Skip to main content

Ultrasound Transmission Through Periodically Perforated Plates

  • Chapter
Book cover Acoustic Metamaterials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 166))

  • 4366 Accesses

Abstract

We study sound transmission through plates perforated with subwavelength holes. Experimental results are analyzed in the light of both a rigid solid model as well as a full elasto-acoustic theory. A discussion comparing sound and optics is given based upon an analytical framework. We show that, unlike light, sound is transmitted through individual subwavelength holes, in a perfectly rigid thin film approximately in proportion to their area. Moreover, hole arrays in perfectly rigid thin films do not exhibit full sound transmission due to the absence of lattice resonances. Therefore, the resonant full transmission observed in hole arrays is not extraordinary in the case of sound. However extraordinary sound screening well beyond that predicted by the mass law is observed. Finally, we find a strong interplay between Wood anomaly minima and intrinsic plate modes (Lamb modes), which results in fundamentally unique behavior of sound as compared to light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th Dover printing, 10th GPO printing edn. Dover, New York (1964)

    Google Scholar 

  2. Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Harcourt Brace, Orlando (1976)

    Google Scholar 

  3. Barbara, A., Quémerais, P., Bustarret, E., Lopez-Rios, T.: Optical transmission through subwavelength metallic gratings. Phys. Rev. B 66(16), 161403 (2002). doi:10.1103/PhysRevB.66.161403

    Article  Google Scholar 

  4. Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003). http://dx.doi.org/10.1038/nature01937

    Article  CAS  Google Scholar 

  5. Bethe, H.A.: Theory of diffraction by small holes. Phys. Rev. 66(7–8), 163–182 (1944). doi:10.1103/PhysRev.66.163

    Article  Google Scholar 

  6. Bouwkamp, C.J.: Theoretische en numerieke behandeling van de buiging door een ronde opening. Ph.D. thesis, University of Groningen (1941)

    Google Scholar 

  7. Bouwkamp, C.J.: Diffraction theory. Rep. Prog. Phys. 17(1), 35–100 (1954). http://stacks.iop.org/0034-4885/17/35

    Article  Google Scholar 

  8. Brekhovskikh, L.M., Godin, O.A.: Acoustics of Layered Media. Springer Series on Wave Phenomena, vol. I, 2nd edn. Springer, Berlin (1998)

    Google Scholar 

  9. Brillouin, L.: Wave Propagation in Periodic Structures. Dover, New York (1953)

    Google Scholar 

  10. Christensen, J., Fernandez-Dominguez, A.I., de Leon-Perez, F., Martin-Moreno, L., Garcia-Vidal, F.J.: Collimation of sound assisted by acoustic surface waves. Nat. Phys. 3, 851–852 (2007). doi:10.1038/nphys774, http://dx.doi.org/10.1038/nphys774

    Article  CAS  Google Scholar 

  11. Christensen, J., Martin-Moreno, L., Garcia-Vidal, F.J.: Theory of resonant acoustic transmission through subwavelength apertures. Phys. Rev. Lett. 101(1), 014301 (2008). doi:10.1103/PhysRevLett.101.014301, http://link.aps.org/abstract/PRL/v101/e014301

    Article  CAS  Google Scholar 

  12. Christensen, J., Martín-Moreno, L., García-Vidal, F.J.: All-angle blockage of sound by an acoustic double-fishnet metamaterial. Appl. Phys. Lett. 97(13), 134106 (2010). doi:10.1063/1.3491289, http://link.aip.org/link/?APL/97/134106/1

    Article  Google Scholar 

  13. Christensen, J., Martín-Moreno, L., García-Vidal, F.J.: Enhanced acoustical transmission and beaming effect through a single aperture. Phys. Rev. B 81(17), 174104 (2010). doi:10.1103/PhysRevB.81.174104

    Article  Google Scholar 

  14. Cremer, L., Möser, M.: Technische Akustik, 5th edn. Springer, Berlin (2003)

    Google Scholar 

  15. Cummer, S.A., Schurig, D.: One path to acoustic cloaking. New J. Phys. 9(3), 45 (2007). http://stacks.iop.org/1367-2630/9/45

