Skip to main content

Sexual Pheromones in the Fungi

  • Chapter
  • First Online:

Abstract

The capability of sexual reproduction is distributed across the eukaryotes, including the fungi. A primary influence in the sexual interaction is the exchange of information mediated by diffusible molecules, called sexual pheromones. This chapter examines the biosynthesis of pheromones and the sexual responses induced by them in different branches of the fungal kingdom, with an emphasis on the early lineages. The best-studied species are members of the Dikarya and they use pheromones derived from peptide precursors. In contrast, members of the Mucoromycotina use apocarotenoids while the Blastocladiomycota use sesquiterpenes. Comparison between these pheromones establishes evolutionary trends among the fungal lineages.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akada R, Minomi K, Kai J, Yamashita I, Miyakawa T, Fukui S (1989) Multiple genes coding for precursors of rhodotorucine A, a farnesyl peptide mating pheromone of the basidiomycetous yeast Rhodosporidium toruloides. Mol Cell Biol 9:3491–3498

    PubMed  CAS  Google Scholar 

  • Anderegg RJ, Betz R, Carr SA, Crabb JW, Duntze W (1988) Structure of Saccharomyces cerevisiae mating hormone a-factor. Identification of S-farnesyl cysteine as a structural component. J Biol Chem 263:18236–18240

    PubMed  CAS  Google Scholar 

  • Aragón CMG, Murillo FJ, De La Guardia MD, Cerdá-Olmedo E (1976) An enzyme complex for the dehydrogenation of phytoene in Phycomyces. Eur J Biochem 63:71–75

    Article  PubMed  Google Scholar 

  • Arrach N, Fernández-Martín R, Cerdá-Olmedo E, Avalos J (2001) A single gene for lycopene cyclase, phytoene synthase, and regulation of carotene biosynthesis in Phycomyces. Proc Natl Acad Sci USA 98:1687–1692

    Article  PubMed  CAS  Google Scholar 

  • Bakkeren G, Kronstad JW (1994) Linkage of mating-type loci distinguishes bipolar from tetrapolar mating in basidiomycetous smut fungi. Proc Natl Acad Sci USA 91:7085–7089

    Article  PubMed  CAS  Google Scholar 

  • Bakkeren G, Jiang G, Warren RL, Butterfield Y, Shin H, Chiu R, Linning R, Schein J, Lee N, Hu G, Kupfer DM, Tang Y, Roe BA, Jones S, Marra M, Kronstad JW (2006) Mating factor linkage and genome evolution in basidiomycetous pathogens of cereals. Fungal Genet Biol 43:655–666

    Article  PubMed  CAS  Google Scholar 

  • Bardwell L (2005) A walk-through of the yeast mating pheromone response pathway. Peptides 26:339–350

    Article  PubMed  Google Scholar 

  • Bell G (1982) The masterpiece of nature: the evolution and genetics of sexuality. Croom Helm, London

    Google Scholar 

  • Betz R, Crabb JW, Meyer HE, Wittig R, Duntze W (1987) Amino acid sequences of a-factor mating peptides from Saccharomyces cerevisiae. J Biol Chem 262:546–548

    PubMed  CAS  Google Scholar 

  • Blackwell M (2011) The fungi: 1, 2, 3 … 5.1 million species? Am J Bot 98:426–438

    Article  PubMed  Google Scholar 

  • Blakeslee AF (1904) Sexual reproduction in the Mucorineae. Proc Am Acad Arts Sci 40:205–319

    Article  Google Scholar 

  • Bölker M, Kahmann R (1993) Sexual pheromones and mating responses in fungi. Plant Cell 5:1461–1469

    PubMed  Google Scholar 

  • Bu’Lock JD, Jones BE, Winskill N (1976) The apocarotenoid system of sex hormones and prohormones in Mucorales. Pure Appl Chem 47:191–202

    Article  Google Scholar 

  • Burgeff H (1924) Untersuchungen über Sexualität und Parasitismus bei Mucorineen. Bot Abh 4:1–135

