Skip to main content

Breeding for Resistance to Bacterial Wilt in Ryegrass: Insights into the Genetic Control of Plant Resistance and Pathogen Virulence

  • Conference paper
  • First Online:
Book cover Breeding strategies for sustainable forage and turf grass improvement
  • 1479 Accesses

Abstract

Bacterial wilt caused by Xanthomonas translucens pv. graminis (Xtg) is a severe disease of forage grasses leading to drastic losses in pure and mixed stands. Italian ryegrass (Lolium multiflorum) is particularly susceptible to bacterial wilt and breeding for resistance is the only practicable means of disease control. A detailed understanding of the genetic control of this complex host-pathogen interaction is indispensible for the further development of L. multiflorum cultivars with increased resistance to bacterial wilt and to refine and optimise breeding procedures. While several recent studies have revealed novel insights on plant resistance, little is known about the processes involved in host-colonization and disease development. Therefore, factors influencing pathogen virulence were investigated in Xtg using conserved primer approaches and whole genome sequencing. Knock-out mutation of components of the type three secretion system (T3SS), a major virulence factor in many Xanthomonas spp., showed that the T3SS is important for Xtg virulence but not for in planta multiplication. Analysis of the draft genome sequences revealed a substantial number of effectors apparently characteristic for Xtg. In conlusion, our investigations on the Xtg x L. multiflorum interactions provide fundamental insights for the development of innovative resistance breeding approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Arnold DL, Pitman A, Jackson RW (2003) Pathogenicity and other genomic islands in plant pathogenic bacteria. Mol Plant Pathol 4:407–420

    Article  PubMed  CAS  Google Scholar 

  • Boller B, Peter-Schmid M, Tresch E, Tanner P, Schubiger F (2009) Ecotypes of Italian ryegrass from Swiss permanent grassland outperform current recommended cultivars. Euphytica 170:53–65

    Article  Google Scholar 

  • Büttner D, Bonas U (2010) Regulation and secretion of Xanthomonas virulence factors. Fems Microbiol Rev 34:107–133

    Article  PubMed  Google Scholar 

  • Carrillo MGC, Goodwin PH, Leach JE, Leung H, Vera Cruz CM (2009) Phylogenomic relationships of rice oxalate oxidases to the cupin superfamily and their association with disease resistance QTL. Rice 2:67–79

    Article  Google Scholar 

  • Cornelis GR (2006) The type III secretion injectisome. Nat Rev Microbiol 4:811–825

    Article  PubMed  CAS  Google Scholar 

  • Dracatos PM, Cogan NOI, Keane PJ, Smith KF, Forster JW (2010) Biology and genetics of crown rust disease in ryegrasses. Crop Sci 50:1605–1624

    Article  CAS  Google Scholar 

  • Dracatos PM, Dumsday JL, Olle RS, Cogan NOI, Dobrowolski MP, Fujimori M, Roderick H, Stewart AV, Smith KF, Forster JW (2006) Development and characterization of EST-SSR markers for the crown rust pathogen of ryegrass (Puccinia coronata f.sp. lolii). Genome 49:572–583

    Article  PubMed  CAS  Google Scholar 

  • Egli T, Schmidt D (1982) Pathogenic variation among the causal agents of baterial wilt of forage grasses. Phytopathol Z 104:138–150

    Article  Google Scholar 

  • Horton RM (1995) PCR-mediated recombination and mutagenesis. Mol Biotechnol 3:93–99

    Article  PubMed  CAS  Google Scholar 

  • Kaniga K, Delor I, Cornelis GR (1991) A wide-host-range suicide vector for improving reverse genetics in gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica. Gene 109:137–141

    Article  PubMed  CAS  Google Scholar 

  • Kölliker R, Kraehenbuehl R, Boller B, Widmer F (2006) Genetic diversity and pathogenicity of the grass pathogen Xanthomonas translucens pv. graminis. Syst Appl Microbiol 29:109–119

    Article  PubMed  Google Scholar 

  • Ma JF, Yamaji N (2008) Functions and transport of silicon in plants. Cell Mol Life Sci 65:3049–3057