    Article  Google Scholar 

  16. Ebbesen, T.W., Lezec, H.J., Ghaemi, H.F., Thio, T., Wolff, P.A.: Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391(6668), 667–669 (1998). http://dx.doi.org/10.1038/35570

    Article  CAS  Google Scholar 

  17. Estrada, H., Candelas, P., Uris, A., Belmar, F., García de Abajo, F.J., Meseguer, F.: Extraordinary sound screening in perforated plates. Phys. Rev. Lett. 101(8), 084302 (2008). doi:10.1103/PhysRevLett.101.084302, http://link.aps.org/abstract/PRL/v101/e084302

    Article  Google Scholar 

  18. Estrada, H., Candelas, P., Uris, A., Belmar, F., García de Abajo, F.J., Meseguer, F.: Influence of lattice symmetry on ultrasound transmission through plates with subwavelength aperture arrays. Appl. Phys. Lett. 95(5), 051906 (2009). doi:10.1063/1.3196330, http://link.aip.org/link/?APL/95/051906/1

    Article  Google Scholar 

  19. Estrada, H., Candelas, P., Uris, A., Belmar, F., Meseguer, F., García de Abajo, F.J.: Influence of the hole filling fraction on the ultrasonic transmission through plates with subwavelength aperture arrays. Appl. Phys. Lett. 93(1), 011907 (2008). doi:10.1063/1.2955825, http://link.aip.org/link/?APL/93/011907/1

    Article  Google Scholar 

  20. Estrada, H., Candelas, P., Uris, A., Belmar, F., Meseguer, F., García de Abajo, F.J.: Sound transmission through perforated plates with subwavelength hole arrays: A rigid-solid model. Wave Motion 48(3), 235–242 (2011). doi:10.1016/j.wavemoti.2010.10.008, http://www.sciencedirect.com/science/article/B6TW5-51D7HPV-1/2/fa69698be2a24bb62629931deab14e4f

    Article  Google Scholar 

  21. Estrada, H., García de Abajo, F.J, Candelas, P., Uris, A., Belmar, F., Meseguer, F.: Angle-dependent ultrasonic transmission through plates with subwavelength hole arrays. Phys. Rev. Lett. 102(14), 144301 (2009). doi:10.1103/PhysRevLett.102.144301, http://link.aps.org/abstract/PRL/v102/e144301

    Article  Google Scholar 

  22. Fei, D., Chimenti, D.E., Teles, S.V.: Material property estimation in thin plates using focused, synthetic-aperture acoustic beams. J. Acoust. Soc. Am. 113(5), 2599–2610 (2003). doi:10.1121/1.1561496, http://link.aip.org/link/?JAS/113/2599/1

    Article  Google Scholar 

  23. García de Abajo, F.J.; Colloquium: Light scattering by particle and hole arrays. Rev. Mod. Phys. 79(4), 1267 (2007). doi:10.1103/RevModPhys.79.1267, http://link.aps.org/abstract/RMP/v79/p1267

    Article  Google Scholar 

  24. García de Abajo, F.J., Estrada, H., Meseguer, F.J.: Diacritical study of light, electrons, and sound scattering by particles and holes. New J. Phys. 11(9), 093013 (2009). http://stacks.iop.org/1367-2630/11/i=9/a=093013

    Article  Google Scholar 

  25. Genet, C., Ebbesen, T.W.: Light in tiny holes. Nature 445, 39–46 (2007). http://dx.doi.org/10.1038/nature05350

    Article  CAS  Google Scholar 

  26. Gómez Rivas, J., Schotsch, C., Haring Bolivar, P., Kurz, H.: Enhanced transmission of the radiation through subwavelength holes. Phys. Rev. B 68(20), 201,306 (2003). doi:10.1103/PhysRevB.68.201306