    Google Scholar 

  • Burmester A, Richter A, Schultze K, Voelz K, Schachtschabel D, Boland W, Wöstemeyer J, Schimek C (2007) Cleavage of β-carotene as the first step in sexual hormone synthesis in zygomycetes is mediated by a trisporic acid regulated β-carotene oxygenase. Fungal Genet Biol 44:1096–1108

    Article  PubMed  CAS  Google Scholar 

  • Butenandt A, Beckamnn R, Hecker E (1961) On the sex attractant of silk-moths. I. The biological test and the isolation of the pure sex-attractant bombykol. Hoppe Seylers Z Physiol Chem 324:71–83

    Article  PubMed  CAS  Google Scholar 

  • Caglioti L, Cainelli G, Camerino B, Mondelli R, Prieto A, Quilico A, Salvatori T, Selva A (1966) The structure of trisporic-C acid. Tetrahedron 22(Suppl):175–187

    Article  Google Scholar 

  • Cainelli G, Grasselli P, Selva A (1967) Struttura dell’acido trisporico B. La Chimica e L’Industria 49:628–629

    CAS  Google Scholar 

  • Caldwell GA, Naider F, Becker JM (1995) Fungal lipopeptide mating pheromones: a model system for protein prenylation. Microbiol Rev 59:406–422

    PubMed  CAS  Google Scholar 

  • Casselton LA (2008) Fungal sex genes-searching for the ancestors. Bioessays 30:711–714

    Article  PubMed  CAS  Google Scholar 

  • Casselton LA, Olesnicky NS (1998) Molecular genetics of mating recognition in basidiomycete fungi. Microbiol Mol Biol Rev 62:55–70

    PubMed  CAS  Google Scholar 

  • Chang YC, Miller GF, Kwon-Chung KJ (2003) Importance of a developmentally regulated pheromone receptor of Cryptococcus neoformans for virulence. Infect Immun 71:4953–4960

    Article  PubMed  CAS  Google Scholar 

  • Coelho MA, Rosa A, Rodrigues N, Fonseca A, Gonçalves P (2008) Identification of mating type genes in the bipolar basidiomycetous yeast Rhodosporidium toruloides: first insight into the MAT locus structure of the Sporidiobolales. Eukaryot Cell 7:1053–1061

    Article  PubMed  CAS  Google Scholar 

  • Coelho MA, Sampaio JP, Gonçalves P (2010) A deviation from the bipolar-tetrapolar mating paradigm in an early diverged basidiomycete. PLoS Genet 6:e1001052

    Article  PubMed  CAS  Google Scholar 

  • Coppin E, Debuchy R, Arnaise S, Picard M (1997) Mating types and sexual development in filamentous ascomycetes. Microbiol Mol Biol Rev 61:411–428

    PubMed  CAS  Google Scholar 

  • Coppin E, de Renty C, Debuchy R (2005) The function of the coding sequences for the putative pheromone precursors in Podospora anserina is restricted to fertilization. Eukaryot Cell 4:407–420

    Article  PubMed  CAS  Google Scholar 

  • Czempinski K, Kruft V, Wöstemeyer J, Burmester A (1996) 4-dihydromethyltrisporate dehydrogenase from Mucor mucedo, an enzyme of the sexual hormone pathway: purification, and cloning of the corresponding gene. Microbiology 142:2647–2654

    Article  PubMed  CAS  Google Scholar 

  • Drinkard LC, Nelson GE, Sutter RP (1982) Growth arrest: a prerequisite for sexual development in Phycomyces blakesleeanus. Exp Mycol 6:52–59

    Article  Google Scholar 

  • Dyer PS (2008) Evolutionary biology: genomic clues to original sex in fungi. Curr Biol 18:207–209

    Article  CAS  Google Scholar 

  • Eslava AP, Cerdá-Olmedo E (1974) Genetic control of phytoene dehydrogenation in Phycomyces. Plant Sci Lett 2:9–14