    Article  PubMed  CAS  Google Scholar 

  • Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R, Puhler A (2003) GenDB—an open source genome annotation system for prokaryote genomes. Nucleic Acids Res 31:2187–2195

    Article  PubMed  CAS  Google Scholar 

  • Mutlu N, Miklas P, Coyne D (2006) Resistance gene analog polymorphism (rgap) markers co-localize with disease resistance genes and qtl in common bean. Mol Breeding 17:127

    Article  CAS  Google Scholar 

  • Parkinson N, Cowie C, Heeney J, Stead D (2009) Phylogenetic structure of Xanthomonas determined by comparison of gyrB sequences. Int J Syst Evol Microbiol 59:264–274

    Article  Google Scholar 

  • Ramalingam J, Cruz CMV, Kukreja K, Chittoor JM, Wu JL, Lee SW, Baraoidan M, George ML, Cohen MB, Hulbert SH, Leach JE, Leung H (2003) Candidate defense genes from rice, barley, and maize and their association with qualitative and quantitative resistance in rice. Mol Plant Microbe Interact 16:14–24

    Article  CAS  Google Scholar 

  • Salanoubat M, Genin S, Artiguenave F, Gouzy J, Mangenot S, Arlat M, Billault A, Brottier P, Camus JC, Cattolico L, Chandler M, Choisne N, Claudel-Renard C, Cunnac S, Demange N, Gaspin C, Lavie M, Moisan A, Robert C, Saurin W, Schiex T, Siguier P, Thebault P, Whalen M, Wincker P, Levy M, Weissenbach J, Boucher CA (2002) Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415:497–502

    Article  PubMed  CAS  Google Scholar 

  • Scheideler M, Schlaich NL, Fellenberg K, Beissbarth T, Hauser NC, Vingron M, Slusarenko AJ, Hoheisel JD (2002) Monitoring the switch from housekeeping to pathogen defense metabolism in Arabidopsis thaliana using cDNA arrays. J Biol Chem 277:10555–10561.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt D, Nuesch B (1980) Resistance to bacterial wilt (Xanthomonas graminis) increases yield and persistency of Lolium multiflorum. EPPO B 10:335–339

    Article  Google Scholar 

  • Studer B, Boller B, Herrmann D, Bauer E, Posselt UK, Widmer F, Kölliker R (2006) Genetic mapping reveals a single major QTL for bacterial wilt resistance in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet 113:661–671

    Article  PubMed  CAS  Google Scholar 

  • Wang HM, Sletten A (1995) Infection biology of bacterial wilt of forage grasses. J Phytopathol 143:141–145

    Article  Google Scholar 

  • White F, Potnis N, Jones J, Koebnik R (2009) The type III effectors of Xanthomonas. Mol Plant Pathol 10:749–766

    Article  PubMed  CAS  Google Scholar 

  • White FF, Yang B (2009) Host and pathogen factors controlling the rice-Xanthomonas oryzae interaction. Plant Physiol 150:1677–1686

    Article  PubMed  CAS  Google Scholar 

  • Wichmann F, Asp T, Widmer F, Kölliker R (2011a) Transcriptional responses of Italian ryegrass during interaction with Xanthomonas translucens pv. graminis reveal novel candidate genes for bacterial wilt resistance. Theor Appl Genet 122:567–579

    Article  Google Scholar 

  • Wichmann F, Mueller-Hug B, Widmer F, Boller B, Studer B, Kölliker R (2011b) Phenotypic and molecular characterization indicate no major race-specific interactions between Xanthomonas translucens pv. graminis and Lolium multiflorum. Plant Pathol 60:314–324

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Swiss National Science Foundation (Grant No. 31003A–112582). We thank C. Conradin for her work on ΔhrpG mutants and S. Reinhard, S. Kuhnen and P. Streckeisen for excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kölliker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Wichmann, F., Widmer, F., Vorhölter, FJ., Boller, B., Kölliker, R. (2013). Breeding for Resistance to Bacterial Wilt in Ryegrass: Insights into the Genetic Control of Plant Resistance and Pathogen Virulence. In: Barth, S., Milbourne, D. (eds) Breeding strategies for sustainable forage and turf grass improvement. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4555-1_4

Download citation

Publish with us

Policies and ethics