    Article  Google Scholar 

  27. He, Z., Jia, H., Qiu, C., Peng, S., Mei, X., Cai, F., Peng, P., Ke, M., Liu, Z.: Acoustic transmission enhancement through a periodically structured stiff plate without any opening. Phys. Rev. Lett. 105(7), 074301 (2010). doi:10.1103/PhysRevLett.105.074301

    Article  Google Scholar 

  28. Holland, S.D., Chimenti, D.E.: Air-coupled acoustic imaging with zero-group-velocity lamb modes. Appl. Phys. Lett. 83(13), 2704–2706 (2003). doi:10.1063/1.1613046, http://link.aip.org/link/?APL/83/2704/1

    Article  CAS  Google Scholar 

  29. Hou, B., Mei, J., Ke, M., Liu, Z., Shi, J., Wen, W.: Experimental determination for resonance-induced transmission of acoustic waves through subwavelength hole arrays. J. Appl. Phys. 104(1), 014909 (2008). doi:10.1063/1.2951457, http://link.aip.org/link/?JAP/104/014909/1

    Article  Google Scholar 

  30. Hou, B., Mei, J., Ke, M., Wen, W., Liu, Z., Shi, J., Sheng, P.: Tuning Fabry-Perot resonances via diffraction evanescent waves. Phys. Rev. B 76(5), 054303 (2007). doi:10.1103/PhysRevB.76.054303, http://link.aps.org/abstract/PRB/v76/e054303

    Article  Google Scholar 

  31. Ingard, U., Bolt, R.H.: Absorption characteristics of acoustic material with perforated facings. J. Acoust. Soc. Am. 23(5), 533–540 (1951). http://link.aip.org/link/?JAS/23/533/1

    Article  Google Scholar 

  32. Joannopoulos, J.D., Meade, R.D., Winn, J.N.: Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton (1995)

    Google Scholar 

  33. Jocker, J., Smeulders, D.: Minimization of finite beam effects in the determination of reflection and transmission coefficients of an elastic layer. Ultrasonics 46, 42–50 (2007). http://www.sciencedirect.com/science/article/B6TW2-4MBCGB5-1/2/f117c6f285ef0f4f621c6bd2eddb3912

    Article  Google Scholar 

  34. John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58(23), 2486–2489 (1987). doi:10.1103/PhysRevLett.58.2486

    Article  CAS  Google Scholar 

  35. Jun, K.H., Eom, H.J.: Acoustic scattering from a circular aperture in a thick hard screen. J. Acoust. Soc. Am. 98(4), 2324–2327 (1995). doi:10.1121/1.414404, http://link.aip.org/link/?JAS/98/2324/1

    Article  Google Scholar 

  36. Khelif, A., Choujaa, A., Benchabane, S., Djafari-Rouhani, B., Laude, V.: Guiding and bending of acoustic waves in highly confined phononic crystal waveguides. Appl. Phys. Lett. 84(22), 4400–4402 (2004). doi:10.1063/1.1757642, http://link.aip.org/link/?APL/84/4400/1

    Article  CAS  Google Scholar 

  37. Kinsler, L.E.: Fundamentals of Acoustics, 4th edn. Wiley, New York (2000)

    Google Scholar 

  38. Kittel, C.: Introduction to Solid State Physics, 7th edn. Wiley, New York (1996)

    Google Scholar 

  39. Kundu, T.: Ultrasonic Nondestructive Evaluation. CRC, Boca Raton (2004)

    Google Scholar 

  40. Lamb, H.: On waves in an elastic plate. Proc. R. Soc. Lond., a Contain. Pap. Math. Phys. Character 93(648), 114–128 (1917). http://www.jstor.org/stable/93792

    Article  Google Scholar 

  41. Lamb, H.: On the vibrations of an elastic plate in contact with water. Proc. R. Soc. Lond., a Contain. Pap. Math. Phys. Character 98(690), 205–216 (1920). http://www.jstor.org/stable/93996

    Article  Google Scholar 

  42. Leonhardt, U.: Optical conformal mapping. Science 312(5781), 1777–1780 (2006). doi:10.1126/science.1126493, http://www.sciencemag.org/cgi/content/abstract/312/5781/1777

