Skip to main content

DNA Repair in Normal Stem Cells

  • Chapter
  • First Online:
DNA Repair of Cancer Stem Cells

Abstract

Stem cells are self-renewing cells with the ability to differentiate into one or more somatic cell types. Pluripotent stem cells (PSCs) can form any type of somatic cell and play essential roles during development, whereas multipotent stem cells produce a limited number of closely related cell types and are responsible for tissue homeostasis during an organism’s lifetime. It is essential for stem cells to maintain genomic integrity, as alterations of their DNA sequence would be transmitted to daughter cells. This might affect developmental processes, tissue cellularity and function, and lead to aging and malignant transformation. The fast pace of the cell cycle in PSCs exposes them to the risk of accumulation of replication errors, whereas the long life of multipotent stem cells predisposes them to accumulation of mutations. PSCs employ several mechanisms to minimize mutational burden, such as low mitochondrial activity and reactive oxygen species (ROS) production, high activity of efflux pumps, expression of telomerase, efficient DNA repair, as well as triggering apoptosis at a lower threshold than other cell types. Quiescence of multipotent stem cells may minimize chances of accumulation of replication errors, and protect them from oxidative stress due to low metabolic activity, mitochondrial respiration, and ROS production. However, quiescence may act as a double-edged sword, since resting in the G0 phase of the cell cycle limits the choice for DNA double strand break repair to error prone non-homologous end joining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DSB:

Double strand break repair

ESC:

Embryonic stem cell

EpiSC:

Epiblast stem cell

ECC:

Embryonic carcinoma cell

EGC:

Embryonic germ cell

HSC:

Hematopoietic stem cell

HR:

Homologous recombination

ICM:

Inner cell mass

MEF:

Mouse embryonic fibroblasts

IR:

Ionizing radiation

NHEJ:

Non-homologous end joining

NSC:

Neural stem cell

PSC:

Pluripotent stem cell

ROS:

Reactive oxygen species

UV:

Ultraviolet radiation

References

  1. Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T (2006) DNA repair and mutagenesis. ASM Press, Washington

    Google Scholar 

  2. Kahan BW, Ephrussi B (1970) Developmental potentialities of clonal in vitro cultures of mouse testicular teratoma. J Natl Cancer Inst 44:1015–1036

    PubMed  CAS  Google Scholar 

  3. Kleinsmith LJ, Pierce GB Jr (1964) Multipotentiality of single embryonal carcinoma cells. Cancer Res 24:1544–1551

    PubMed  CAS  Google Scholar 

  4. Atkin NB, Baker MC, Robinson R, Gaze SE (1974) Chromosome studies on 14 near-diploid carcinomas of the ovary. Eur J Cancer 10:144–146

    PubMed  CAS  Google Scholar 

  5. Matsui Y, Zsebo K, Hogan BL (1992) Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70:841–847

    Article  PubMed  CAS  Google Scholar 

  6. Resnick JL, Bixler LS, Cheng L, Donovan PJ (1992) Long-term proliferation of mouse primordial germ cells in culture. Nature 359:550–551

    Article  PubMed  CAS  Google Scholar 

  7. Stewart CL, Gadi I, Bhatt H (1994) Stem cells from primordial germ cells can reenter the germ line. Dev Biol 161:626–628

    Article  PubMed  CAS  Google Scholar 

  8. Labosky PA, Barlow DP, Hogan BL (1994) Mouse embryonic germ (EG) cell lines: transmission through the germline and differences in the methylation imprint of insulin-like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) cell lines. Development 120:3197–3204

    PubMed  CAS  Google Scholar 

  9. Tada M, Tada T, Lefebvre L, Barton SC, Surani MA (1997) Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. Embo J 16:6510–6520

    Article  PubMed  CAS  Google Scholar 

  10. Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, Blumenthal PD, Huggins GR, Gearhart JD (1998) Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA 95:13726–13731

    Article  PubMed  CAS  Google Scholar 

  11. Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, McKay RD (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448:196–199

    Article  PubMed  CAS  Google Scholar 

  12. Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA, Vallier L (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448:191–195

    Article  PubMed  CAS  Google Scholar 

  13. Hogan B, Fellous M, Avner P, Jacob F (1977) Isolation of a human teratoma cell line which expresses F9 antigen. Nature 270:515–518

    Article  PubMed  CAS  Google Scholar 

  14. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638

    Article  PubMed  CAS  Google Scholar 

  15. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  PubMed  CAS  Google Scholar 

  16. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  PubMed  CAS  Google Scholar 

  17. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  18. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  PubMed  CAS  Google Scholar 

  19. Tam PP, Rossant J (2003) Mouse embryonic chimeras: tools for studying mammalian development. Development 130:6155–6163

    Article  PubMed  CAS  Google Scholar 

  20. Kubiak JZ, Tarkowski AK (1985) Electrofusion of mouse blastomeres. Exp Cell Res 157:561–566

    Article  PubMed  CAS  Google Scholar 

  21. Nagy A, Gocza E, Diaz EM, Prideaux VR, Ivanyi E, Markkula M, Rossant J (1990) Embryonic stem cells alone are able to support fetal development in the mouse. Development 110:815–821

