Skip to main content

The Beginning of the Road: Learning Mathematics for the First Time

  • Chapter
  • First Online:
Reading, Writing, Mathematics and the Developing Brain: Listening to Many Voices

Part of the book series: Literacy Studies ((LITS,volume 6))

Abstract

The purpose of this chapter is to describe how numerical knowledge is typically acquired during early childhood. We will focus on the time period between kindergarten and first grade, describing the course of children’s numerical development in this short, yet critical, period of time.

This age level is particularly intriguing since it is the first time children engage in a formal and fixed setting in which they learn and internalize the basic principles of numerical knowledge. Children at this age level are expected to learn some basic mathematical rules and concepts. They need to realize that their outside world can be organized in clear concepts of mathematical thinking and reasoning. Among these concepts are basic mathematical procedures (adding and subtracting), concepts of special numbers (such as the concept of zero) and the important associations between numerals and numerical magnitudes. During this period, individual differences can be seen in the ability to learn and execute numerical procedures.

We will discuss the up-to-date empirical evidence on typical development of numerical abilities, as well as the various factors contributing to the individual differences in the acquisition of these abilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ansari, D. (2008). Effects of development and enculturation on number representation in the brain. Nature Review Neuroscience, 9, 278–291.

    Article  Google Scholar 

  • Ansari, D., Garcia, N., Lucas, E., Hamon, K., & Dhital, B. (2005). Neural correlates of symbolic number processing in children and adults. NeuroReport, 16, 1769–1773.

    Article  PubMed  Google Scholar 

  • Ansari, D., Lyons, I. M., Eimeren, L. V., & Xu, F. (2007). Linking visual attention and number processing in the brain: The role of the temporo-parietal junction in small and large symbolic and nonsymbolic number comparison. Journal of Cognitive Neuroscience, 19, 1845–1853.

    Article  PubMed  Google Scholar 

  • Ashkenazi, S., Henik, A., Ifergane, G., & Shelef, I. (2008). Basic numerical processing in left intraparietal sulcus (IPS) acalculia. Cortex, 44, 439–448.

    Article  PubMed  Google Scholar 

  • Ben Shalom, D., Berger, A., Rubinsten, O., Tzelgov, J., & Henik, A. (2010). Development of automatic numerical processing and mathematical abilities in kindergarten. Manuscript submitted for publication.

    Google Scholar 

  • Berch, D. B., Foley, E. J., Hill, R. J., & Ryan, P. M. (1999). Extracting parity and magnitude from Arabic numerals: Developmental changes in number processing and mental representation. Journal of Experimental Child Psychology, 74, 286–308.

    Article  PubMed  Google Scholar 

  • Berger, A., Tzur, G., & Posner, M. (2006). Infant brains detect arithmetic errors. Proceedings of the National Academy of Sciences of the United States of America, 103, 12649–12653.

    Article  PubMed  Google Scholar 

  • Bijeljac-Babic, R., Bertoncini, J., & Mehler, J. (1991). How do four-day-old infants categorize multisyllabic utterances? Developmental Psychology, 29, 711–721.

    Article  Google Scholar 

  • Bull, R., & Scerif, G. (2001). Executive functioning as a predictor of children’s mathematics ability: Inhibition, switching, and working memory. Developmental Neuropsychology, 19(3), 273–293.

    Article  PubMed  Google Scholar 

  • Butterworth, B. (2005). The development of arithmetical abilities. Journal of Child Psychology and Psychiatry, 46, 3–18.

    Article  PubMed  Google Scholar 

  • Cantlon, J. F., Brannon, E. M., Carter, E. J., & Pelphrey, K. A. (2006). Functional imaging of numerical processing in adults and 4-y-old children. PLoS Biology, 4(5), e125.

    Article  PubMed  Google Scholar 

  • Cohen Kadosh, R., Henik, A., Rubinsten, O., Mohr, H., Dori, H., van de Ven, V., Zorzi, M., Hendler, T., Goebel, R., & Linden, D. (2005). Are numbers special?: The comparison systems of the human brain investigated by fMRI. Neuropsychologia, 43(9), 1238–1248.

    Article  PubMed  Google Scholar 

  • Cohen Kadosh, R., Cohen Kadosh, K., Linden, D. E. J., Gevers, W., Berger, A., & Henik, A. (2007). The brain locus of interaction between number and size: A combined functional magnetic resonance imaging and event-related potential study. Journal of Cognitive Neuroscience, 19(6), 957–970.

    Article  PubMed  Google Scholar 

  • De Smedt, B., Verschaffel, L., & Pol Ghesquière, P. (2009). The predictive value of numerical magnitude comparison for individual differences in mathematics achievement. Journal of Experimental Child Psychology, 103, 469–479.