    Article  CAS  Google Scholar 

  43. Liu, F., Cai, F., Ding, Y., Liu, Z.: Tunable transmission spectra of acoustic waves through double phononic crystal slabs. Appl. Phys. Lett. 92(10), 103504 (2008). doi:10.1063/1.2896146, http://link.aip.org/link/?APL/92/103504/1

    Article  Google Scholar 

  44. Liu, Z., Jin, G.: Resonant acoustic transmission through compound subwavelength hole arrays: The role of phase resonances. J. Phys. Condens. Matter 21(44), 445,401 (2009). http://stacks.iop.org/0953-8984/21/i=44/a=445401

    Article  Google Scholar 

  45. Liu, Z., Jin, G.: Acoustic transmission resonance and suppression through double-layer subwavelength hole arrays. J. Phys. Condens. Matter 22(30), 305003 (2010). http://stacks.iop.org/0953-8984/22/i=30/a=305003

    Article  Google Scholar 

  46. Lu, M.H., Liu, X.K., Feng, L., Li, J., Huang, C.P., Chen, Y.F., Zhu, Y.Y., Zhu, S.N., Ming, N.B.: Extraordinary acoustic transmission through a 1d grating with very narrow apertures. Phys. Rev. Lett. 99(17), 174301 (2007). doi:10.1103/PhysRevLett.99.174301, http://link.aps.org/abstract/PRL/v99/e174301

    Article  Google Scholar 

  47. Martín-Moreno, L., García-Vidal, F.J., Lezec, H.J., Pellerin, K.M., Thio, T., Pendry, J.B., Ebbesen, T.W.: Theory of extraordinary optical transmission through subwavelength hole arrays. Phys. Rev. Lett. 86(6), 1114–1117 (2001). doi:10.1103/PhysRevLett.86.1114

    Article  Google Scholar 

  48. Martinez-Sala, R., Sancho, J., Sanchez, J.V., Gomez, V., Llinares, J., Meseguer, F.: Sound attenuation by sculpture. Nature 378, 241 (1995). http://dx.doi.org/10.1038/378241a0

    Article  CAS  Google Scholar 

  49. Mekis, A., Chen, J.C., Kurland, I., Fan, S., Villeneuve, P.R., Joannopoulos, J.D.: High transmission through sharp bends in photonic crystal waveguides. Phys. Rev. Lett. 77(18), 3787–3790 (1996). doi:10.1103/PhysRevLett.77.3787

    Article  CAS  Google Scholar 

  50. Nomura, Y., Inawashiro, S.: On the transmission of acoustic waves through a circular channel of a thick wall. Res. Inst. Elec. Commun. 2, 57–71 (1960)

    Google Scholar 

  51. Norris, A.N., Luo, H.A.: Acoustic radiation and reflection from a periodically perforated rigid solid. J. Acoust. Soc. Am. 82(6), 2113–2122 (1987). doi:10.1121/1.395656, http://link.aip.org/link/?JAS/82/2113/1

    Article  Google Scholar 

  52. Osborne, M.F.M., Hart, S.D.: Transmission, reflection, and guiding of an exponential pulse by a steel plate in water. I. Theory. J. Acoust. Soc. Am. 17(1), 1–18 (1945). http://link.aip.org/link/?JAS/17/1/1

    Article  Google Scholar 

  53. Pendry, J.B.: Low Energy Electron Diffraction: The Theory and Its Application to Determination of Surface Structure. Academic Press, London (1974)

    Google Scholar 

  54. Porto, J.A., García-Vidal, F.J., Pendry, J.B.: Transmission resonances on metallic gratings with very narrow slits. Phys. Rev. Lett. 83(14), 2845–2848 (1999). doi:10.1103/PhysRevLett.83.2845

    Article  CAS  Google Scholar 

  55. Rayleigh, L.: On the incidence of aerial and electric waves upon small obstacles in the form of ellipsoids or elliptic cylinders, and on the passage of electric waves through a circular aperture in a conducting screen. Philos. Mag. 44, 28–52 (1897)