    PubMed  CAS  Google Scholar 

  22. Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci USA 90:8424–8428

    Article  PubMed  CAS  Google Scholar 

  23. Nichols J, Smith A (2009) Naive and primed pluripotent states. Cell Stem Cell 4:487–492

    Article  PubMed  CAS  Google Scholar 

  24. Hanna J, Cheng AW, Saha K, Kim J, Lengner CJ, Soldner F, Cassady JP, Muffat J, Carey BW, Jaenisch R (2010) Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc Natl Acad Sci USA 107:9222–9227

    Article  PubMed  CAS  Google Scholar 

  25. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956

    Article  PubMed  CAS  Google Scholar 

  26. Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643–655

    Article  PubMed  CAS  Google Scholar 

  27. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631–642

    Article  PubMed  CAS  Google Scholar 

  28. Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24:372–376

    Article  PubMed  CAS  Google Scholar 

  29. Okamoto K, Okazawa H, Okuda A, Sakai M, Muramatsu M, Hamada H (1990) A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell 60:461–472

    Article  PubMed  CAS  Google Scholar 

  30. Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000

    Article  PubMed  CAS  Google Scholar 

  31. Niwa H, Toyooka Y, Shimosato D, Strumpf D, Takahashi K, Yagi R, Rossant J (2005) Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123:917–929

    Article  PubMed  CAS  Google Scholar 

  32. Xie H, Ye M, Feng R, Graf T (2004) Stepwise reprogramming of B cells into macrophages. Cell 117:663–676

    Article  PubMed  CAS  Google Scholar 

  33. Campbell KH, McWhir J, Ritchie WA, Wilmut I (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380:64–66

    Article  PubMed  CAS  Google Scholar 

  34. Yu J, Vodyanik MA, He P, Slukvin II, Thomson JA (2006) Human embryonic stem cells reprogram myeloid precursors following cell-cell fusion. Stem Cells 24:168–176

    Article  PubMed  Google Scholar 

  35. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  PubMed  CAS  Google Scholar 

  36. Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324:797–801

    Article  PubMed  CAS  Google Scholar 

  37. Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26:101–106

    Article  PubMed  CAS  Google Scholar 

  38. Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ (2008) Disease-specific induced pluripotent stem cells. Cell 134:877–886

    Article  PubMed  CAS  Google Scholar 

  39. Kim JB, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V, Arauzo-Bravo MJ, Ruau D, Han DW, Zenke M, Scholer HR (2008) Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454:646–650

    Article  PubMed  CAS  Google Scholar 

  40. Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476

    Article  PubMed  CAS  Google Scholar 

  41. Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85:348–362

    Article  PubMed  CAS  Google Scholar 

  42. Friedrich Ben-Nun I, Montague SC, Houck ML, Tran HT, Garitaonandia I, Leonardo TR, Wang YC, Charter SJ, Laurent LC, Ryder OA, Loring JF (2011) Induced pluripotent stem cells from highly endangered species. Nat Methods 8:829–831

    Article  CAS  Google Scholar 

  43. Sahin E, Depinho RA (2010) Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 464:520–528

    Article  PubMed  CAS  Google Scholar 

  44. Knoblich JA (2001) Asymmetric cell division during animal development. Nat Rev Mol Cell Biol 2:11–20

    Article  PubMed  CAS  Google Scholar 

  45. Lajtha LG (1979) Stem cell concepts. Nouv Rev Fr Hematol 21:59–65

    PubMed  CAS  Google Scholar 

  46. Clarke MF, Fuller M (2006) Stem cells and cancer: two faces of eve. Cell 124:1111–1115

    Article  PubMed  CAS  Google Scholar 

  47. Savatier P, Huang S, Szekely L, Wiman KG, Samarut J (1994) Contrasting patterns of retinoblastoma protein expression in mouse embryonic stem cells and embryonic fibroblasts. Oncogene 9:809–818

    PubMed  CAS  Google Scholar 

  48. Savatier P, Lapillonne H, van Grunsven LA, Rudkin BB, Samarut J (1996) Withdrawal of differentiation inhibitory activity/leukemia inhibitory factor up-regulates D-type cyclins and cyclin-dependent kinase inhibitors in mouse embryonic stem cells. Oncogene 12:309–322

    PubMed  CAS  Google Scholar 

  49. White J, Stead E, Faast R, Conn S, Cartwright P, Dalton S (2005) Developmental activation of the Rb-E2F pathway and establishment of cell cycle-regulated cyclin-dependent kinase activity during embryonic stem cell differentiation. Mol Biol Cell 16:2018–2027

    Article  PubMed  CAS  Google Scholar 

  50. Becker KA, Ghule PN, Therrien JA, Lian JB, Stein JL, van Wijnen AJ, Stein GS (2006) Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase. J Cell Physiol 209:883–893