    Article  CAS  Google Scholar 

  • Findley K, Sun S, Fraser JA, Hsueh YP, Averette AF, Li W, Dietrich FS, Heitman J (2012) Discovery of a modified tetrapolar sexual cycle in Cryptococcus amylolentus and the evolution of MAT in the Cryptococcus species complex. PLoS Genet 8:e1002528

    Article  PubMed  CAS  Google Scholar 

  • Fowler TJ, Mitton MF, Vaillancourt LJ, Raper CA (2001) Changes in mate recognition through alterations of pheromones and receptors in the multisexual mushroom fungus Schizophyllum commune. Genetics 158:1491–1503

    PubMed  CAS  Google Scholar 

  • Fowler TJ, DeSimone SM, Mitton MF, Kurjan J, Raper CA (1999) Multiple sex pheromones and receptors of a mushroom-producing fungus elicit mating in yeast. Mol Biol Cell 10:2559–2572

    PubMed  CAS  Google Scholar 

  • Fraser JA, Diezmann S, Subaran RL, Allen A, Lengeler KB, Dietrich FS, Heitman J (2004) Convergent evolution of chromosomal sex-determining regions in the animal and fungal kingdoms. PLoS Biol 2:e384

    Article  PubMed  CAS  Google Scholar 

  • García-Muse T, Steinberg G, Pérez-Martín J (2003) Pheromone-induced G2 arrest in the phytopathogenic fungus Ustilago maydis. Eukaryot Cell 2:494–500

    Article  PubMed  CAS  Google Scholar 

  • Gola S, Kothe E (2003) The little difference: in vivo analysis of pheromone discrimination in Schizophyllum commune. Curr Genet 42:276–283

    PubMed  CAS  Google Scholar 

  • Gooday GW, Adams DJ (1993) Sex hormones and fungi. Adv Microb Physiol 34:69–145

    Article  PubMed  CAS  Google Scholar 

  • Gryganskyi AP, Lee SC, Litvintseva AP, Smith ME, Bonito G, Porter TM, Anishchenko IM, Heitman J, Vilgalys R (2010) Structure, function, and phylogeny of the mating locus in the Rhizopus oryzae complex. PLoS One 5:e15273

    Article  PubMed  CAS  Google Scholar 

  • Haber JE (1998) Mating-type gene switching in Saccharomyces cerevisiae. Annu Rev Genet 32:561–599

    Article  PubMed  CAS  Google Scholar 

  • Heisenberg M, Cerdá-Olmedo E (1968) Segregation of heterokaryons in the asexual cycle of Phycomyces. Mol Gen Genet 102:187–195

    Article  PubMed  CAS  Google Scholar 

  • Heitman J (2010) Evolution of eukaryotic microbial pathogens via covert sexual reproduction. Cell Host Microbe 8:86–99

    Article  PubMed  CAS  Google Scholar 

  • Heitman J, Kronstad JW, Taylor JW, Casselton LA (eds) (2007) Sex in fungi: molecular determination and evolutionary implications. ASM Press, Washington, DC

    Google Scholar 

  • Herskowitz I (1988) Life cycle of the budding yeast Saccharomyces cerevisiae. Microbiol Rev 52:536–553

    PubMed  CAS  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, Thorsten Lumbsch H, Lutzoni F, Matheny PB, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai Y-C, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Kõljalg U, Kurtzman CP, Larsson K-H, Lichtwardt R, Longcore J, Miadlikowska J, Miller A, Moncalvo J-M, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schüssler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao Y-J, Zhang N (2007) A higher-level phylogenetic classification of the fungi. Mycol Res 111:509–547

    Article  PubMed  Google Scholar 

  • Hsueh YP, Heitman J (2008) Orchestration of sexual reproduction and virulence by the fungal mating-type locus. Curr Opin Microbiol 11:517–524

    Article  PubMed  CAS  Google Scholar 

  • Idnurm A, Walton FJ, Floyd A, Heitman J (2008) Identification of the sex genes in an early diverged fungus. Nature 451:193–197