    Article  Google Scholar 

  56. Rayleigh, L.: On the passage of waves through apertures in plane screens, and allied problems. Philos. Mag. 43, 259–272 (1897)

    Article  Google Scholar 

  57. Rayleigh, L.: On the dynamical theory of gratings. Proc. R. Soc. A 79, 399–416 (1907)

    Article  Google Scholar 

  58. Rayleigh, L.: The Theory of Sound, vol. II, 2nd edn. Courier Dover Publications (1945)

    Google Scholar 

  59. Royer, D., Dieulesaint, E.: Elastic Waves in Solids, vol. I. Springer, Berlin (2000)

    Google Scholar 

  60. Sánchez-Pérez, J.V., Caballero, D., Mártinez-Sala, R., Rubio, C., Sánchez-Dehesa, J., Meseguer, F., Llinares, J., Gálvez, F.: Sound attenuation by a two-dimensional array of rigid cylinders. Phys. Rev. Lett. 80(24), 5325–5328 (1998). doi:10.1103/PhysRevLett.80.5325

    Article  Google Scholar 

  61. Selcuk, S., Woo, K., Tanner, D.B., Hebard, A.F., Borisov, A.G., Shabanov, S.V.: Trapped electromagnetic modes and scaling in the transmittance of perforated metal films. Phys. Rev. Lett. 97(6), 067403 (2006). doi:10.1103/PhysRevLett.97.067403, http://link.aps.org/abstract/PRL/v97/e067403

    Article  CAS  Google Scholar 

  62. Sgard, F., Nelisse, H., Atalla, N.: On the modeling of the diffuse field sound transmission loss of finite thickness apertures. J. Acoust. Soc. Am. 122(1), 302–313 (2007). doi:10.1121/1.2735109, http://link.aip.org/link/?JAS/122/302/1

    Article  Google Scholar 

  63. Shelby, R.A., Smith, D.R., Schultz, S.: Experimental verification of a negative index of refraction. Science 292(5514), 77–79 (2001). doi:10.1126/science.1058847, http://www.sciencemag.org/cgi/content/abstract/292/5514/77

    Article  CAS  Google Scholar 

  64. Sigalas, M., Kushwaha, M.S., Economou, E.N., Kafesaki, M., Psarobas, I.E., Steurer, W.: Classical vibrational modes in phononic lattices: theory and experiment. Z. Kristallogr. 220(9–10), 765–809 (2005). http://www.atypon-link.com/OLD/doi/abs/10.1524/zkri.2005.220.9-10.765

    Article  CAS  Google Scholar 

  65. Sukhovich, A., Jing, L., Page, J.H.: Negative refraction and focusing of ultrasound in two-dimensional phononic crystals. Phys. Rev. B 77(1), 014301 (2008). doi:10.1103/PhysRevB.77.014301, http://link.aps.org/abstract/PRB/v77/e014301

    Article  Google Scholar 

  66. Takakura, Y.: Optical resonance in a narrow slit in a thick metallic screen. Phys. Rev. Lett. 86(24), 5601–5603 (2001). doi:10.1103/PhysRevLett.86.5601

    Article  CAS  Google Scholar 

  67. Torres, M., Montero de Espinosa, F.R., García-Pablos, D., García, N.: Sonic band gaps in finite elastic media: surface states and localization phenomena in linear and point defects. Phys. Rev. Lett. 82(15), 3054–3057 (1999). doi:10.1103/PhysRevLett.82.3054

    Article  CAS  Google Scholar 

  68. Treacy, M.M.J.: Dynamical diffraction in metallic optical gratings. Appl. Phys. Lett. 75(5), 606–608 (1999). doi:10.1063/1.124455, http://link.aip.org/link/?APL/75/606/1

    Article  CAS  Google Scholar 

  69. Trompette, N., Barbry, J.L., Sgard, F., Nelisse, H.: Sound transmission loss of rectangular and slit-shaped apertures: Experimental results and correlation with a modal model. J. Acoust. Soc. Am. 125(1), 31–41 (2009). doi:10.1121/1.3003084, http://link.aip.org/link/?JAS/125/31/1

