Skip to main content

Phosphatidylinositol 4, 5 Bisphosphate and the Actin Cytoskeleton

  • Chapter
  • First Online:
Book cover Phosphoinositides II: The Diverse Biological Functions

Part of the book series: Subcellular Biochemistry ((SCBI,volume 59))

Abstract

Dynamic changes in PM PIP2 have been implicated in the regulation of many processes that are dependent on actin polymerization and remodeling. PIP2 is synthesized primarily by the type I phosphatidylinositol 4 phosphate 5 kinases (PIP5Ks), and there are three major isoforms, called a, b and g. There is emerging evidence that these PIP5Ks have unique as well as overlapping functions. This review will focus on the isoform-specific roles of individual PIP5K as they relate to the regulation of the actin cytoskeleton. We will review recent advances that establish PIP2 as a critical regulator of actin polymerization and cytoskeleton/membrane linkages, and show how binding of cytoskeletal proteins to membrane PIP2 might alter lateral or transverse movement of lipids to affect raft formation or lipid asymmetry. The mechanisms for specifying localized increase in PIP2 to regulate dynamic actin remodeling will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi R, Takeuchi K, Suzuki K (2002) Antisense oligonucleotide to cofilin enhances respiratory burst and phagocytosis in opsonized zymosan-stimulated mouse macrophage j774.1 cells. J Biol Chem 277:45566–45571

    CAS  Google Scholar 

  • Agranoff BW, Murthy P, Seguin EB (1983) Thrombin-induced phosphodiesteratic cleavage of phosphatidylinositol bisphosphate in human platelets. J Biol Chem 258:2076–2078

    PubMed  CAS  Google Scholar 

  • Anderson RA, Marchesi VT (1985) Regulation of the association of membrane skeletal protein 4.1 with glycophorin by a polyphosphoinositide. Nature 318:295–298

    CAS  Google Scholar 

  • Aoyagi K, Sugaya T, Umeda M, Yamamoto S, Terakawa S, Takahashi M (2005) The activation of exocytotic sites by the formation of phosphatidylinositol 4,5-bisphosphate microdomains at syntaxin clusters. J Biol Chem 280:17346–17352

    Article  PubMed  CAS  Google Scholar 

  • Arioka M, Nakashima S, Shibasaki Y, Kitamoto K (2004) Dibasic amino acid residues at the carboxy-terminal end of kinase homology domain participate in the plasma membrane localization and function of phosphatidylinositol 5-kinase [gamma]. Biochem Biophys Res Commun 319:456–463

    Article  PubMed  CAS  Google Scholar 

  • Arora PD, Chan MWC, Anderson RA, Janmey PA, McCulloch CA (2005) Separate functions of gelsolin mediate sequential steps of collagen phagocytosis. Mol Biol Cell 16:5175–5190

    Article  PubMed  CAS  Google Scholar 

  • Audhya A, Emr SD (2002) Stt4 pi 4-kinase localizes to the plasma membrane and functions in the pkc1-mediated map kinase cascade. Dev Cell 2:593–605

    Article  PubMed  CAS  Google Scholar 

  • Audhya A, Emr SD (2003) Regulation of pi4,5p2 synthesis by nuclear-cytoplasmic shuttling of the mss4 lipid kinase. EMBO J 22:4223–4236

    Article  PubMed  CAS  Google Scholar 

  • Bairstow SF, Ling K, Anderson RA (2005) Phosphatidylinositol phosphate kinase type i{gamma} directly associates with and regulates shp-1 tyrosine phosphatase. J Biol Chem 280:23884–23891

    Article  PubMed  CAS  Google Scholar 

  • Bakolitsa C, Cohen DM, Bankston LA, Bobkov AA, Cadwell GW, Jennings L, Critchley DR, Craig SW, Liddington RC (2004) Structural basis for vinculin activation at sites of cell adhesion. Nature 430:583–586

    Article  PubMed  CAS  Google Scholar 

  • Balla T (2009) Green light to illuminate signal transduction events. Trends Cell Biol 19:575–586

    Article  PubMed  CAS  Google Scholar 

  • Balla T, Varnai P (2002) Visualizing cellular phosphoinositide pools with gfp-fused protein-modules. Sci STKE 2002:PL3

    Google Scholar 

  • Balla T, Varnai P (2009) Visualization of cellular phosphoinositide pools with gfp-fused protein-domains. Curr Protoc Cell Biol Chapter 24:Unit 24 4

    Google Scholar 

  • Barret C, Roy C, Montcourrier P, Mangeat P, Niggli V (2000) Mutagenesis of the phosphatidylinositol 4,5-bisphosphate (pip(2)) binding site in the nh(2)-terminal domain of ezrin correlates with its altered cellular distribution. J Cell Biol 151:1067–1080

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ (1983) Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem J 212:849–858

    PubMed  CAS  Google Scholar 

  • Bolomini-Vittori M, Montresor A, Giagulli C, Staunton D, Rossi B, Martinello M, Constantin G, Laudanna C (2009) Regulation of conformer-specific activation of the integrin lfa-1 by a chemokine-triggered rho signaling module. Nat Immunol 10:185–194

    Article  PubMed  CAS  Google Scholar 

  • Botelho RJ, Teruel M, Dierckman R, Anderson R, Wells A, York JD, Meyer T, Grinstein S (2000) Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. J Cell Biol 151:1353–1368

    Article  PubMed  CAS  Google Scholar 

  • Brown FD, Rozelle AL, Yin HL, Balla T, Donaldson JG (2001) Phosphatidylinositol 4,5-bisphosphate and arf6-regulated membrane traffic. J Cell Biol 154:1007–1017

    Article  PubMed  CAS  Google Scholar 

  • Brown DA, Hughes SA, Marsh SJ, Tinker A (2007) Regulation of m(kv7.2/7.3) channels in neurons by pip(2) and products of pip(2) hydrolysis: significance for receptor-mediated inhibition. J Physiol 582:917–925

    CAS  Google Scholar 

  • Burn P, Rotman A, Meyer RK, Burger MM (1985) Diacylglycerol in large alpha-actinin/actin complexes and in the cytoskeleton of activated platelets. Nature 314:469–472

    Article  PubMed  CAS  Google Scholar 

  • Catimel B, Schieber C, Condron M, Patsiouras H, Connolly L, Catimel J, Nice EC, Burgess AW, Holmes AB (2008) The pi(3,5)p2 and pi(4,5)p2 interactomes. J Proteome Res 7:5295–5313

    Article  PubMed  CAS  Google Scholar 

  • Chandrasekar I, Stradal TEB, Holt MR, Entschladen F, Jockusch BM, Ziegler WH (2005) Vinculin acts as a sensor in lipid regulation of adhesion-site turnover. J Cell Sci 118:1461–1472

    Article  PubMed  CAS  Google Scholar 

  • Chang LC, Huang TH, Chang CS, Tsai YR, Lin RH, Lee PW, Hsu MF, Huang LJ, Wang JP (2011) Signaling mechanisms of inhibition of phospholipase d activation by chs-111 in formyl peptide-stimulated neutrophils. Biochem Pharmacol 81:269–278

    Article  PubMed  CAS  Google Scholar 

  • Chao WT, Ashcroft F, Daquinag AC, Vadakkan T, Wei Z, Zhang P, Dickinson ME, Kunz J (2010a) Type i phosphatidylinositol phosphate kinase beta regulates focal adhesion disassembly by promoting beta1 integrin endocytosis. Mol Cell Biol 30:4463–4479

    Article  CAS  Google Scholar 

  • Chao WT, Daquinag AC, Ashcroft F, Kunz J (2010b) Type i pipk-alpha regulates directed cell migration by modulating rac1 plasma membrane targeting and activation. J Cell Biol 190:247–262