    Article  PubMed  CAS  Google Scholar 

  51. Becker KA, Stein JL, Lian JB, van Wijnen AJ, Stein GS (2010) Human embryonic stem cells are pre-mitotically committed to self-renewal and acquire a lengthened G1 phase upon lineage programming. J Cell Physiol 222:103–110

    Article  PubMed  CAS  Google Scholar 

  52. Stead E, White J, Faast R, Conn S, Goldstone S, Rathjen J, Dhingra U, Rathjen P, Walker D, Dalton S (2002) Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities. Oncogene 21:8320–8333

    Article  PubMed  CAS  Google Scholar 

  53. Momcilovic O, Navara C, Schatten G (2011) Cell cycle adaptations and maintenance of genomic integrity in embryonic stem cells and induced pluripotent stem cells. Results Probl Cell Differ 53:415–458

    Article  PubMed  CAS  Google Scholar 

  54. Momcilovic O, Choi S, Varum S, Bakkenist C, Schatten G, Navara C (2009) Ionizing radiation induces ataxia telangiectasia mutated-dependent checkpoint signaling and G(2) but not G(1) cell cycle arrest in pluripotent human embryonic stem cells. Stem Cells 27:1822–1835

    Article  PubMed  CAS  Google Scholar 

  55. Hong Y, Stambrook PJ (2004) Restoration of an absent G1 arrest and protection from apoptosis in embryonic stem cells after ionizing radiation. Proc Natl Acad Sci USA 101:14443–14448

    Article  PubMed  CAS  Google Scholar 

  56. Fluckiger AC, Marcy G, Marchand M, Negre D, Cosset FL, Mitalipov S, Wolf D, Savatier P, Dehay C (2006) Cell cycle features of primate embryonic stem cells. Stem Cells 24:547–556

    Article  PubMed  CAS  Google Scholar 

  57. Filion TM, Qiao M, Ghule PN, Mandeville M, van Wijnen A J, Stein JL, Lian JB, Altieri DC, Stein G.S (2009) Survival responses of human embryonic stem cells to DNA damage. J Cell Physiol 220:586–592

    Article  PubMed  CAS  Google Scholar 

  58. Barta T, Vinarsky V, Holubcova Z, Dolezalova D, Verner J, Pospisilova S, Dvorak P, Hampl A (2010) Human embryonic stem cells are capable of executing G1/S checkpoint activation. Stem Cells 28:1143–1152

    PubMed  CAS  Google Scholar 

  59. Lin T, Chao C, Saito S, Mazur SJ, Murphy ME, Appella E, Xu Y (2005) p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol 7:165–171

    Article  PubMed  CAS  Google Scholar 

  60. Qin H, Yu T, Qing T, Liu Y, Zhao Y, Cai J, Li J, Song Z, Qu X, Zhou P, Wu J, Ding M, Deng H (2007) Regulation of apoptosis and differentiation by p53 in human embryonic stem cells. J Biol Chem 282:5842–5852

    Article  PubMed  CAS  Google Scholar 

  61. Wilson KD, Sun N, Huang M, Zhang WY, Lee AS, Li Z, Wang SX, Wu JC (2010) Effects of ionizing radiation on self-renewal and pluripotency of human embryonic stem cells. Cancer Res 70:5539–5548

    Article  PubMed  CAS  Google Scholar 

  62. Momcilovic O, Knobloch L, Fornsaglio J, Varum S, Easley C, Schatten G (2010) DNA damage responses in human induced pluripotent stem cells and embryonic stem cells. PLoS One 5:e13410

    Google Scholar 

  63. Saretzki G, Armstrong L, Leake A, Lako M, von Zglinicki T (2004) Stress defense in murine embryonic stem cells is superior to that of various differentiated murine cells. Stem Cells 22:962–971

    Article  PubMed  CAS  Google Scholar 

  64. Maynard S, Swistikowa AM, Lee JW, Liu Y, Liu ST, A DAC, Rao M, de Souza-Pinto N, Zeng X, Bohr VA (2008) Human embryonic stem cells have enhanced repair of multiple forms of DNA damage. Stem Cells 26:2266–2274

    Google Scholar 

  65. Saretzki G, Walter T, Atkinson S, Passos JF, Bareth B, Keith WN, Stewart R, Hoare S, Stojkovic M, Armstrong L, von Zglinicki T, Lako M (2008) Downregulation of multiple stress defense mechanisms during differentiation of human embryonic stem cells. Stem Cells 26:455–464

    Google Scholar 

  66. Rich T, Allen RL, Wyllie AH (2000) Defying death after DNA damage. Nature 407:777–783

    Article  PubMed  CAS  Google Scholar 

  67. Haber JE (2000) Partners and pathwaysrepairing a double-strand break. Trends Genet 16:259–264

    Article  PubMed  CAS  Google Scholar 

  68. Rothkamm K, Kruger I, Thompson LH, Lobrich M (2003) Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 23:5706–5715

    Article  PubMed  CAS  Google Scholar 

  69. Lees-Miller SP, Meek K (2003) Repair of DNA double strand breaks by non-homologous end joining. Biochimie 85:1161–1173