    Article  PubMed  Google Scholar 

  • Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1–42.

    Article  PubMed  Google Scholar 

  • Dehaene, S. (1997). The number sense. Oxford: Oxford University Press.

    Google Scholar 

  • Dehaene, S., Dupoux, E., & Mehler, J. (1990). Is numerical comparison digital: Analogical and symbolic effect in two-digit number comparison. Journal of Experimental Psychology. Human Perception and Performance, 16, 626–641.

    Article  PubMed  Google Scholar 

  • Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology. General, 122, 371–396.

    Article  Google Scholar 

  • Duncan, E. M., & McFarland, C. E. (1980). Isolating the effect of symbolic distance and semantic congruity in comparative judgments: An additive-factors analysis. Memory & Cognition, 2, 95–110.

    Google Scholar 

  • Fayola, M., Barrouillet, P., & Marinthe, C. (1998). Predicting arithmetical achievement from neuro-psychological performance: A longitudinal study. Cognition, 68(2), B63–B70.

    Article  Google Scholar 

  • Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307–314.

    Article  PubMed  Google Scholar 

  • Fias, W., & Fischer, M. H. (2005). Spatial representation of numbers. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 43–54). New York: Psychology Press.

    Google Scholar 

  • Galen, M. S., & Reitsma, P. (2008). Developing access to number magnitude: A study of the SNARC effect in 7- to 9-year-olds. Journal of Experimental Child Psychology, 101, 99–113.

    Article  PubMed  Google Scholar 

  • Girelli, L., Lucangeli, D., & Butterworth, B. (2000). The development of automaticity in accessing number magnitude. Journal of Experimental Child Psychology, 76, 104–122.

    Article  PubMed  Google Scholar 

  • Haldberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non verbal number acuity correlate with math achievement. Nature, 445, 665–668.

    Article  Google Scholar 

  • Henik, A., & Tzelgov, J. (1982). Is three greater than five: The relation between physical and semantic size in comparison tasks. Memory & Cognition, 10, 389–395.

    Article  Google Scholar 

  • Holloway, I. D., & Ansari, D. (2008). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103, 17–29.

    Article  PubMed  Google Scholar 

  • Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6, 435–448.

    Article  PubMed  Google Scholar 

  • Jordan, N. C., Kaplan, D., Locuniak, M. N., & Ramineni, C. (2007). Predicting first-grade math achievement from developmental number sense trajectories. Learning Disabilities Research and Practice, 22, 36–46.

    Article  Google Scholar 

  • Kaufmann, L., & Nuerk, H. C. (2005). Numerical development: Current issues and future perspectives. Psychology Science, 47, 142–170.

    Google Scholar 

  • Kaufmann, L., Koppelstaetter, F., Delazer, M., Siedentopf, C., Rhomberg, P., Golaszewski, S., Felber, S., & Ischebeck, A. (2005). Neural correlates of distance and congruity effects in a numerical Stroop task: An event-related fMRI study. NeuroImage, 25, 888–898.

    Article  PubMed  Google Scholar 

  • Kaufmann, L., Koppelstaetter, F., Siedentopf, C., Haala, I., Haberlandt, E., Zimmerhackl, L. B., & Ischebeck, A. (2006). Neural correlates of the number-size interference task in children. NeuroReport, 17, 587–591.

    Article  PubMed  Google Scholar 

  • Lipton, J., & Spelke, E. (2003). Origins of number sense: Large number discrimination in human infants. Psychological Science, 14, 396–401.

    Article  PubMed  Google Scholar 

  • Manor, O., Shalev, R. S., Joseph, A., & Gross-Tsur, V. (2000). Arithmetic skills in kindergarten children with developmental language disorders. European Journal of Paediatric Neurology, 5, 71–77.

    Article  Google Scholar 

  • Mazzocco, M. M. M., & Thomson, R. E. (2005). Kindergarten predictors of math learning disability. Learning Disabilities Research and Practice, 20, 142–155.

    Article  PubMed  Google Scholar 

  • Moyer, R. S., & Landauer, T. K. (1967). Time required for judgment of numerical inequality. Nature, 215, 1519–1520.

    Article  PubMed  Google Scholar 

  • Mussolin, C., & NoĂ«l, M. P. (2007). The nonintentional processing of Arabic numbers in children. Journal of Clinical and Experimental Neuropsychology, 29, 225–234.

    Article  PubMed  Google Scholar 

  • Mussolin, C., & NoĂ«l, M. P. (2008). Automaticity for numerical magnitude of two-digit Arabic numerals in children. Acta Psychologica, 129, 264–272.