    Article  CAS  Google Scholar 

  • Chen MZ, Zhu X, Sun HQ, Mao YS, Wei Y, Yamamoto M, Yin HL (2009) Oxidative stress decreases phosphatidylinositol 4,5-bisphosphate levels by deactivating phosphatidylinositol- 4-phosphate 5-kinase beta in a syk-dependent manner. J Biol Chem 284:23743–23753

    Article  PubMed  CAS  Google Scholar 

  • Chichili GR, Westmuckett AD, Rodgers W (2009) T cell signal regulation by the actin cytoskeleton. J Biol Chem 285:14737–14746

    Article  CAS  Google Scholar 

  • Cho H, Kim YA, Yoon J-Y, Lee D, Kim JH, Lee SH, Ho W-K (2005) Low mobility of phosphatidylinositol 4,5-bisphosphate underlies receptor specificity of gq-mediated ion channel regulation in atrial myocytes. PNAS 102:15241–15246

    Article  PubMed  CAS  Google Scholar 

  • Chong LD, Traynor-Kaplan A, Bokoch GM, Schwartz MA (1994) The small gtp-binding protein rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell 79:507–513

    Article  PubMed  CAS  Google Scholar 

  • Christian DA, Tian A, Ellenbroek WG, Levental I, Rajagopal K, Janmey PA, Liu AJ, Baumgart T, Discher DE (2009) Spotted vesicles, striped micelles and janus assemblies induced by ligand binding. Nat Mater 8:843–849

    Article  PubMed  CAS  Google Scholar 

  • Ciano-Oliveira CD, Sirokmany G, Szaszi K, Arthur WT, Masszi A, Peterson M, Rotstein OD, Kapus A (2003) Hyperosmotic stress activates rho: differential involvement in rho kinase-dependent mlc phosphorylation and nkcc activation. Am J Physiol Cell Physiol 285:C555–C566

    PubMed  Google Scholar 

  • Clarke JH, Wang M, Irvine RF (2010) Localization, regulation and function of type ii phosphatidylinositol 5-phosphate 4-kinases. Adv Enzyme Regul 50:12–18

    Article  PubMed  Google Scholar 

  • Coon BG, Mukherjee D, Hanna CB, Riese DJ 2nd, Lowe M, Aguilar RC (2009) Lowe syndrome patient fibroblasts display ocrl1-specific cell migration defects that cannot be rescued by the homologous inpp5b phosphatase. Hum Mol Genet 18:4478–4491

    Article  PubMed  CAS  Google Scholar 

  • Coppolino MG, Dierckman R, Loijens J, Collins RF, Pouladi M, Jongstra-Bilen J, Schreiber AD, Trimble WS, Anderson R, Grinstein S (2002) Inhibition of phosphatidylinositol-4-phosphate 5-kinase ialpha impairs localized actin remodeling and suppresses phagocytosis. J Biol Chem 277:43849–43857

    Article  PubMed  CAS  Google Scholar 

  • Corbett-Nelson EF, Mason D, Marshall JG, Collette Y, Grinstein S (2006) Signaling-dependent immobilization of acylated proteins in the inner monolayer of the plasma membrane. J Cell Biol 174:255–265

    Article  PubMed  CAS  Google Scholar 

  • Cremona O, De Camilli P (2001) Phosphoinositides in membrane traffic at the synapse. J Cell Sci 114:1041–1052

    PubMed  CAS  Google Scholar 

  • Cremona O, Di Paolo G, Wenk MR, Luthi A, Kim WT, Takei K, Daniell L, Nemoto Y, Shears SB, Flavell RA, McCormick DA, De Camilli P (1999) Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99:179–188

    Article  PubMed  CAS  Google Scholar 

  • Das ND, Yoshioka T, Samuelson D, Shichi H (1987) Immunohistochemical localization of phosphatidylinositol-4,5-bisphosphate in the rat lens. Ophthalmic Res 19:57–60

    Article  PubMed  CAS  Google Scholar 

  • Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–657

    Article  PubMed  CAS  Google Scholar 

  • Di Paolo G, Pellegrini L, Letinic K, Cestra G, Zoncu R, Voronov S, Chang S, Guo J, Wenk MR, De Camilli P (2002) Recruitment and regulation of phosphatidylinositol phosphate kinase type 1 gamma by the ferm domain of talin. Nature 420:85–89

    Article  PubMed  CAS  Google Scholar 

  • Di Paolo G, Moskowitz HS, Gipson K, Wenk MR, Voronov S, Obayashi M, Flavell R, Fitzsimonds RM, Ryan TA, De Camilli P (2004) Impaired ptdins(4,5)p2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature 431:415–422

    Article  PubMed  CAS  Google Scholar 

  • Divecha N, Irvine RF (1995) Phospholipid signaling. Cell 80:269–278

    Article  PubMed  CAS  Google Scholar 

  • Doughman RL, Firestone AJ, Wojtasiak ML, Bunce MW, Anderson RA (2003) Membrane ruffling requires coordination between type ialpha phosphatidylinositol phosphate kinase and rac signaling. J Biol Chem 278:23036–23045

    Article  PubMed  CAS  Google Scholar 

  • Dubash AD, Menold MM, Samson T, Boulter E, Garcia-Mata R, Doughman R, Burridge K (2009) Focal adhesions: new angles on an old structure. Int Rev Cell Mol Biol 277:1–65

    Article  PubMed  CAS  Google Scholar 

  • El Sayegh TY, Arora PD, Ling K, Laschinger C, Janmey PA, Anderson RA, McCulloch CA (2007) Phosphatidylinositol-4,5 bisphosphate produced by pip5kigamma regulates gelsolin, actin assembly, and adhesion strength of n-cadherin junctions. Mol Biol Cell 18:3026–3038

    Article  PubMed  CAS  Google Scholar 

  • Elliott PR, Goult BT, Kopp PM, Bate N, Grossmann JG, Roberts GC, Critchley DR, Barsukov IL (2010) The structure of the talin head reveals a novel extended conformation of the ferm domain. Structure 18:1289–1299

    Article  PubMed  CAS  Google Scholar 

  • Elvers M, Pozgaj R, Pleines I, May F, Kuijpers MJ, Heemskerk JM, Yu P, Nieswandt B (2010) Platelet hyperreactivity and a prothrombotic phenotype in mice with a gain-of-function mutation in phospholipase cgamma2. J Thromb Haemost 8:1353–1363

    Article  PubMed  CAS  Google Scholar 

  • Erwig L-P, McPhilips KA, Wynes MW, Ivetic A, Ridley AJ, Henson PM (2006) Differential regulation of phagosome maturation in macrophages and dendritic cells mediated by rho gtpases and ezrin-radixin-moesin (erm) proteins. Proc Natl Acad Sci 103:12825–12830

    Article  PubMed  CAS  Google Scholar 

  • Fairn GD, Ogata K, Botelho RJ, Stahl PD, Anderson RA, De Camilli P, Meyer T, Wodak S, Grinstein S (2009) An electrostatic switch displaces phosphatidylinositol phosphate kinases from the membrane during phagocytosis. J Cell Biol 187:701–714

    Article  PubMed  CAS  Google Scholar 

  • Fehon RG, McClatchey AI, Bretscher A (2010) Organizing the cell cortex: the role of erm proteins. Nat Rev Mol Cell Biol 11:276–287

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein M, Etkovitz N, Breitbart H (2010) Role and regulation of sperm gelsolin prior to fertilization. J Biol Chem 285:39702–39709

    Article  PubMed  CAS  Google Scholar 

  • Flannagan RS, Grinstein S (2010) The application of fluorescent probes for the analysis of lipid dynamics during phagocytosis. Methods Mol Biol 591:121–134