    Article  PubMed  CAS  Google Scholar 

  70. Lieber MR, Ma Y, Pannicke U, Schwarz K (2003) Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol 4:712–720

    Article  PubMed  CAS  Google Scholar 

  71. Mahaney BL, Meek K, Lees-Miller SP (2009) Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining. Biochem J 417:639–650

    Article  PubMed  CAS  Google Scholar 

  72. Lee SE, Mitchell RA, Cheng A, Hendrickson EA (1997) Evidence for DNA-PK-dependent and -independent DNA double-strand break repair pathways in mammalian cells as a function of the cell cycle. Mol Cell Biol 17:1425–1433

    PubMed  CAS  Google Scholar 

  73. Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, Utsumi H, Yamaguchi-Iwai Y, Shinohara A, Takeda S (1998) Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. Embo J 17:5497–5508

    Article  PubMed  CAS  Google Scholar 

  74. Pierce AJ, Hu P, Han M, Ellis N, Jasin M (2001) Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. Genes Dev 15:3237–3242

    Article  PubMed  CAS  Google Scholar 

  75. Kim JS, Krasieva TB, Kurumizaka H, Chen DJ, Taylor AM, Yokomori K (2005) Independent and sequential recruitment of NHEJ and HR factors to DNA damage sites in mammalian cells. J Cell Biol 170:341–347

    Article  PubMed  CAS  Google Scholar 

  76. Lundin C, Schultz N, Arnaudeau C, Mohindra A, Hansen LT, Helleday T (2003) RAD51 is involved in repair of damage associated with DNA replication in mammalian cells. J Mol Biol 328:521–535

    Article  PubMed  CAS  Google Scholar 

  77. Shrivastav M, Miller CA, De Haro LP, Durant ST, Chen BP, Chen DJ, Nickoloff JA (2009) DNA-PKcs and ATM co-regulate DNA double-strand break repair. DNA Repair (Amst) 8:920–929

    Article  CAS  Google Scholar 

  78. Mao Z, Bozzella M, Seluanov A, Gorbunova V (2008) DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle 7:2902–2906

    Article  PubMed  CAS  Google Scholar 

  79. Mao Z, Bozzella M, Seluanov A, Gorbunova V (2008) Comparison of nonhomologous end joining and homologous recombination in human cells. DNA Repair (Amst) 7:1765–1771

    Article  CAS  Google Scholar 

  80. Tsuzuki T, Fujii Y, Sakumi K, Tominaga Y, Nakao K, Sekiguchi M, Matsushiro A, Yoshimura Y, Morita T (1996) Targeted disruption of the Rad51 gene leads to lethality in embryonic mice. Proc Natl Acad Sci USA 93:6236–6240

    Article  PubMed  CAS  Google Scholar 

  81. Lim DS, Hasty P (1996) A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol Cell Biol 16:7133–7143

    PubMed  CAS  Google Scholar 

  82. Xiao Y, Weaver DT (1997) Conditional gene targeted deletion by Cre recombinase demonstrates the requirement for the double-strand break repair Mre11 protein in murine embryonic stem cells. Nucl Acids Res 25:2985–2991

    Article  PubMed  CAS  Google Scholar 

  83. Zhu J, Petersen S, Tessarollo L, Nussenzweig A (2001) Targeted disruption of the Nijmegen breakage syndrome gene NBS1 leads to early embryonic lethality in mice. Curr Biol 11:105–109

    Article  PubMed  CAS  Google Scholar 

  84. Luo G, Yao MS, Bender CF, Mills M, Bladl AR, Bradley A, Petrini JH (1999) Disruption of mRad50 causes embryonic stem cell lethality, abnormal embryonic development, and sensitivity to ionizing radiation. Proc Natl Acad Sci USA 96:7376–7381

    Article  PubMed  CAS  Google Scholar 

  85. Essers J, Hendriks RW, Swagemakers SM, Troelstra C, de Wit J, Bootsma D, Hoeijmakers JH, Kanaar R (1997) Disruption of mouse RAD54 reduces ionizing radiation resistance and homologous recombination. Cell 89:195–204

    Article  PubMed  CAS  Google Scholar 

  86. Rijkers T, Van Den Ouweland J, Morolli B, Rolink AG, Baarends WM, Van Sloun PP, Lohman PH, Pastink A (1998) Targeted inactivation of mouse RAD52 reduces homologous recombination but not resistance to ionizing radiation. Mol Cell Biol 18:6423–6429

    PubMed  CAS  Google Scholar 

  87. Barnes DE, Stamp G, Rosewell I, Denzel A, Lindahl T (1998) Targeted disruption of the gene encoding DNA ligase IV leads to lethality in embryonic mice. Curr Biol 8:1395–1398

    Article  PubMed  CAS  Google Scholar 

  88. Frank KM, Sharpless NE, Gao Y, Sekiguchi JM, Ferguson DO, Zhu C, Manis JP, Horner J, DePinho RA, Alt FW (2000) DNA ligase IV deficiency in mice leads to defective neurogenesis and embryonic lethality via the p53 pathway. Mol Cell 5:993–1002