    Article  PubMed  CAS  Google Scholar 

  • James TY, Srivilai P, Kües U, Vilgalys R (2006) Evolution of the bipolar mating system of the mushroom Coprinellus disseminatus from its tetrapolar ancestors involves loss of mating-type-specific pheromone receptor function. Genetics 172:1877–1891

    Article  PubMed  CAS  Google Scholar 

  • Jones SK Jr, Bennett RJ (2011) Fungal mating pheromones: choreographing the dating game. Fungal Genet Biol 48:668–676

    Article  PubMed  CAS  Google Scholar 

  • Jones MDM, Forn I, Gadelha C, Egan MJ, Bass D, Massana R, Richards TA (2011) Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474:200–203

    Article  PubMed  CAS  Google Scholar 

  • Kamiya Y, Sakurai A, Tamura S, Takahashi N (1978) Structure of rhodotorucine A, a novel lipopeptide, inducing mating tube formation in Rhodosporidium toruloides. Biochem Biophys Res Comun 83:1077–1083

    Article  CAS  Google Scholar 

  • Karlson P, Lüsher M (1959) ‘Pheromones’: a new term for a class of biologically active substances. Nature 183:55–56

    Article  PubMed  CAS  Google Scholar 

  • Kellner M, Burmester A, Wöstemeyer A, Wöstemeyer J (1993) Transfer of genetic information from the mycoparasite Parasitella parasitica to its host Absidia glauca. Curr Genet 23:334–337

    Article  PubMed  CAS  Google Scholar 

  • Kothe E (2008) Sexual attraction: on the role of fungal pheromone/receptor systems. Acta Microbiol Immunol Hung 55:125–143

    Article  PubMed  Google Scholar 

  • Lee N, Bakkeren G, Wong K, Sherwood JE, Kronstad JW (1999) The mating-type and pathogenicity locus of the fungus Ustilago hordei spans a 500-kb region. Proc Natl Acad Sci USA 96:15026–15031

    Article  PubMed  CAS  Google Scholar 

  • Lee SC, Corradi N, Byrnes EJ, Torres-Martinez S, Dietrich FS, Keeling PJ, Heitman J (2008) Microsporidia evolved from ancestral sexual fungi. Curr Biol 18:1675–1679

    Article  PubMed  CAS  Google Scholar 

  • Lee SC, Ni M, Li W, Shertz C, Heitman J (2010) The evolution of sex: a perspective from the fungal kingdom. Microbiol Mol Biol Rev 74:298–340

    Article  PubMed  CAS  Google Scholar 

  • Lengeler KB, Davidson RC, D’Souza C, Harashima T, Shen W-C, Wang P, Pan X, Waugh M, Heitman J (2000) Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 64:746–785

    Article  PubMed  CAS  Google Scholar 

  • Lengeler KB, Fox DS, Fraser JA, Allen A, Forrester K, Dietrich FS, Heitman J (2002) Mating-type locus of Cryptococcus neoformans: a step in the evolution of sex chromosomes. Eukaryot Cell 1:704–718

    Article  PubMed  CAS  Google Scholar 

  • Li CH, Cervantes M, Springer DJ, Boekhout T, Ruiz-Vazquez RM, Torres-Martinez SR, Heitman J, Lee SC (2011) Sporangiospore size dimorphism is linked to virulence of Mucor circinelloides. PLoS Pathog 7:e1002086

    Article  PubMed  CAS  Google Scholar 

  • Machlis L (1968) The response of wild type male gametes of Allomyces to sirenin. Plant Physiol 43:1319–1320

    Article  PubMed  CAS  Google Scholar 

  • Madhani H (2007) From a to α: yeast as a model for cellular differentiation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Martin SH, Wingfield BD, Wingfield MJ, Steenkamp ET (2011) Causes and consequences of variability in peptide mating pheromones of ascomycete fungi. Mol Biol Evol 28:1987–2003