    Article  PubMed  CAS  Google Scholar 

  • Fujita A, Cheng J, Tauchi-Sato K, Takenawa T, Fujimoto T (2009) A distinct pool of phosphatidylinositol 4,5-bisphosphate in caveolae revealed by a nanoscale labeling technique. Proc Natl Acad Sci U S A 106:9256–9261

    Article  PubMed  CAS  Google Scholar 

  • Funaki M, DiFransico L, Janmey PA (2006) Pi 4,5-p2 stimulates glucose transport activity of glut4 in the plasma membrane of 3t3-l1 adipocytes. Biochim Biophys Acta (BBA) Mol Cell Res 1763:889–899

    Google Scholar 

  • Funakoshi Y, Hasegawa H, Kanaho Y (2011) Regulation of pip5k activity by arf6 and its physiological significance. J Cell Physiol 226:888–895

    Google Scholar 

  • Gascard P, Tran D, Sauvage M, Sulpice JC, Fukami K, Takenawa T, Claret M, Giraud F (1991) Asymmetric distribution of phosphoinositides and phosphatidic acid in the human erythrocyte membrane. Biochim Biophys Acta 1069:27–36

    Article  PubMed  CAS  Google Scholar 

  • Gilmore AP, Burridge K (1996) Regulation of vinculin binding to talin and actin by phosphatidyl-inositol-4-5-bisphosphate. Nature 381:531–535

    Google Scholar 

  • Giudici M-L, Emson PC, Irvine RF (2004) A novel neuronal-specific splice variant of type i phosphatidylinositol 4-phosphate 5-kinase isoform gamma. Biochem J 379:489–496

    Article  PubMed  CAS  Google Scholar 

  • Goksoy E, Ma Y-Q, Wang X, Kong X, Perera D, Plow EF, Qin J (2008) Structural basis for the autoinhibition of talin in regulating integrin activation. Mol Cell 31:124–133

    Article  PubMed  CAS  Google Scholar 

  • Golebiewska U, Nyako M, Woturski W, Zaitseva I, McLaughlin S (2008) Diffusion coefficient of fluorescent phosphatidylinositol 4,5-bisphosphate in the plasma membrane of cells. Mol Biol Cell 19:1663–1669

    Article  PubMed  CAS  Google Scholar 

  • Golub T, Caroni P (2005) Pi(4,5)p2-dependent microdomain assemblies capture microtubules to promote and control leading edge motility. J Cell Biol 169:151–165

    Article  PubMed  CAS  Google Scholar 

  • Gong L-W, Di Paolo G, Diaz E, Cestra G, Diaz M-E, Lindau M, De Camilli P, Toomre D (2005) Phosphatidylinositol phosphate kinase type i{gamma} regulates dynamics of large dense-core vesicle fusion. PNAS 102:5204–5209

    Article  PubMed  CAS  Google Scholar 

  • Gorbatyuk VY, Nosworthy NJ, Robson SA, Bains NPS, Maciejewski MW, dos Remedios CG, King GF (2006) Mapping the phosphoinositide-binding site on chick cofilin explains how pip2 regulates the cofilin-actin interaction. Mol Cell 24:511–522

    Article  PubMed  CAS  Google Scholar 

  • Grinstein S (2010) Imaging signal transduction during phagocytosis: phospholipids, surface charge, and electrostatic interactions. Am J Physiol Cell Physiol 299:C876–C881

    Article  PubMed  CAS  Google Scholar 

  • Groves E, Dart AE, Covarelli V, Caron E (2008) Molecular mechanisms of phagocytic uptake in mammalian cells. Cell Mol Life Sci 65:1957–1976

    Article  PubMed  CAS  Google Scholar 

  • Haeffner EW (1993) Transient temporal relationship between 1-oleoyl-2-acetyl-sn-glycerol (oag)-activated synthesis and hydrolysis of polyphosphoinositides: desensitization of phospholipase c and the inositol lipid kinases upon long-term treatment of ascites cells by exogenous oag. J Lipid Mediat 7:239–252

    PubMed  CAS  Google Scholar 

  • Halstead JR, Rheenen J van, Snel Mireille HJ, Meeuws S, Mohammed S, D’Santos CS, Heck Albert J, Jalink K, Divecha N (2006) A role for ptdins(4,5)p2 and pip5k[alpha] in regulating stress-induced apoptosis. Curr Biol 16:1850–1856

    Article  PubMed  CAS  Google Scholar 

  • Halstead JR, Savaskan NE, Bout I van den, Van Horck F, Hajdo-Milasinovic A, Snell M, Keune WJ, Ten Klooster JP, Hordijk PL, Divecha N (2010) Rac controls pip5k localisation and ptdins(4,5)p synthesis, which modulates vinculin localisation and neurite dynamics. J Cell Sci 123:3535–3546

    Article  PubMed  CAS  Google Scholar 

  • Hammond GR, Schiavo G, Irvine RF (2009) Immunocytochemical techniques reveal multiple, distinct cellular pools of ptdins4p and ptdins(4,5)p(2). Biochem J 422:23–35

    Article  PubMed  CAS  Google Scholar 

  • Hao JJ, Liu Y, Kruhlak M, Debell KE, Rellahan BL, Shaw S (2009) Phospholipase c-mediated hydrolysis of pip2 releases erm proteins from lymphocyte membrane. J Cell Biol 184:451–462

    Article  PubMed  CAS  Google Scholar 

  • Hartwig JH, Bokoch GM, Carpenter CL, Janmey PA, Taylor LA, Toker A, Stossel TP (1995) Thrombin receptor ligation and activated rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets. Cell 82:643–653

    Article  PubMed  CAS  Google Scholar 

  • Heldwein EE, Macia E, Wang J, Yin HL, Kirchhausen T, Harrison SC (2004) Crystal structure of the clathrin adaptor protein 1 core. PNAS 101:14108–14113

    Article  PubMed  CAS  Google Scholar 

  • Heo WD, Inoue T, Park WS, Kim ML, Park BO, Wandless TJ, Meyer T (2006) Pi(3,4,5)p3 and pi(4,5)p2 lipids target proteins with polybasic clusters to the plasma membrane. Science 314:1458–1461

    Article  PubMed  CAS  Google Scholar 

  • Hirose K, Kadowaki S, Tanabe M, Takeshima H, Iino M (1999) Spatiotemporal dynamics of inositol 1,4,5-trisphosphate that underlies complex ca2+ mobilization patterns. Science 284:1527–1530

    Article  PubMed  CAS  Google Scholar 

  • Honda A, Nogami M, Yokozeki T, Yamazaki M, Nakamura H, Watanabe H, Kawamoto K, Nakayama K, Morris AJ, Frohman MA, Kanaho Y (1999) Phosphatidylinositol 4-phosphate 5-kinase [alpha] is a downstream effector of the small g protein arf6 in membrane ruffle formation. Cell 99:521–532

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Lifshitz L, Patki-Kamath V, Tuft R, Fogarty K, Czech MP (2004) Phosphatidylinositol-4,5-bisphosphate-rich plasma membrane patches organize active zones of endocytosis and ruffling in cultured adipocytes. Mol Cell Biol 24:9102–9123

    Article  PubMed  CAS  Google Scholar 

  • Hughes S, Marsh SJ, Tinker A, Brown DA (2007) Pip(2)-dependent inhibition of m-type (kv7.2/7.3) potassium channels: direct on-line assessment of pip(2) depletion by gq-coupled receptors in single living neurons. Pflugers Arch 455:115–124