    Article  PubMed  Google Scholar 

  • Nieder, A., & Dehaene, S. (2009). Representation of number in the brain. Annual Review of Neuroscience, 32, 185–208.

    Article  PubMed  Google Scholar 

  • NoĂ«l, M. P. (2005). Finger gnosia: A predictor of numerical abilities in children? Child Neuropsychology, 11, 413–430.

    Article  PubMed  Google Scholar 

  • Pinel, P., Dehaenea, S., Rivièrea, D., & LeBihanb, D. (2001). Modulation of parietal activation by semantic distance in a number comparison task. NeuroImage, 14(5), 1013–1026.

    Article  PubMed  Google Scholar 

  • Pinel, P., Piazza, M., Le Bihan, D., & Dehaene, S. (2004). Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron, 41(6), 983–993.

    Article  PubMed  Google Scholar 

  • Rubinsten, O., & Henik, A. (2006). Double dissociation of functions in developmental dyslexia and dyscalculia. Journal of Educational Psychology, 98, 854–967.

    Article  Google Scholar 

  • Rubinsten, O., Henik, A., Berger, A., & Shahar-Shalev, S. (2002). The development of internal representations of magnitude and their association with Arabic numerals. Journal of Experimental Child Psychology, 81, 74–79.

    Article  PubMed  Google Scholar 

  • Schneider, M., Grabner, R. H., & Paetsch, J. (2009). Mental number line, number line estimation, and mathematical achievement: Their interrelations in grades 5 and 6. Journal of Educational Psychology, 101, 359–372.

    Article  Google Scholar 

  • Sekular, R., & Mierkiewicz, D. (1977). Children’s judgments of numerical inequality. Child Development, 48, 630–633.

    Article  Google Scholar 

  • Starkey, P., & Cooper, R. G. (1980). Perception of numbers by human infants. Science, 210, 1033–1035.

    Article  PubMed  Google Scholar 

  • Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662.

    Article  Google Scholar 

  • SzĹ©cs, D., Soltèsz, F., Jarmi, E., & Csepe, V. (2007). The speed of magnitude processing and executive functions in controlled and automatic number comparison in children: An electro-encephalography study. Behavioral and Brain Functions, 3, 23.

    Article  PubMed  Google Scholar 

  • Temple, E., & Posner, M. I. (1998). Brain mechanisms of quantity are similar in 5-year-olds and adults. Proceedings of the National Academy of Sciences of the United States of America, 95, 7836–7841.

    Article  PubMed  Google Scholar 

  • Tzelgov, J., Meyer, J., & Henik, A. (1992). Automatic and intentional processing of numerical information. Journal of Experimental Psychology. Learning, Memory, and Cognition, 18, 166–179.

    Article  Google Scholar 

  • von Aster, M. G., & Shalev, R. S. (2007). Number development and developmental dyscalculia. Developmental Medicine and Child Neurology, 49, 868–873.

    Article  Google Scholar 

  • Wood, J., & Spelke, E. (2005). Infants’ enumeration of actions: Numerical discrimination and its signature limits. Developmental Science, 8, 173–181.

    Article  PubMed  Google Scholar 

  • Wood, G., Nuerk, H. C., Willimes, K., & Fisher, M. H. (2008). On the cognitive link between space and number: A meta-analysis of the SNARC effect. Psychological Science Quarterly, 50, 489–525.

    Google Scholar 

  • Wynn, K. (1995). Infants possess a system of numerical knowledge. Current Directions in Psychological Science, 4, 172–176.

    Article  Google Scholar 

  • Xu, F., Spelke, E. S., & Goddard, S. (2005). Number sense in human infants. Developmental Science, 8, 88–101.

    Article  PubMed  Google Scholar 

  • Zhou, X., Chen, Y., Chen, C., Jiang, T., Zhang, H., & Dong, Q. (2007). Chinese kindergartners’ automatic processing of numerical magnitude in Stroop-like tasks. Memory & Cognition, 35, 464–470.

    Article  Google Scholar 

Download references

Acknowledgements

This work was conducted as part of the research in the Center for the Study of the Neurocognitive Basis of Numerical Cognition, supported by the Israel Science Foundation (grant 1664/08) in the framework of their Centers of Excellence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamar Ben-Shalom Mrs. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ben-Shalom, T., Berger, A., Henik, A. (2012). The Beginning of the Road: Learning Mathematics for the First Time. In: Breznitz, Z., Rubinsten, O., Molfese, V., Molfese, D. (eds) Reading, Writing, Mathematics and the Developing Brain: Listening to Many Voices. Literacy Studies, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4086-0_12

Download citation

Publish with us

Policies and ethics