CAS  PubMed  Google Scholar 

  • Schadt EE, Friend SH, Shaywitz DA (2009) A network view of disease and compound screening. Nat Rev Drug Discov 8:286–295

    Article  CAS  PubMed  Google Scholar 

  • Singh-Gupta V, Banerjee S, Yunker CK, Rakowski JT, Joiner MC, Konski AA, Sarkar FH, Hillman GG (2012) B-DIM impairs radiation-induced survival pathways independently of androgen receptor expression and augments radiation efficacy in prostate cancer. Cancer Lett 318:86–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stathis A, Moore MJ (2010) Advanced pancreatic carcinoma: current treatment and future challenges. Nat Rev Clin Oncol 7:163–172

    Article  CAS  PubMed  Google Scholar 

  • Turner NC, Lord CJ, Iorns E, Brough R, Swift S, Elliott R, Rayter S, Tutt AN, Ashworth A (2008) A synthetic lethal siRNA screen identifying genes mediating sensitivity to a PARP inhibitor. EMBO J 27:1368–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Eichenborn J, Murgueitio MS, Dunkel M, Koerner S, Bourne PE, Preissner R (2011) PROMISCUOUS: a database for network-based drug-repositioning. Nucleic Acids Res 39:D1060–D1066

    Article  Google Scholar 

  • Wang Z, Li Y, Ahmad A, Banerjee S, Azmi AS, Kong D, Sarkar FH (2011) Pancreatic cancer: understanding and overcoming chemoresistance. Nat Rev Gastroenterol Hepatol 8:27–33

    Article  CAS  PubMed  Google Scholar 

  • Wermuth CG (2004) Multitargeted drugs: the end of the “one-target-one-disease” philosophy? Drug Discov Today 9:826–827

    Article  PubMed  Google Scholar 

  • Wermuth CG (2006) Selective optimization of side activities: the SOSA approach. Drug Discov Today 11:160–164

    Article  CAS  PubMed  Google Scholar 

  • Whitehurst AW, Bodemann BO, Cardenas J, Ferguson D, Girard L, Peyton M, Minna JD, Michnoff C, Hao W, Roth MG, Xie XJ, White MA (2007) Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature 446:815–819

    Article  CAS  PubMed  Google Scholar 

  • Wist AD, Berger SI, Iyengar R (2009) Systems pharmacology and genome medicine: a future perspective. Genome Med 1:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie L, Evangelidis T, Xie L, Bourne PE (2011) Drug discovery using chemical systems biology: weak inhibition of multiple kinases may contribute to the anti-cancer effect of nelfinavir. PLoS Comput Biol 7:e1002037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu K, Cote TR (2011) Database identifies FDA-approved drugs with potential to be repurposed for treatment of orphan diseases. Brief Bioinform 12:341–345

    Article  CAS  PubMed  Google Scholar 

  • Yoshida E, Aratani S, Itou H, Miyagishi M, Takiguchi M, Osumu T, Murakami K, Fukamizu A (1997) Functional association between CBP and HNF4 in trans-activation. Biochem Biophys Res Commun 241:664–669

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Iyengar R (2012) Systems pharmacology: network analysis to identify multiscale mechanisms of drug action. Annu Rev Pharmacol Toxicol 52:505–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao XM, Iskar M, Zeller G, Kuhn M, Noort V, Bork P (2011) Prediction of drug combinations by integrating molecular and pharmacological data. PLoS Comput Biol 7:e1002323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asfar S. Azmi Ph.D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Azmi, A.S., Beck, F.W.J., Bao, B., Sarkar, F.H., Mohammad, R.M. (2012). Network Pharmacology: An Emerging Area in Anti-Cancer Drug Discovery. In: Azmi, A.S. (eds) Systems Biology in Cancer Research and Drug Discovery. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4819-4_17

Download citation

Publish with us

Policies and ethics