    Article  PubMed  CAS  Google Scholar 

  • Maynard Smith J (1970) Natural selection and the concept of a protein space. Nature 225:563–564

    Article  Google Scholar 

  • Maynard Smith J (1978) The evolution of sex. Cambridge University Press, Cambridge

    Google Scholar 

  • Medina HR, Cerdá-Olmedo E, Al-Babili S (2011) Cleavage oxygenases for the biosynthesis of trisporoids and other apocarotenoids in Phycomyces. Mol Microbiol 82:199–208

    Article  PubMed  CAS  Google Scholar 

  • Metin B, Findley K, Heitman J (2010) The mating type locus (MAT) and sexual reproduction of Cryptococcus heveanensis: insights into the evolution of sex and sex-determining chromosomal regions in fungi. PLoS Genet 6:e1000961

    Article  PubMed  CAS  Google Scholar 

  • Michaelis S, Herskowitz I (1988) The a-factor pheromone of Saccharomyces cerevisiae is essential for mating. Mol Cell Biol 8:1309–1318

    PubMed  CAS  Google Scholar 

  • Miller ML, Sutter RP (1984) Methyl trisporate E. A sex pheromone in Phycomyces blakesleeanus? J Biol Chem 259:6420–6422

    PubMed  CAS  Google Scholar 

  • Morrow CA, Fraser JA (2009) Sexual reproduction and dimorphism in the pathogenic basidiomycetes. FEMS Yeast Res 9:161–177

    Article  PubMed  CAS  Google Scholar 

  • Naider F, Becker JM (2004) The α-factor mating pheromone of Saccharomyces cerevisiae: a model for studying the interaction of peptide hormones and G protein-coupled receptors. Peptides 25:1441–1463

    Article  PubMed  CAS  Google Scholar 

  • Nielsen K, Heitman J (2007) Sex and virulence of human pathogenic fungi. Adv Genet 57:143–173

    Article  PubMed  CAS  Google Scholar 

  • O’Shea SF, Chaure PT, Halsall JR, Olesnicky NS, Leibbrandt A, Connerton IF, Casselton LA (1998) A large pheromone and receptor gene complex determines multiple B mating type specificities in Coprinus cinereus. Genetics 148:1081–1090

    PubMed  Google Scholar 

  • Pöggeler S (2001) Mating-type genes for classical strain improvements of ascomycetes. Appl Microbiol Biotechnol 56:589–601

    Article  PubMed  Google Scholar 

  • Polaino S, Gonzalez-Delgado JA, Arteaga P, Herrador MM, Barrero AF, Cerdá-Olmedo E (2012) Apocarotenoids in the sexual interaction of Phycomyces blakesleeanus. Org Biomol Chem 10:3002–3009

    Article  CAS  Google Scholar 

  • Polaino S, Herrador M, Cerdá-Olmedo E, Barrero AF (2010) Splitting of β-carotene in the sexual interaction of Phycomyces. Org Biomol Chem 8:4229–4231

    Article  PubMed  CAS  Google Scholar 

  • Pommerville J, Olson LW (1987) Evidence for a male-produced pheromone in Allomyces macrogynus. Exp Mycol 11:245–248

    Article  CAS  Google Scholar 

  • Raudaskoski M, Kothe E (2010) Basidiomycete mating type genes and pheromone signaling. Eukaryot Cell 9:847–859

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Carres M, Findley K, Sun S, Dietrich FS, Heitman J (2010) Morphological and genomic characterization of Filobasidiella depauperata: a homothallic sibling species of the pathogenic Cryptococcus species complex. PLoS One 5:e9620

    Article  PubMed  CAS  Google Scholar 

  • Schachtschabel D, David A, Menzel K-D, Schimek C, Wöstemeyer J, Boland W (2008) Cooperative biosynthesis of trisporoids by the (+) and (−) mating types of the zygomycete Blakeslea trispora. ChemBioChem 15:3004–3012

    Article  CAS  Google Scholar 

  • Schimek C, Wöstemeyer J (2009) Carotene derivatives in sexual communication of zygomycete fungi. Phytochemistry 70:1867–1875