    Article  Google Scholar 

  70. Viktorov, I.A.: Rayleigh and Lamb Waves. Plenum Press, New York (1967)

    Google Scholar 

  71. Wang, X.: Acoustical mechanism for the extraordinary sound transmission through subwavelength apertures. Appl. Phys. Lett. 96(13), 134104 (2010). doi:10.1063/1.3378268, http://link.aip.org/link/?APL/96/134104/1

    Article  Google Scholar 

  72. Wang, X.: Theory of resonant sound transmission through small apertures on periodically perforated slabs. J. Appl. Phys. 108(6), 064903 (2010). doi:10.1063/1.3481434, http://link.aip.org/link/?JAP/108/064903/1

    Article  Google Scholar 

  73. Wauer, J., Rother, T.: Considerations to Rayleigh’s hypothesis. Opt. Commun. 282, 339–350 (2009). doi:10.1016/j.optcom.2008.10.023

    Article  CAS  Google Scholar 

  74. Williams, E.G.: Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography. Academic Press, San Diego (1999)

    Google Scholar 

  75. Wilson, G.P., Soroka, W.W.: Approximation to the diffraction of sound by a circular aperture in a rigid wall of finite thickness. J. Acoust. Soc. Am. 37(2), 286–297 (1965). http://link.aip.org/link/?JAS/37/286/1

    Article  Google Scholar 

  76. Wood, R.W.: Philos. Mag. 4, 396 (1902)

    Article  Google Scholar 

  77. Wood, R.W.: Anomalous diffraction gratings. Phys. Rev. 48(12), 928–936 (1935). doi:10.1103/PhysRev.48.928

    Article  CAS  Google Scholar 

  78. Yablonovitch, E., Gmitter, T.J.: Photonic band structure: the face-centered-cubic case. Phys. Rev. Lett. 63(18), 1950–1953 (1989). doi:10.1103/PhysRevLett.63.1950

    Article  CAS  Google Scholar 

  79. Yang, F., Sambles, J.R.: Resonant transmission of microwaves through a narrow metallic slit. Phys. Rev. Lett. 89(6), 063901 (2002). doi:10.1103/PhysRevLett.89.063901

    Article  Google Scholar 

  80. Zhang, X.: Acoustic resonant transmission through acoustic gratings with very narrow slits: Multiple-scattering numerical simulations. Phys. Rev. B 71(24), 241102 (2005). doi:10.1103/PhysRevB.71.241102

    Article  Google Scholar 

  81. Zhou, L., Kriegsmann, G.A.: Complete transmission through a periodically perforated rigid slab. J. Acoust. Soc. Am. 121(6), 3288–3299 (2007). doi:10.1121/1.2721878, http://link.aip.org/link/?JAS/121/3288/1

    Article  Google Scholar 

  82. Zhou, Y., Lu, M.H., Feng, L., Ni, X., Chen, Y.F., Zhu, Y.Y., Zhu, S.N., Ming, N.B.: Acoustic surface evanescent wave and its dominant contribution to extraordinary acoustic transmission and collimation of sound. Phys. Rev. Lett. 104(16), 164301 (2010). doi:10.1103/PhysRevLett.104.164301

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge financial support from projects MICINN MAT2010-16879, Consolider Nanolight.es CSD-2007-0046 of the Spanish Education and Science Ministry, and project PROMETEO/2010/043 of Generalitat Valenciana. H.E. acknowledges a CSIC-JAE scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Meseguer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Estrada, H., García de Abajo, F.J., Candelas, P., Uris, A., Belmar, F., Meseguer, F. (2013). Ultrasound Transmission Through Periodically Perforated Plates. In: Craster, R., Guenneau, S. (eds) Acoustic Metamaterials. Springer Series in Materials Science, vol 166. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4813-2_4

Download citation

Publish with us

Policies and ethics