    CAS  Google Scholar 

  • Ishihara H, Shibasaki Y, Kizuki N, Katagiri H, Yazaki Y, Asano T, Oka Y (1996) Cloning of cdnas encoding two isoforms of 68-kda type i phosphatidylinositol4-phosphate 5-kinase. J Biol Chem 271:23611–23614

    Article  PubMed  CAS  Google Scholar 

  • Ishihara H, Shibasaki Y, Kizuki N, Wada T, Yazaki Y, Asano T, Oka Y (1998) Type i phosphatidylinositol-4-phosphate 5-kinases. Cloning of the third isoform and deletion/substitution analysis of members of this novel lipid kinase family. J Biol Chem 273:8741–8748

    Article  PubMed  CAS  Google Scholar 

  • Ito S, Werth DK, Richert ND, Pastan I (1983) Vinculin phosphorylation by the src kinase. Interaction of vinculin with phospholipid vesicles. J Biol Chem 258:14626–14631

    PubMed  CAS  Google Scholar 

  • Itoh T, Ishihara H, Shibasaki Y, Oka Y, Takenawa T (2000) Autophosphorylation of type i phosphatidylinositol phosphate kinase regulates its lipid kinase activity. J Biol Chem 275:19389–19394

    Article  PubMed  CAS  Google Scholar 

  • Janetopoulos C, Devreotes P (2006) Phosphoinositide signaling plays a key role in cytokinesis. J Cell Biol 174:485–490

    Article  PubMed  CAS  Google Scholar 

  • Janmey PA, Stossel TP (1987) Modulation of gelsolin function by phosphatidylinositol 4,5-bisphosphate. Nature 325:362–364

    Article  PubMed  CAS  Google Scholar 

  • Janmey PA, Bucki R, Yin HL (2009) Phosphoinositides and actin cytoskeletal rearrangement. In: Bradshaw T, Dennis E (eds) The handbook of cell signaling, 2nd edn. Elsevier, New York

    Google Scholar 

  • Jarquin-Pardo M, Fitzpatrick A, Galiano FJ, First EA, Davis JN (2007) Phosphatidic acid regulates the affinity of the murine phosphatidylinositol 4-phosphate 5-kinase-ibeta for phosphatidylinositol-4-phosphate. J Cell Biochem 100:112–128

    Article  PubMed  CAS  Google Scholar 

  • Johnson RP, Niggli V, Durrer P, Craig SW (1998) A conserved motif in the tail domain of vinculin mediates association with and insertion into acidic phospholipid bilayers. Biochemistry 37:10211–10222

    Article  PubMed  CAS  Google Scholar 

  • Johnson CM, Chichili GR, Rodgers W (2008) Compartmentalization of phosphatidylinositol 4,5-bisphosphate signaling evidenced using targeted phosphatases. J Biol Chem 283:29920–29928

    Article  PubMed  CAS  Google Scholar 

  • Kagan JC, Medzhitov R (2006) Phosphoinositide-mediated adaptor recruitment controls toll-like receptor signaling. Cell 125:943–955

    Article  PubMed  CAS  Google Scholar 

  • Kalwa H, Michel T (2010) The marcks protein plays a critical role in phosphatidylinositol 4,5-bisphosphate metabolism and directed cell movement in vascular endothelial cells. J Biol Chem 286:2320–2330

    Article  PubMed  CAS  Google Scholar 

  • Kalwa H, Michel T (2011) The marcks protein plays a critical role in phosphatidylinositol 4,5-bisphosphate metabolism and directed cell movement in vascular endothelial cells. J Biol Chem 286:2320–2330

    Article  PubMed  CAS  Google Scholar 

  • Kisseleva M, Feng Y, Ward M, Song C, Anderson RA, Longmore GD (2005) The lim protein ajuba regulates phosphatidylinositol 4,5-bisphosphate levels in migrating cells through an interaction with and activation of pipki{alpha}. Mol Cell Biol 25:3956–3966

    Article  PubMed  CAS  Google Scholar 

  • Klein RM, Spofford LS, Abel EV, Ortiz A, Aplin AE (2008) B-raf regulation of rnd3 participates in actin cytoskeletal and focal adhesion organization. Mol Biol Cell 19:498–508

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Takematsu H, Yamaji T, Hiramoto S, Kozutsumi Y (2005) Disturbance of sphingolipid biosynthesis abrogates the signaling of mss4, phosphatidylinositol-4-phosphate 5-kinase, in yeast. J Biol Chem 280:18087–18094

    Article  PubMed  CAS  Google Scholar 

  • Komaba S, Coluccio LM (2010) Localization of myosin 1b to actin protrusions requires phosphoinositide binding. J Biol Chem 285:27686–27693

    Article  PubMed  CAS  Google Scholar 

  • Krauss M, Haucke V (2007) Phosphoinositide-metabolizing enzymes at the interface between membrane traffic and cell signalling. EMBO Rep 8:241–246

    Article  PubMed  CAS  Google Scholar 

  • Kunz J, Wilson MP, Kisseleva M, Hurley JH, Majerus PW, Anderson RA (2000) The activation loop of phosphatidylinositol phosphate kinases determines signaling specificity. Mol Cell 5:1–11

    Article  PubMed  CAS  Google Scholar 

  • Kunz J, Fuelling A, Kolbe L, Anderson RA (2002) Stereo-specific substrate recognition by phosphatidylinositol phosphate kinases is swapped by changing a single amino acid residue. J Biol Chem 277:5611–5619

    Article  PubMed  CAS  Google Scholar 

  • Kwiatkowska K (2010) One lipid, multiple functions: how various pools of pi(4,5)p(2) are created in the plasma membrane. Cell Mol Life Sci 67:3927–3946

    Article  PubMed  CAS  Google Scholar 

  • Lacalle RA, Peregil RM, Albar JP, Merino E, Martinez AC, Merida I, Manes S (2007) Type i phosphatidylinositol 4-phosphate 5-kinase controls neutrophil polarity and directional movement. J Cell Biol 179:1539–1553

    Article  PubMed  CAS  Google Scholar 

  • Lassing I, Lindberg U (1985) Specific interaction between phosphatidylinositol 4,5-bisphosphate and profilactin. Nature 314:472–474

    Article  PubMed  CAS  Google Scholar 

  • Laux T, Fukami K, Thelen M, Golub T, Frey D, Caroni P (2000) Gap43, marcks, and cap23 modulate pi(4,5)p2 at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. J Cell Biol 149:1455–1472

    Article  PubMed  CAS  Google Scholar 

  • Lee SY, Voronov S, Letinic K, Nairn AC, Di Paolo G, De Camilli P (2005) Regulation of the interaction between pipki{gamma} and talin by proline-directed protein kinases. J Cell Biol 168:789–799

    Article  PubMed  CAS  Google Scholar 

  • Lee SY, Kim B, Yoon S, Kim YJ, Liu T, Woo JH, Chwae YJ, Joe EH Jou I (2010) Phosphatidylinositol 4-phosphate 5-kinase alpha is induced in ganglioside-stimulated brain astrocytes and contributes to inflammatory responses. Exp Mol Med 42:662–673

    Article  PubMed  CAS  Google Scholar 

  • Levental I, Cebers A, Janmey PA (2008a) Combined electrostatics and hydrogen bonding determine intermolecular interactions between polyphosphoinositides. J Am Chem Soc 130:9025–9030

    Article  CAS  Google Scholar 

  • Levental I, Janmey PA, Cebers A (2008b) Electrostatic contribution to the surface pressure of charged monolayers containing polyphosphoinositides. Biophys J 95:1199–1205

    Article  CAS  Google Scholar 

  • Levental I, Byfield FJ, Chowdhury P, Gai F, Baumgart T, Janmey PA (2009a) Cholesterol-dependent phase separation in cell-derived giant plasma-membrane vesicles. Biochem J 424:163–167