    Article  PubMed  CAS  Google Scholar 

  89. Li Z, Otevrel T, Gao Y, Cheng HL, Seed B, Stamato TD, Taccioli GE, Alt FW (1995) The XRCC4 gene encodes a novel protein involved in DNA double-strand break repair and V(D)J recombination. Cell 83:1079–1089

    Article  PubMed  CAS  Google Scholar 

  90. Gao Y, Chaudhuri J, Zhu C, Davidson L, Weaver DT, Alt FW (1998) A targeted DNA-PKcs-null mutation reveals DNA-PK-independent functions for KU in V(D)J recombination. Immunity 9:367–376

    Article  PubMed  CAS  Google Scholar 

  91. Gu Y, Jin S, Gao Y, Weaver DT, Alt FW (1997) Ku70-deficient embryonic stem cells have increased ionizing radiosensitivity, defective DNA end-binding activity, and inability to support V(D)J recombination. Proc Natl Acad Sci USA 94:8076–8081

    Article  PubMed  CAS  Google Scholar 

  92. Jin S, Inoue S, Weaver DT (1998) Differential etoposide sensitivity of cells deficient in the Ku and DNA-PKcs components of the DNA-dependent protein kinase. Carcinogenesis 19:965–971

    Article  PubMed  CAS  Google Scholar 

  93. Nussenzweig A, Sokol K, Burgman P, Li L, Li GC (1997) Hypersensitivity of Ku80-deficient cell lines and mice to DNA damage: the effects of ionizing radiation on growth, survival, and development. Proc Natl Acad Sci USA 94:13588–13593

    Article  PubMed  CAS  Google Scholar 

  94. Serrano L, Liang L, Chang Y, Deng L, Maulion C, Nguyen S, Tischfield JA (2011) Homologous recombination conserves DNA sequence integrity throughout the cell cycle in embryonic stem cells. Stem Cells Dev 20:363–374

    Article  PubMed  CAS  Google Scholar 

  95. Tichy ED, Pillai R, Deng L, Liang L, Tischfield J, Schwemberger SJ, Babcock GF, Stambrook PJ (2010) Mouse embryonic stem cells, but not somatic cells, predominantly use homologous recombination to repair double-strand DNA breaks. Stem Cells Dev 19:1699–1711

    Article  PubMed  CAS  Google Scholar 

  96. Banuelos CA, Banath JP, Macphail SH, Zhao J, Eaves CA, O’Connor MD, Lansdorp PM, Olive PL (2008) Mouse but not human embryonic stem cells are deficient in rejoining of ionizing radiation-induced DNA double-strand breaks. Stem Cells Dev 7:1471–1483

    CAS  Google Scholar 

  97. Fan J, Robert C, Jang YY, Liu H, Sharkis S, Baylin SB, Rassool FV (2011) Human induced pluripotent cells resemble embryonic stem cells demonstrating enhanced levels of DNA repair and efficacy of nonhomologous end-joining. Mutat Res 713:8–17

    Google Scholar 

  98. Adams BR, Golding SE, Rao RR, Valerie K (2010) Dynamic dependence on ATR and ATM for double-strand break repair in human embryonic stem cells and neural descendants. PLoS One 5:e10001

    Google Scholar 

  99. Fung H, Weinstock DM (2011) Repair at single targeted DNA double-strand breaks in pluripotent and differentiated human cells. PLoS One 6:e20514

    Google Scholar 

  100. Adams BR, Hawkins AJ, Povirk LF, Valerie K (2010) ATM-independent, high-fidelity nonhomologous end joining predominates in human embryonic stem cells. Aging (Albany NY) 2:582–596

    CAS  Google Scholar 

  101. Finnie NJ, Gottlieb TM, Blunt T, Jeggo PA, Jackson SP (1995) DNA-dependent protein kinase activity is absent in xrs-6 cells: implications for site-specific recombination and DNA double-strand break repair. Proc Natl Acad Sci USA 92:320–324

    Article  PubMed  CAS  Google Scholar 

  102. Anderson CW, Lees-Miller SP (1992) The nuclear serine/threonine protein kinase DNA-PK. Crit Rev Eukaryot Gene Expr 2:283–314

    PubMed  CAS  Google Scholar 

  103. Li G, Nelsen C, Hendrickson EA (2002) Ku86 is essential in human somatic cells. Proc Natl Acad Sci USA 99:832–837

    PubMed  CAS  Google Scholar 

  104. Van Sloun PP, Jansen JG, Weeda G, Mullenders LH, van Zeeland AA, Lohman PH, Vrieling H (1999) The role of nucleotide excision repair in protecting embryonic stem cells from genotoxic effects of UV-induced DNA damage. Nucl Acids Res 27:3276–3282

    Article  PubMed  Google Scholar 

  105. de Waard H, Sonneveld E, de Wit J, Esveldt-van Lange R, Hoeijmakers JH, Vrieling H, van Der Horst GT (2008) Cell-type-specific consequences of nucleotide excision repair deficiencies: embryonic stem cells versus fibroblasts. DNA Repair (Amst) 7:1659–1669