    Article  PubMed  CAS  Google Scholar 

  • Schimek C, Kleppe K, Saleem AR, Voigt K, Burmester A, Wöstemeyer J (2003) Sexual reactions in Mortierellales are mediated by the trisporic acid system. Mycol Res 107:736–747

    Article  PubMed  CAS  Google Scholar 

  • Schmoll M, Seibel C, Tisch D, Dorrer M, Kubicek CP (2010) A novel class of peptide pheromone precursors in ascomycetous fungi. Mol Microbiol 77:1483–1501

    Article  PubMed  CAS  Google Scholar 

  • Schultze K, Schimek C, Wöstemeyer J, Burmester A (2005) Sexuality and parasitism share common regulatory pathways in the fungus Parasitella parasitica. Gene 348:33–44

    Article  PubMed  CAS  Google Scholar 

  • Shen WC, Davidson RC, Cox GM, Heitman J (2002) Pheromones stimulate mating and differentiation via paracrine and autocrine signaling in Cryptococcus neoformans. Eukaryot Cell 1:366–377

    Article  PubMed  CAS  Google Scholar 

  • Spalla C (1963) Ricerche sulla riproduzione sessuale in Mucorales. Studio della riproduzione sessuale in Phycomyces blakesleeanus e in Choanephora circinans e comparazione con quella di Cunninghamella blakesleeana, C. elegans, Mucor hiemalis e M. racemosus. Riv Patol Veg 3:189–198

    Google Scholar 

  • Sprague GF, Thorner JW (1992) Pheromone response and signal transduction during the mating process of Saccharomyces cerevisiae. In: Broach JR, Pringle JR, Jones EW (eds) The molecular and cellular biology of the yeast Saccharomyces: gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 657–744

    Google Scholar 

  • Stanton BC, Giles SS, Staudt MW, Kruzel EK, Hull CM (2010) Allelic exchange of pheromones and their receptors reprograms sexual identity in Cryptococcus neoformans. PLoS Genet 6:e1000860

    Article  PubMed  CAS  Google Scholar 

  • Sutter RP (1970) Trisporic acid synthesis in Blakeslea trispora. Science 168:1590–1592

    Article  PubMed  CAS  Google Scholar 

  • Sutter RP (1986) Apotrisporin-E: a new sesquiterpenoid isolated from Phycomyces blakesleeanus and Blakeslea trispora. Exp Mycol 10:256–258

    Article  CAS  Google Scholar 

  • Sutter RP (1987) Sexual development. In: Cerdá-Olmedo E, Lipson ED (eds) Phycomyces. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 317–336

    Google Scholar 

  • Sutter RP, Whitaker JP (1981) Zygophore-stimulating precursors (pheromones) of trisporic acids active in (−)-Phycomyces blakesleeanus. Acid-catalyzed anhydro derivates of methyl 4-dihydrotrisporate-C and 4-dihydrotrisporate-C. J Biol Chem 256:2334–2341

    PubMed  CAS  Google Scholar 

  • Sutter RP, Zawodny PD (1984) Apotrisporin: a major metabolite of Blakeslea trispora. Exp Mycol 8:89–92

    Article  CAS  Google Scholar 

  • Sutter RP, Capage DA, Harrison TL, Keen WA (1973) Trisporic acid biosynthesis in separate plus and minus cultures of Blakeslea trispora: Identification by Mucor assay of two mating-type-specific components. J Bacteriol 114:1074–1082

    PubMed  CAS  Google Scholar 

  • Sutter RP, Harrison TL, Galasko G (1974) Trisporic acid biosynthesis in Blakeslea trispora via mating type-specific precursors. J Biol Chem 249:2282–2284

    PubMed  CAS  Google Scholar 

  • Tagua V, Medina HR, Martín-Domínguez R, Eslava AP, Corrochano LM, Cerdá-Olmedo E, Idnurm A (2012) A gene for carotene cleavage required for pheromone biosynthesis and carotene regulation in the fungus Phycomyces blakesleeanus. Fungal Genet Biol 49. doi:10.1016/j.fgb.2012.03.002