    Article  CAS  Google Scholar 

  • Levental I, Christian DA, Wang YH, Madara JJ, Discher DE, Janmey PA (2009b) Calcium-dependent lateral organization in phosphatidylinositol 4,5-bisphosphate (pip2)- and cholesterol-containing monolayers. Biochemistry 48:8241–8248

    Article  CAS  Google Scholar 

  • Leyman S, Sidani M, Ritsma L, Waterschoot D, Eddy R, Dewitte D, Debeir O, Decaestecker C, Vandekerckhove J, Rheenen J van, Ampe C, Condeelis J, Van Troys M (2009) Unbalancing the phosphatidylinositol-4,5-bisphosphate-cofilin interaction impairs cell steering. Mol Biol Cell 20:4509–4523

    Article  PubMed  CAS  Google Scholar 

  • Liepina I, Czaplewski C, Janmey P, Liwo A (2003) Molecular dynamics study of a gelsolin-derived peptide binding to a lipid bilayer containing phosphatidylinositol 4,5-bisphosphate. Biopolymers 71:49–70

    Article  PubMed  CAS  Google Scholar 

  • Ling K, Doughman RL, Firestone AJ, Bunce MW, Anderson RA (2002) Type i[gamma] phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature 420:89–93

    Article  PubMed  CAS  Google Scholar 

  • Ling K, Doughman RL, Iyer VV, Firestone AJ, Bairstow SF, Mosher DF, Schaller MD, Anderson RA (2003) Tyrosine phosphorylation of type i{gamma} phosphatidylinositol phosphate kinase by src regulates an integrin-talin switch. J Cell Biol 163:1339–1349

    Article  PubMed  CAS  Google Scholar 

  • Ling K, Bairstow SF, Carbonara C, Turbin DA, Huntsman DG, Anderson RA (2007) Type igamma phosphatidylinositol phosphate kinase modulates adherens junction and e-cadherin trafficking via a direct interaction with mu 1b adaptin. J Cell Biol 176:343–353

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Bankaitis VA (2010) Phosphoinositide phosphatases in cell biology and disease. Prog Lipid Res 49:201–217

    Article  PubMed  CAS  Google Scholar 

  • Logan MR, Mandato CA (2006) Regulation of the actin cytoskeleton by pip2 in cytokinesis. Biol Cell 98:377–388

    Article  PubMed  CAS  Google Scholar 

  • Loijens JC, Anderson RA (1996) Type i phosphatidylinositol-4-phosphate 5-kinases are distinct members of this novel lipid kinase family. J Biol Chem 271:32937–32943

    Article  PubMed  CAS  Google Scholar 

  • Lokuta MA, Senetar MA, Bennin DA, Nuzzi PA, Chan KT, Ott VL, Huttenlocher A (2007) Type igamma pip kinase is a novel uropod component that regulates rear retraction during neutrophil chemotaxis. Mol Biol Cell 18:5069–5080

    Article  PubMed  CAS  Google Scholar 

  • Lorenz CD, Faraudo J, Travesset A (2008) Hydrogen bonding and binding of polybasic residues with negatively charged mixed lipid monolayers. Langmuir 24:1654–1658

    Article  PubMed  CAS  Google Scholar 

  • Ludwig A, Otto GP, Riento K, Hams E, Fallon PG, Nichols BJ (2010) Flotillin microdomains interact with the cortical cytoskeleton to control uropod formation and neutrophil recruitment. J Cell Biol 191:771–781

    Article  PubMed  CAS  Google Scholar 

  • Mace EM, Zhang J, Siminovitch KA, Takei F (2010) Elucidation of the integrin lfa-1-mediated signaling pathway of actin polarization in natural killer cells. Blood 116:1272–1279

    Article  PubMed  CAS  Google Scholar 

  • Malm B, Larsson H, Lindberg U (1983) The profilin–actin complex: further characterization of profilin and studies on the stability of the complex. J Muscle Res Cell Motil 4:569–588

    Article  PubMed  CAS  Google Scholar 

  • Manes S, Fuentes G, Peregil RM, Rojas AM, Lacalle RA (2010) An isoform-specific pdz-binding motif targets type i pip5 kinase beta to the uropod and controls polarization of neutrophil-like hl60 cells. FASEB J 24:3381–3392

    Article  PubMed  CAS  Google Scholar 

  • Mao YS, Yin HL (2007) Regulation of the actin cytoskeleton by phosphatidylinositol 4-phosphate 5 kinases. Pflugers Arch 455:5–18

    Article  PubMed  CAS  Google Scholar 

  • Mao Y, Balkin DM, Zoncu R, Erdmann KS, Tomasini L, Hu F, Jin MM, Hodsdon ME, De Camilli P (2009a) A ph domain within ocrl bridges clathrin-mediated membrane trafficking to phosphoinositide metabolism. EMBO J 28:1831–1842

    Article  CAS  Google Scholar 

  • Mao YS, Yamaga M, Zhu X, Wei Y, Sun HQ, Wang J, Yun M, Wang Y, Di Paolo G, Bennett M, Mellman I, Abrams CS, De Camilli P, Lu CY, Yin HL (2009b) Essential and unique roles of pip5k-gamma and -alpha in fcgamma receptor-mediated phagocytosis. J Cell Biol 184:281–296

    Article  CAS  Google Scholar 

  • Martin TFJ (2001) Pi(4,5)p2 regulation of surface membrane traffic. Curr Opin Cell Biol 13:493–499

    Article  PubMed  CAS  Google Scholar 

  • Martin-Belmonte F, Gassama A, Datta A, Yu W, Rescher U, Gerke V, Mostov K (2007) Pten-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through cdc42. Cell 128:383–397

    Article  PubMed  CAS  Google Scholar 

  • McCrea HJ, De Camilli P (2009) Mutations in phosphoinositide metabolizing enzymes and human disease. Physiology (Bethesda) 24:8–16

    Article  CAS  Google Scholar 

  • McLaughlin S, Murray D (2005) Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438:605–611

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin S, Wang J, Gambhir A, Murray D (2002) Pip2 and proteins: interactions, organization, and information flow. Annu Rev Biophys Biomol Struct 31:151–175

    Article  PubMed  CAS  Google Scholar 

  • Meira M, Masson R, Stagljar I, Lienhard S, Maurer F, Boulay A, Hynes NE (2009) Memo is a cofilin-interacting protein that influences plc{gamma}1 and cofilin activities, and is essential for maintaining directionality during erbb2-induced tumor-cell migration. J Cell Sci 122:787–797

    Article  PubMed  CAS  Google Scholar 

  • Mejillano M, Yamamoto M, Rozelle AL, Sun H-Q, Wang X, Yin HL (2001) Regulation of apoptosis by phosphatidylinositol 4,5-bisphosphate inhibition of caspases, and caspase inactivation of phosphatidylinositol phosphate 5-kinases. J Biol Chem 276:1865–1872

    Article  PubMed  CAS  Google Scholar 

  • Michailidis IE, Rusinova R, Georgakopoulos A, Chen Y, Iyengar R, Robakis NK, Logothetis DE, Baki L (2011) Phosphatidylinositol-4,5-bisphosphate regulates epidermal growth factor receptor activation. Pflugers Arch 461:387–397

    Google Scholar 

  • Micucci F, Capuano C, Marchetti E, Piccoli M, Frati L, Santoni A, Galandrini R (2008) Pi5ki-dependent signals are critical regulators of the cytolytic secretory pathway. Blood 111:4165–4172