    Article  CAS  Google Scholar 

  106. Tichy ED, Liang L, Deng L, Tischfield J, Schwemberger S, Babcock G, Stambrook PJ (2011) Mismatch and base excision repair proficiency in murine embryonic stem cells. DNA Repair (Amst) 10:445–451

    Article  CAS  Google Scholar 

  107. Roos WP, Christmann M, Fraser ST, Kaina B (2007) Mouse embryonic stem cells are hypersensitive to apoptosis triggered by the DNA damage O(6)-methylguanine due to high E2F1 regulated mismatch repair. Cell Death Differ 14:1422–1432

    Article  PubMed  CAS  Google Scholar 

  108. Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LI, Yabuuchi A, Takeuchi A, Cunniff KC, Hongguang H, McKinney-Freeman S, Naveiras O, Yoon TJ, Irizarry RA, Jung N, Seita J, Hanna J, Murakami P, Jaenisch R, Weissleder R, Orkin SH, Weissman IL, Feinberg AP, Daley GQ (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467:285–290

    Article  PubMed  CAS  Google Scholar 

  109. Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M, Okita K, Yamanaka S (2009) Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460:1132–1135

    Article  PubMed  CAS  Google Scholar 

  110. Kawamura T, Suzuki J, Wang YV, Menendez S, Morera LB, Raya A, Wahl GM, Belmonte JC (2009) Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460:1140–1144

    Article  PubMed  CAS  Google Scholar 

  111. Li H, Collado M, Villasante A, Strati K, Ortega S, Canamero M, Blasco MA, Serrano M (2009) The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460:1136–1139

    Article  PubMed  CAS  Google Scholar 

  112. Marion RM, Strati K, Li H, Murga M, Blanco R, Ortega S, Fernandez-Capetillo O, Serrano M, Blasco MA (2009) A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460:1149–1153

    Article  PubMed  CAS  Google Scholar 

  113. Utikal J, Polo JM, Stadtfeld M, Maherali N, Kulalert W, Walsh RM, Khalil A, Rheinwald JG, Hochedlinger K (2009) Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 460:1145–1148

    Article  PubMed  CAS  Google Scholar 

  114. Chao C, Wu Z, Mazur SJ, Borges H, Rossi M, Lin T, Wang JY, Anderson CW, Appella E, Xu Y (2006) Acetylation of mouse p53 at lysine 317 negatively regulates p53 apoptotic activities after DNA damage. Mol Cell Biol 26:6859–6869

    Article  PubMed  CAS  Google Scholar 

  115. Di Giovanni S, Knights CD, Rao M, Yakovlev A, Beers J, Catania J, Avantaggiati ML, Faden AI (2006) The tumor suppressor protein p53 is required for neurite outgrowth and axon regeneration. Embo J 25:4084–4096

    Article  PubMed  CAS  Google Scholar 

  116. Gil-Perotin S, Haines JD, Kaur J, Marin-Husstege M, Spinetta MJ, Kim KH, Duran-Moreno M, Schallert T, Zindy F, Roussel MF, Garcia-Verdugo JM, Casaccia P (2011) Roles of p53 and p27(Kip1) in the regulation of neurogenesis in the murine adult subventricular zone. Eur J Neurosci 34:1040–1052

    Article  PubMed  Google Scholar 

  117. Gil-Perotin S, Marin-Husstege M, Li J, Soriano-Navarro M, Zindy F, Roussel MF, Garcia-Verdugo JM, Casaccia-Bonnefil P (2006) Loss of p53 induces changes in the behavior of subventricular zone cells: implication for the genesis of glial tumors. J Neurosci 26:1107–1116

    Article  PubMed  CAS  Google Scholar 

  118. Zheng H, Ying H, Yan H, Kimmelman AC, Hiller DJ, Chen AJ, Perry SR, Tonon G, Chu GC, Ding Z, Stommel JM, Dunn KL, Wiedemeyer R, You MJ, Brennan C, Wang YA, Ligon KL, Wong WH, Chin L, DePinho RA (2008) p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 455:1129–1133

    Article  PubMed  CAS  Google Scholar 

  119. Sherman MH, Kuraishy AI, Deshpande C, Hong JS, Cacalano NA, Gatti RA, Manis JP, Damore MA, Pellegrini M, Teitell MA (2010) AID-induced genotoxic stress promotes B cell differentiation in the germinal center via ATM and LKB1 signaling. Mol Cell 39:873–885

    Article  PubMed  CAS  Google Scholar 

  120. Liu Y, Elf SE, Miyata Y, Sashida G, Huang G, Di Giandomenico S, Lee JM, Deblasio A, Menendez S, Antipin J, Reva B, Koff A, Nimer SD (2009) p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell 4:37–48