  • Torres-Martínez S, Murillo FJ, Cerdá-Olmedo E (1980) Genetics of lycopene cyclization and substrate transfer in β-carotene biosynthesis in Phycomyces. Genet Res 36:299–309

    Article  PubMed  Google Scholar 

  • Vaillancourt LJ, Raudaskoski M, Specht CA, Raper CA (1997) Multiple genes encoding pheromones and a pheromone receptor define the Bβ1 mating-type specificity in Schizophyllum commune. Genetics 146:541–551

    PubMed  CAS  Google Scholar 

  • van den Ende H (1968) Relationship between sexuality and carotene synthesis in Blakeslea trispora. J Bacteriol 96:1298–1303

    PubMed  Google Scholar 

  • van Peer AF, Park S-Y, Shin P-G, Jang K-Y, Yoo Y-B, Park Y-P, Lee B-M, Sung G-H, James TY, Kong W-S (2011) Comparative genomics of the mating-type loci of the mushroom Flammulina velutipes reveals widespread synteny and recent inversions. PLoS One 6:e22249

    Article  PubMed  CAS  Google Scholar 

  • Von Lintig J, Vogt K (2000) Filling the gap in vitamin A research. Molecular identification of an enzyme cleaving β-carotene to retinal. J Biol Chem 275:11915–11920

    Article  Google Scholar 

  • Wang L, Chen W, Feng Y, Ren Y, Gu Z, Chen H, Wang H, Thomas MJ, Zhang B, Berquin IM, Li Y, Wu J, Zhang H, Song Y, Liu X, Norris JS, Wang S, Du P, Shen J, Wang N, Yang Y, Wang W, Feng L, Ratledge C, Zhang H, Chen YQ (2011) Genome characterization of the oleaginous fungus Mortierella alpina. PLoS One 6:e28319

    Article  PubMed  CAS  Google Scholar 

  • Werkman BA (1976) Localization and partial characterization of a sex-specific enzyme in homothallic and heterothallic Mucorales. Arch Microbiol 109:209–213

    Article  CAS  Google Scholar 

  • Werkman BA, van den Ende H (1973) Trisporic acid synthesis in Blakeslea trispora. Arch Microbiol 90:365–374

    CAS  Google Scholar 

  • Wetzel J, Burmester A, Kolbe M, Wöstemeyer J (2012) The mating-related loci sexM and sexP of the zygomycetous fungus Mucor mucedo and their transcriptional regulation by trisporoid pheromones. Microbiology 158:1016–1023

    Article  PubMed  CAS  Google Scholar 

  • Wetzel J, Scheibner O, Burmester A, Schimek C, Wöstemeyer J (2009) 4-dihydrotrisporin-dehydrogenase, an enzyme of the sex hormone pathway of Mucor mucedo: purification, cloning of the corresponding gene, and developmental expression. Eukaryot Cell 8:88–95

    Article  PubMed  CAS  Google Scholar 

  • Williams GC (1975) Sex and evolution. Monogr Popul Biol 8:3–200

    PubMed  Google Scholar 

  • Wöstemeyer J, Wöstemeyer A, Burmester A, Czempinski K (1995) Relationships between sexual processes and parasitic interactions in the host-pathogen system Absidia glauca-Parasitella parasitica. Can J Bot 73(Suppl 1):S243–S250

    Article  Google Scholar 

  • Xue C, Hsueh Y-P, Heitman J (2008) Magnificent seven: roles of G protein-coupled receptors in extracellular sensing in fungi. FEMS Microbiol Rev 32:1010–1032

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Idnurm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Polaino, S., Idnurm, A. (2012). Sexual Pheromones in the Fungi. In: Witzany, G. (eds) Biocommunication of Fungi. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4264-2_11

Download citation

Publish with us

Policies and ethics