    Article  PubMed  CAS  Google Scholar 

  • Milosevic I, Sorensen JB, Lang T, Krauss M, Nagy G, Haucke V, Jahn R, Neher E (2005) Plasmalemmal phosphatidylinositol-4,5-bisphosphate level regulates the releasable vesicle pool size in chromaffin cells. J Neurosci 25:2557–2565

    Article  PubMed  CAS  Google Scholar 

  • Morone N, Fujiwara T, Murase K, Kasai RS, Ike H, Yuasa S, Usukura J, Kusumi A (2006) Three-dimensional reconstruction of the membrane skeleton at the plasma membrane interface by electron tomography. J Cell Biol 174:851–862

    Article  PubMed  CAS  Google Scholar 

  • Morris JB, Huynh H, Vasilevski O, Woodcock EA (2006) Alpha1-adrenergic receptor signaling is localized to caveolae in neonatal rat cardiomyocytes. J Mol Cell Cardiol 41:17–25

    Article  PubMed  CAS  Google Scholar 

  • Nakano-Kobayashi A, Yamazaki M, Unoki T, Hongu T, Murata C, Taguchi R, Katada T, Frohman MA, Yokozeki T, Kanaho Y (2007) Role of activation of pip5kgamma661 by ap-2 complex in synaptic vesicle endocytosis. EMBO J 26:1105–1116

    Article  PubMed  CAS  Google Scholar 

  • Nelson CD, Kovacs JJ, Nobles KN, Whalen EJ, Lefkowitz RJ (2008) Beta-arrestin scaffolding of phosphatidylinositol 4-phosphate 5-kinase ialpha promotes agonist-stimulated sequestration of the beta2-adrenergic receptor. J Biol Chem 283:21093–21101

    Article  PubMed  CAS  Google Scholar 

  • Niggli V, Dimitrov DP, Brunner J, Burger MM (1986) Interaction of the cytoskeletal component vinculin with bilayer structures analyzed with a photoactivatable phospholipid. J Biol Chem 261:6912–6918

    PubMed  CAS  Google Scholar 

  • Padron D, Wang YJ, Yamamoto M, Yin H, Roth MG (2003) Phosphatidylinositol phosphate 5-kinase ibeta recruits ap-2 to the plasma membrane and regulates rates of constitutive endocytosis. J Cell Biol 162:693–701

    Article  PubMed  CAS  Google Scholar 

  • Pan W, Choi SC, Wang H, Qin Y, Volpicelli-Daley L, Swan L, Lucast L, Khoo C, Zhang X, Li L, Abrams CS, Sokol SY, Wu D (2008) Wnt3a-mediated formation of phosphatidylinositol 4,5-bisphosphate regulates lrp6 phosphorylation. Science 321:1350–1353

    Article  PubMed  CAS  Google Scholar 

  • Papayannopoulos V, Co C, Prehoda KE, Snapper S, Taunton J, Lim WA (2005) A polybasic motif allows n-wasp to act as a sensor of pip(2) density. Mol Cell 17:181–191

    Article  PubMed  CAS  Google Scholar 

  • Park SJ, Itoh T, Takenawa T (2001) Phosphatidylinositol 4-phosphate 5-kinase type i is regulated through phosphorylation response by extracellular stimuli. J Biol Chem 276:4781–4787

    Article  PubMed  CAS  Google Scholar 

  • Parsons JT, Horwitz AR, Schwartz MA (2010) Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol 11:633–643

    Article  PubMed  CAS  Google Scholar 

  • Pearson MA, Reczek D, Bretscher A, Karplus PA (2000) Structure of the erm protein moesin reveals the ferm domain fold masked by an extended actin binding tail domain. Cell 101:259–270

    Article  PubMed  CAS  Google Scholar 

  • Pike LJ, Miller JM (1998) Cholesterol depletion delocalizes phosphatidylinositol bisphosphate and inhibits hormone-stimulated phosphatidylinositol turnover. J Biol Chem 273:22298–22304

    Article  PubMed  CAS  Google Scholar 

  • Powner DJ, Payne RM, Pettitt TR, Giudici ML, Irvine RF, Wakelam MJO (2005) Phospholipase d2 stimulates integrin-mediated adhesion via phosphatidylinositol 4-phosphate 5-kinase i{gamma}b. J Cell Sci 118:2975–2986

    Article  PubMed  CAS  Google Scholar 

  • Quinn K, Behe P, Tinker A (2008) Monitoring changes in membrane phosphatidylinositol 4,5-bisphosphate in living cells using a domain from the transcription factor tubby. J Physiol 586:2855–2871

    Article  PubMed  CAS  Google Scholar 

  • Rao VD, Misra S, Boronenkov IV, Anderson RA, Hurley JH (1998) Structure of type ii[beta] phosphatidylinositol phosphate kinase: a protein kinase fold flattened for interfacial phosphorylation. Cell 94:829–839

    Article  PubMed  CAS  Google Scholar 

  • Raucher D, Stauffer T, Chen W, Shen K, Guo S, York JD, Sheetz MP, Meyer T (2000) Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell 100:221–228

    Article  PubMed  CAS  Google Scholar 

  • Redfern DA, Gericke A (2004) Domain formation in phosphatidylinositol monophosphate/phosphatidylcholine mixed vesicles. Biophys J 86:2980–2992

    Article  PubMed  CAS  Google Scholar 

  • Redfern DA, Gericke A (2005) Ph-dependent domain formation in phosphatidylinositol polyphosphate/phosphatidylcholine mixed vesicles. J Lipid Res 46:504–515

    Article  PubMed  CAS  Google Scholar 

  • Ren XD, Bokoch GM, Traynor-Kaplan A, Jenkins GH, Anderson RA, Schwartz MA (1996) Physical association of the small gtpase rho with a 68-kda phosphatidylinositol 4-phosphate 5-kinase in swiss 3t3 cells. Mol Biol Cell 7:435–442

    PubMed  CAS  Google Scholar 

  • Rozelle AL, Machesky LM, Yamamoto M, Driessens MHE, Insall RH, Roth MG, Luby-Phelps K, Marriott G, Hall A, Yin HL (2000) Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through wasp-arp2/3. Curr Biol 10:311–320

    Article  PubMed  CAS  Google Scholar 

  • Rumenapp U, Schmidt M, Olesch S, Ott S, Eichel-Streiber CV, Jakobs KH (1998) Tyrosine-phosphorylation-dependent and rho-protein-mediated control of cellular phosphatidylinositol 4,5-bisphosphate levels. Biochem J 334(Pt 3):625–631

    PubMed  CAS  Google Scholar 

  • Russo C, Gao Y, Mancini P, Vanni C, Porotto M, Falasca M, Torrisi MR, Zheng Y, Eva A (2001) Modulation of oncogenic dbl activity by phosphoinositol phosphate binding to pleckstrin homology domain. J Biol Chem 276:19524–19531

    Article  PubMed  CAS  Google Scholar 

  • Saarikangas J, Zhao H, Lappalainen P (2010) Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiol Rev 90:259–289

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Tolias KF, Saci A, Koon HB, Humphries LA, Scharenberg A, Rawlings DJ, Kinet J-P, Carpenter CL (2003) Btk regulates ptdins-4,5-p2 synthesis: importance for calcium signaling and pi3k activity. Immunity 19:669–677

    Article  Google Scholar 

  • Sanchez-Madrid F, Serrador JM (2009) Bringing up the rear: defining the roles of the uropod. Nat Rev Mol Cell Biol 10:353–359

    Article  PubMed  CAS  Google Scholar 

  • Sasaki J, Sasaki T, Yamazaki M, Matsuoka K, Taya C, Shitara H, Takasuga S, Nishio M, Mizuno K, Wada T, Miyazaki H, Watanabe H, Iizuka R, Kubo S, Murata S, Chiba T, Maehama T, Hamada K, Kishimoto H, Frohman MA, Tanaka K, Penninger JM, Yonekawa H, Suzuki A, Kanaho Y (2005) Regulation of anaphylactic responses by phosphatidylinositol phosphate kinase type i {alpha}. J Exp Med 201:859–870