    Article  PubMed  CAS  Google Scholar 

  121. Liu Y, Hoya-Arias R, Nimer SD (2009) The role of p53 in limiting somatic cell reprogramming. Cell Res 19:1227–1228

    Article  PubMed  Google Scholar 

  122. Deng W, Xu Y (2009) Genome integrity: linking pluripotency and tumorgenicity. Trends Genet 25:425–427

    Article  PubMed  CAS  Google Scholar 

  123. Hussein SM, Batada NN, Vuoristo S, Ching RW, Autio R, Narva E, Ng S, Sourour M, Hamalainen R, Olsson C, Lundin K, Mikkola M, Trokovic R, Peitz M, Brustle O, Bazett-Jones DP, Alitalo K, Lahesmaa R, Nagy A, Otonkoski T (2011) Copy number variation and selection during reprogramming to pluripotency. Nature 471:58–62

    Article  PubMed  CAS  Google Scholar 

  124. Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, Lynch C, Harness JV, Lee S, Barrero MJ, Ku S, Martynova M, Semechkin R, Galat V, Gottesfeld J, Izpisua Belmonte JC, Murry C, Keirstead HS, Park HS, Schmidt U, Laslett AL, Muller FJ, Nievergelt CM, Shamir R, Loring JF (2011) Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 8:106–118

    Article  PubMed  CAS  Google Scholar 

  125. Mayshar Y, Ben-David U, Lavon N, Biancotti JC, Yakir B, Clark AT, Plath K, Lowry WE, Benvenisty N (2010) Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 7:521–531

    Article  PubMed  CAS  Google Scholar 

  126. Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, Canto I, Giorgetti A, Israel MA, Kiskinis E, Lee JH, Loh YH, Manos PD, Montserrat N, Panopoulos AD, Ruiz S, Wilbert ML, Yu J, Kirkness EF, Izpisua Belmonte JC, Rossi DJ, Thomson JA, Eggan K, Daley GQ, Goldstein LS, Zhang K (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471:63–67

    Article  PubMed  CAS  Google Scholar 

  127. Pera MF (2011) Stem cells: the dark side of induced pluripotency. Nature 471:46–47

    Article  PubMed  CAS  Google Scholar 

  128. Quinlan AR, Boland MJ, Leibowitz ML, Shumilina S, Pehrson SM, Baldwin KK, Hall IM (2011) Genome sequencing of mouse induced pluripotent stem cells reveals retroelement stability and infrequent DNA rearrangement during reprogramming. Cell Stem Cell 9:366–373

    Article  PubMed  CAS  Google Scholar 

  129. Fuchs E (2009) The tortoise and the hair: slow-cycling cells in the stem cell race. Cell 137:811–819

    Article  PubMed  CAS  Google Scholar 

  130. Facucho-Oliveira JM, St John JC (2009) The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Rev 5:140–158

    Article  PubMed  CAS  Google Scholar 

  131. Naka K, Muraguchi T, Hoshii T, Hirao A (2008) Regulation of reactive oxygen species and genomic stability in hematopoietic stem cells. Antioxid Redox Signal 10:1883–1894

    Article  PubMed  CAS  Google Scholar 

  132. Rehman J (2010) Empowering self-renewal and differentiation: the role of mitochondria in stem cells. J Mol Med (Berl) 88:981–986

    Article  Google Scholar 

  133. Mohrin M, Bourke E, Alexander D, Warr MR, Barry-Holson K, Le Beau MM, Morrison CG, Passegue E (2010) Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell 7:174–185

    Article  PubMed  CAS  Google Scholar 

  134. Nijnik A, Woodbine L, Marchetti C, Dawson S, Lambe T, Liu C, Rodrigues NP, Crockford TL, Cabuy E, Vindigni A, Enver T, Bell JI, Slijepcevic P, Goodnow CC, Jeggo PA, Cornall RJ (2007) DNA repair is limiting for haematopoietic stem cells during ageing. Nature 447:686–690

    Article  PubMed  CAS  Google Scholar 

  135. Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL (2007) Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447:725–729

    Article  PubMed  CAS  Google Scholar 

  136. Mandal PK, Blanpain C, Rossi DJ (2011) DNA damage response in adult stem cells: pathways and consequences. Nat Rev Mol Cell Biol 12:198–202

    Article  PubMed  CAS  Google Scholar 

  137. Botchkarev VA, Komarova EA, Siebenhaar F, Botchkareva NV, Komarov PG, Maurer M, Gilchrest BA, Gudkov AV (2000) p53 is essential for chemotherapy-induced hair loss. Cancer Res 60:5002–5006

    PubMed  CAS  Google Scholar 

  138. Song S, Lambert PF (1999) Different responses of epidermal and hair follicular cells to radiation correlate with distinct patterns of p53 and p21 induction. Am J Pathol 155:1121–1127

    Article  PubMed  CAS  Google Scholar 

  139. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, Joshua B, Kaplan MJ, Wapnir I, Dirbas FM, Somlo G, Garberoglio C, Paz B, Shen J, Lau SK, Quake SR, Brown JM, Weissman IL, Clarke MF (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458:780–783

    Article  PubMed  CAS  Google Scholar 

  140. Moore N, Lyle S (2011) Quiescent, slow-cycling stem cell populations in cancer: a review of the evidence and discussion of significance. J Oncol 2011

    Google Scholar 

  141. Niedernhofer LJ (2008) DNA repair is crucial for maintaining hematopoietic stem cell function. DNA Repair (Amst) 7:523–529

    Article  CAS  Google Scholar 

  142. Milyavsky M, Gan OI, Trottier M, Komosa M, Tabach O, Notta F, Lechman E, Hermans KG, Eppert K, Konovalova Z, Ornatsky O, Domany E, Meyn MS, Dick JE (2010) A distinctive DNA damage response in human hematopoietic stem cells reveals an apoptosis-independent role for p53 in self-renewal. Cell Stem Cell 7:186–197

    Article  PubMed  CAS  Google Scholar 

  143. Sotiropoulou PA, Candi A, Mascre G, De Clercq S, Youssef KK, Lapouge G, Dahl E, Semeraro C, Denecker G, Marine JC, Blanpain C (2010) Bcl-2 and accelerated DNA repair mediates resistance of hair follicle bulge stem cells to DNA-damage-induced cell death. Nat Cell Biol 12:572–582

    Article  PubMed  CAS  Google Scholar 

  144. Merritt AJ, Potten CS, Kemp CJ, Hickman JA, Balmain A, Lane DP, Hall PA (1994) The role of p53 in spontaneous and radiation-induced apoptosis in the gastrointestinal tract of normal and p53-deficient mice. Cancer Res 54:614–617

    PubMed  CAS  Google Scholar 

  145. Merritt AJ, Potten CS, Watson AJ, Loh DY, Nakayama K, Hickman JA (1995) Differential expression of bcl-2 in intestinal epithelia. Correlation with attenuation of apoptosis in colonic crypts and the incidence of colonic neoplasia. J Cell Sci 108(Pt 6):2261–2271

    Google Scholar 

  146. Miyamoto K, Araki KY, Naka K, Arai F, Takubo K, Yamazaki S, Matsuoka S, Miyamoto T, Ito K, Ohmura M, Chen C, Hosokawa K, Nakauchi H, Nakayama K, Nakayama KI, Harada M, Motoyama N, Suda T, Hirao A (2007) Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 1:101–112

    Article  PubMed  CAS  Google Scholar 

  147. Tothova Z, Kollipara R, Huntly BJ, Lee BH, Castrillon DH, Cullen DE, McDowell EP, Lazo-Kallanian S, Williams IR, Sears C, Armstrong SA, Passegue E, DePinho RA, Gilliland DG (2007) FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128:325–339

    Article  PubMed  CAS  Google Scholar 

  148. Yalcin S, Zhang X, Luciano JP, Mungamuri SK, Marinkovic D, Vercherat C, Sarkar A, Grisotto M, Taneja R, Ghaffari S (2008) Foxo3 is essential for the regulation of ataxia telangiectasia mutated and oxidative stress-mediated homeostasis of hematopoietic stem cells. J Biol Chem 283:25692–25705

    Article  PubMed  CAS  Google Scholar 

  149. Ito K, Hirao A, Arai F, Matsuoka S, Takubo K, Hamaguchi I, Nomiyama K, Hosokawa K, Sakurada K, Nakagata N, Ikeda Y, Mak TW, Suda T (2004) Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431:997–1002

    Article  PubMed  CAS  Google Scholar 

  150. Ito K, Hirao A, Arai F, Takubo K, Matsuoka S, Miyamoto K, Ohmura M, Naka K, Hosokawa K, Ikeda Y, Suda T (2006) Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 12:446–451

    Article  PubMed  CAS  Google Scholar 

  151. Grinstein E, Mahotka C (2009) Stem cell divisions controlled by the proto-oncogene BMI-1. J Stem Cells 4:141–146

    Article  PubMed  CAS  Google Scholar 

  152. Liu J, Cao L, Chen J, Song S, Lee IH, Quijano C, Liu H, Keyvanfar K, Chen H, Cao LY, Ahn BH, Kumar NG, Rovira II, Xu XL, van Lohuizen M, Motoyama N, Deng CX, Finkel T (2009) Bmi1 regulates mitochondrial function and the DNA damage response pathway. Nature 459:387–392

    Article  PubMed  CAS  Google Scholar 

  153. Facchino S, Abdouh M, Chatoo W, Bernier G (2010) BMI1 confers radioresistance to normal and cancerous neural stem cells through recruitment of the DNA damage response machinery. J Neurosci 30:10096–10111

    Article  PubMed  CAS  Google Scholar 

  154. Mohyeldin A, Garzon-Muvdi T, Quinones-Hinojosa A (2010) Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7:150–161

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the National Institute of Child Health and Development, 1PO1HD047675, and California Institute of Regenerative Medicine, TG2-01155. For providing critical assistance we thank Xianmin Zeng.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Momčilović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Momčilović, O., Schatten, G. (2013). DNA Repair in Normal Stem Cells. In: Mathews, L., Cabarcas, S., Hurt, E. (eds) DNA Repair of Cancer Stem Cells. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4590-2_4

Download citation

Publish with us

Policies and ethics