    Article  PubMed  CAS  Google Scholar 

  • Saunders RM, Holt MR, Jennings L, Sutton DH, Barsukov IL, Bobkov A, Liddington RC, Adamson EA, Dunn GA, Critchley DR (2006) Role of vinculin in regulating focal adhesion turnover. Eur J Cell Biol 85:487–500

    Article  PubMed  CAS  Google Scholar 

  • Schill NJ, Anderson RA (2009) Two novel phosphatidylinositol-4-phosphate 5-kinase type igamma splice variants expressed in human cells display distinctive cellular targeting. Biochem J 422:473–482

    Article  PubMed  CAS  Google Scholar 

  • Scott CC, Dobson W, Botelho RJ, Coady-Osberg N, Chavrier P, Knecht DA, Heath C, Stahl P, Grinstein S (2005) Phosphatidylinositol-4,5-bisphosphate hydrolysis directs actin remodeling during phagocytosis. J Cell Biol 169:139–149

    Article  PubMed  CAS  Google Scholar 

  • Shaw AS (2006) Lipid rafts: now you see them, now you don’t. Nat Immunol 7:1139–1142

    Article  PubMed  CAS  Google Scholar 

  • Sheetz MP, Sable JE, Dobereiner HG (2006) Continuous membrane-cytoskeleton adhesion requires continuous accommodation to lipid and cytoskeleton dynamics. Annu Rev Biophys Biomol Struct 35:417–434

    Article  PubMed  CAS  Google Scholar 

  • Stace C, Manifava M, Delon C, Coadwell J, Cockcroft S, Ktistakis NT (2008) Pa binding of phosphatidylinositol 4-phosphate 5-kinase. Adv Enzyme Regul 48:55–72

    Article  PubMed  CAS  Google Scholar 

  • Strochlic TI, Viaud J, Rennefahrt UEE, Anastassiadis T, Peterson JR (2010) Phosphoinositides are essential coactivators for p21-activated kinase 1. Mol Cell 40:493–500

    Article  PubMed  CAS  Google Scholar 

  • Suchy SF, Nussbaum RL (2002) The deficiency of pip2 5-phosphatase in lowe syndrome affects actin polymerization. Am J Hum Genet 71:1420–1427

    Article  PubMed  CAS  Google Scholar 

  • Suh B-C, Inoue T, Meyer T, Hille B (2006) Rapid chemically induced changes of ptdins(4,5)p2 gate kcnq ion channels. Science 314:1454–1457

    Article  PubMed  CAS  Google Scholar 

  • Suh BC, Leal K, Hille B (2010) Modulation of high-voltage activated ca(2+) channels by membrane phosphatidylinositol 4,5-bisphosphate. Neuron 67:224–238

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Dandekar RD, Mao YS, Yin HL, Wulfing C (2011) Phosphatidylinositol (4,5) bisphosphate controls T cell activation by regulating T cell rigidity and organization. PLoS One 6:e27227

    Google Scholar 

  • Sun Y, Ling K, Wagoner MP, Anderson RA (2007) Type i gamma phosphatidylinositol phosphate kinase is required for egf-stimulated directional cell migration. J Cell Biol 178:297–308

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Turbin D, Ling K, Thapa N, Leung S, Huntsman D, Anderson R (2010) Type i gamma phosphatidylinositol phosphate kinase modulates invasion and proliferation and its expression correlates with poor prognosis in breast cancer. Breast Cancer Res 12:R6

    Google Scholar 

  • Szentpetery Z, Balla A, Kim Y, Lemmon M, Balla T (2009) Live cell imaging with protein domains capable of recognizing phosphatidylinositol 4,5-bisphosphate; a comparative study. BMC Cell Biol 10:67

    Article  PubMed  CAS  Google Scholar 

  • Szymanska E, Sobota A, Czurylo E, Kwiatkowska K (2008) Expression of pi(4,5)p2-binding proteins lowers the pi(4,5)p2level and inhibits fcgammariia-mediated cell spreading and phagocytosis. Eur J Immunol 38:260–272

    Article  PubMed  CAS  Google Scholar 

  • Szymanska E, Korzeniowski M, Raynal P, Sobota A, Kwiatkowska K (2009) Contribution of pip-5 kinase i[alpha] to raft-based fc[gamma]riia signaling. Exp Cell Res 315:981–995

    Article  PubMed  CAS  Google Scholar 

  • Toker A, Cantley LC (1997) Signalling through the lipid products of phosphoinositide-3-oh kinase. Nature 387:673–676

    Article  PubMed  CAS  Google Scholar 

  • Tolias K, Carpenter CL (2000) In vitro interaction of phosphoinositide-4-phosphate 5-kinases with rac. Methods Enzymol 325:190–200

    Article  PubMed  CAS  Google Scholar 

  • Tolias KF, Cantley LC, Carpenter CL (1995) Rho family gtpases bind to phosphoinositide kinases. J Biol Chem 270:17656–17659

    Article  PubMed  CAS  Google Scholar 

  • Tomas A, Yermen B, Regazzi R, Pessin JE, Halban PA (2010) Regulation of insulin secretion by phosphatidylinositol-4,5-bisphosphate. Traffic 11:123–137

    Article  PubMed  CAS  Google Scholar 

  • Tong J, Nguyen L, Vidal A, Simon SA, Skene JH, McIntosh TJ (2008) Role of gap-43 in sequestering phosphatidylinositol 4,5-bisphosphate to raft bilayers. Biophys J 94:125–133

    Article  PubMed  CAS  Google Scholar 

  • Tran D, Gascard P, Berthon B, Fukami K, Takenawa T, Giraud F, Claret M (1993) Cellular distribution of polyphosphoinositides in rat hepatocytes. Cell Signal 5:565–581

    Article  PubMed  CAS  Google Scholar 

  • van den Bout I, Divecha N (2009) Pip5k-driven ptdins(4,5)p2 synthesis: regulation and cellular functions. J Cell Sci 122:3837–3850

    Article  PubMed  CAS  Google Scholar 

  • van Rheenen J, Achame EM, Janssen H, Calafat J, Jalink K (2005) Pip2 signaling in lipid domains: a critical re-evaluation. EMBO J 24:1664–1673

    Article  PubMed  CAS  Google Scholar 

  • van Rheenen J, Song X, Roosmalen W van, Cammer M, Chen X, Desmarais V, Yip SC, Backer JM, Eddy RJ, Condeelis JS (2007) Egf-induced pip2 hydrolysis releases and activates cofilin locally in carcinoma cells. J Cell Biol 179:1247–1259

    Article  PubMed  CAS  Google Scholar 

  • Varnai P, Lin X, Lee S, Tuymetova G, Bondeva T, Spat A, Rhee S, Hajnoczky G, Balla T (2002) Inositol lipid binding and membrane localization of isolated pleckstrin homology (ph) domains. Studies on the ph domains of phospholipase c delta 1 and p130. J Biol Chem 277:27412–27422

    Article  PubMed  CAS  Google Scholar 

  • Varnai P, Thyagarajan B, Rohacs T, Balla T (2006) Rapidly inducible changes in phosphatidylinositol 4,5-bisphosphate levels influence multiple regulatory functions of the lipid in intact living cells. J Cell Biol 175:377–382

    Article  PubMed  CAS  Google Scholar 

  • Vasudevan L, Jeromin A, Volpicelli-Daley L, De Camilli P, Holowka D, Baird B (2009) The beta- and gamma-isoforms of type i pip5k regulate distinct stages of ca2+ signaling in mast cells. J Cell Sci 122:2567–2574

    Article  PubMed  CAS  Google Scholar 

  • Volpicelli-Daley LA, Lucast L, Gong LW, Liu L, Sasaki J, Sasaki T, Abrams CS, Kanaho Y, De Camilli P (2010) Phosphatidylinositol-4-phosphate 5-kinases and phosphatidylinositol 4,5-bisphosphate synthesis in the brain. J Biol Chem 285:28708–28714

    Article  PubMed  CAS  Google Scholar 

  • Voronov SV, Frere SG, Giovedi S, Pollina EA, Borel C, Zhang H, Schmidt C, Akeson EC, Wenk MR, Cimasoni L, Arancio O, Davisson MT, Antonarakis SE, Gardiner K, De Camilli P, Di Paolo G (2008) Synaptojanin 1-linked phosphoinositide dyshomeostasis and cognitive deficits in mouse models of down’s syndrome. Proc Natl Acad Sci U S A 105:9415–9420

    Article  PubMed  CAS  Google Scholar 

  • Wang F (2009) The signaling mechanisms underlying cell polarity and chemotaxis. Cold Spring Harb Perspect Biol 1:a002980

    Google Scholar 

  • Wang YJ, Wang J, Sun HQ, Martinez M, Sun YX, Macia E, Kirchhausen T, Albanesi JP, Roth MG, Yin HL (2003) Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor ap-1 complexes to the golgi. Cell 114:299–310

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Li W, Wang J, Xu K, Dong P, Luo X, Yin H (2004) Critical role of pip5ki{gamma}87 in insp3-mediated ca(2+) signaling. J Cell Biol 167:1005–1010

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Li G, Sugita S (2005) A central kinase domain of type i phosphatidylinositol phosphate kinases is sufficient to prime exocytosis: isoform specificity and its underlying mechanism. J Biol Chem 280:16522–16527

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Lian L, Golden JA, Morrisey EE, Abrams CS (2007) Pip5ki gamma is required for cardiovascular and neuronal development. Proc Natl Acad Sci U S A 104:11748–11753

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Chen X, Lian L, Tang T, Stalker TJ, Sasaki T, Brass LF, Choi JK, Hartwig JH, Abrams CS (2008a) Loss of pip5kibeta demonstrates that pip5ki isoform-specific pip2 synthesis is required for ip3 formation. Proc Natl Acad Sci U S A 105:14064–14069

    Article  CAS  Google Scholar 

  • Wang Y, Litvinov RI, Chen X, Bach TL, Lian L, Petrich BG, Monkley SJ, Critchley DR, Sasaki T, Birnbaum MJ, Weisel JW, Hartwig J, Abrams CS (2008b) Loss of pip5kigamma, unlike other pip5ki isoforms, impairs the integrity of the membrane cytoskeleton in murine megakaryocytes. J Clin Invest 118:812–819

    CAS  Google Scholar 

  • Weekes J, Barry ST, Critchley DR (1996) Acidic phospholipids inhibit the intramolecular association between the N- and C-terminal regions of vinculin, exposing actin-binding and protein kinase C phosphorylation sites. Biochem J 314(Pt 3):827–832

    Google Scholar 

  • Weernink PAO, Meletiadis K, Hommeltenberg S, Hinz M, Ishihara H, Schmidt M, Jakobs KH (2004) Activation of type i phosphatidylinositol 4-phosphate 5-kinase isoforms by the rho gtpases, rhoa, rac1, and cdc42. J Biol Chem 279:7840–7849

    Article  PubMed  CAS  Google Scholar 

  • Wenk MR, Pellegrini L, Klenchin VA, Di Paolo G, Chang S, Daniell L, Arioka M, Martin TF, De Camilli P (2001) Pip kinase i[gamma] is the major pi(4,5)p2 synthesizing enzyme at the synapse. Neuron 32:79–88

    Article  PubMed  CAS  Google Scholar 

  • Wernimont SA, Legate KR, Simonson WT, Fassler R, Huttenlocher A (2010) Pipki gamma 90 negatively regulates lfa-1-mediated adhesion and activation in antigen-induced cd4 + t cells. J Immunol 185:4714–4723

    Article  PubMed  CAS  Google Scholar 

  • Wong K-W, Isberg RR (2003) Arf6 and phosphoinositol-4-phosphate-5-kinase activities permit bypass of the rac1 requirement for {beta}1 integrin-mediated bacterial uptake. J Exp Med 198:603–614

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Chang SM, Pennypacker SD, Liao EY, Bikle DD (2009) Phosphatidylinositol 4-phosphate 5-kinase 1 alpha mediates extracellular calcium-induced keratinocyte differentiation. Mol Biol Cell 20:1695–1704

    Google Scholar 

  • Xu W, Wang P, Petri B, Zhang Y, Tang W, Sun L, Kress H, Mann T, Shi Y, Kubes P, Wu D (2010) Integrin-induced pip5k1c kinase polarization regulates neutrophil polarization, directionality, and in vivo infiltration. Immunity 33:340–350

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi H, Yoshida S, Muroi E, Kawamura M, Kouchi Z, Nakamura Y, Sakai R, Fukami K (2010) Phosphatidylinositol 4,5-bisphosphate and pip5-kinase ialpha are required for invadopodia formation in human breast cancer cells. Cancer Sci 101:1632–1638

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Hilgemann DH, Feng S, Bito H, Ishihara H, Shibasaki Y, Yin HL (2001) Phosphatidylinositol 4,5-bisphosphate induces actin stress-fiber formation and inhibits membrane ruffling in cv1 cells. J Cell Biol 152:867–876

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Chen MZ, Wang YJ, Sun HQ, Wei Y, Martinez M, Yin HL (2006) Hypertonic stress increases phosphatidylinositol 4,5-bisphosphate levels by activating pip5kibeta. J Biol Chem 281:32630–32638

    Article  PubMed  CAS  Google Scholar 

  • Yang SA, Carpenter CL, Abrams CS (2004) Rho and rho-kinase mediate thrombin-induced phosphatidylinositol 4-phosphate 5-kinase trafficking in platelets. J Biol Chem 279:42331–42336

    Article  PubMed  CAS  Google Scholar 

  • Yeo DS, Chan R, Brown G, Ying L, Sutejo R, Aitken J, Tan BH, Wenk MR, Sugrue RJ (2009) Evidence that selective changes in the lipid composition of raft-membranes occur during respiratory syncytial virus infection. Virology 86:168–182

    Google Scholar 

  • Yin HL, Janmey PA (2003) Phosphoinositide regulation of the actin cytoskeleton. Annu Rev Physiol 65:761–789

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Hakala M, Lappalainen P (2010) Adf/cofilin binds phosphoinositides in a multivalent manner to act as a pip(2)-density sensor. Biophys J 98:2327–2336

    Article  PubMed  CAS  Google Scholar 

  • Zoncu R, Perera RM, Sebastian R, Nakatsu F, Chen H, Balla T, Ayala G, Toomre D, De Camilli PV (2007) Loss of endocytic clathrin-coated pits upon acute depletion of phosphatidylinositol 4,5-bisphosphate. Proc Natl Acad Sci U S A 104:3793–3798

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen L. Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Zhang, L., Mao, Y.S., Janmey, P.A., Yin, H.L. (2012). Phosphatidylinositol 4, 5 Bisphosphate and the Actin Cytoskeleton. In: Balla, T., Wymann, M., York, J. (eds) Phosphoinositides II: The Diverse Biological Functions. Subcellular Biochemistry, vol 59. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3015-1_6

Download citation

Publish with us

Policies and ethics