Skip to main content

Common Denominators of Self-renewal and Malignancy in Neural Stem Cells and Glioma

  • Chapter
  • First Online:
  • 1050 Accesses

Abstract

Regulation of neural stem cell number needs to be tightly controlled. Mutations affecting stem cells or progenitor cells may result in uncontrolled proliferation and ultimately cancer. A growing body of evidence suggests that this mechanism underlies the genesis of several brain tumors, e.g. gliomas. The most malignant form is called glioblastoma multiforme and unfortunately its prognosis remains poor. The concept of tumor-causing stem cell-like cells, also called cancer stem cells, in solid tumors has attracted a lot of interest over the last 5–10 years. A glioma-initiating cell bearing stem cell characteristics has been proposed as the origin of glioma, with the ability to seed new tumors through the capacity to evade chemotherapy and irradiation. This would be a unique feature for glioma-initiating cells, not shared by the bulk of tumor cells. Neural progenitors and glioma-initiating cells have several common traits, such as sustained proliferation and a highly efficient migratory capacity in the brain. There are similarities between then neurogenic niche where adult neural stem cells reside, and the tumorigenic niche. These include interactions with the extracellular matrix, and many of the matrix components are deregulated in glioma. The signaling pathways that are mutated in glioma are in general important neural stem cell pathways that regulate cell proliferation/self renewal, differentiation, migration and survival. Molecular changes in these pathways due to mutations are associated with brain tumor development and so present therapy targets. Novel molecular classification of glioblastoma gives hope for more stratified treatment, and we are hopefully on the threshold to patient-specific treatments which may finally change the outcome in this devastating disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BMP:

Bone morphogenetic protein

BTSC:

Brain tumor stem cell

CSC:

Cancer stem cells

CNS:

Central nervous system

DG:

Dentate gyrus

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

ECM:

Extracellular matix

FGF-2:

Fibroblast growth factor-2

GBM:

Glioblastoma multiforme

Gli:

Glioma-associated oncogene homolog

GIC:

Glioma-initiating cell

HA:

Hyaluronan

MMP:

Matrix metalloprotease

NSC:

Neural stem cell

Ptch:

Patched

PTEN:

Phosphatase and tensin homolog

PDGF:

Platelet derived growth factor

RTK:

Receptor tyrosine kinase

RB1:

Retinoblastoma 1

Shh:

Sonic hedgehog

SCF:

Stem cell factor

SVZ:

Sub ventricular zone

SGZ:

Subgranular zone

TGF-β:

Transforming growth factor β

TP53:

Tumor protein 53

Wnt:

Wingless

References

  1. McKay R (1997) Stem cells in the central nervous system. Science 276:66–71

    Article  PubMed  CAS  Google Scholar 

  2. Gage F (2000) Mammalian neural stem cells. Science 287:1433–1438

    Article  PubMed  CAS  Google Scholar 

  3. Gage F (1998) Stem cells in the central nervous system. Curr Opin Neurobiol 8:671–676

    Article  PubMed  CAS  Google Scholar 

  4. Eriksson P, Perfilieva E, Björk-Eriksson T, Alborn A-M, Nordborg C, Peterson D, Gage F (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    Article  PubMed  CAS  Google Scholar 

  5. Temple S (2001) The development of neural stem cells. Nature 414:112–117

    Article  PubMed  CAS  Google Scholar 

  6. Alvarez-Buylla A, Garcia-Verdugo JM, Tramontin AD (2001) A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2:287–293

    Article  PubMed  CAS  Google Scholar 

  7. Guillemot F (2005) Cellular and molecular control of neurogenesis in the mammalian telencephalon. Curr Opin Cell Biol 17:639–647

    Article  PubMed  CAS  Google Scholar 

  8. Merkle FT, Tramontin AD, Garcia-Verdugo JM, Alvarez-Buylla A (2004) Radial glia give rise to adult neural stem cells in the subventricular zone. Proc Natl Acad Sci USA 101:17528–17532

    Article  PubMed  CAS  Google Scholar 

  9. Rakic P (1990) Principles of neural cell migration. Experientia 46:880–891

    Article  Google Scholar 

  10. Rakic P (1972) Mode of cell migration of the superficial layers of fetal monkey neocortex. J Comp Neurol 145:61–84

    Article  PubMed  CAS  Google Scholar 

  11. Tramontin AD, Garcia-Verdugo JM, Lim DA, Alvarez-Buylla A (2003) Postnatal development of radial glia and the ventricular zone (VZ): a continuum of the neural stem cell compartment. Cereb Cortex 13:580–587

    Article  PubMed  Google Scholar 

  12. McMahon SS, McDermott KW (2007) Developmental potential of radial glia investigated by transplantation into the developing rat ventricular system in utero. Exp Neurol 203:128–136

    Article  PubMed  CAS  Google Scholar 

  13. Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, Lawton MT, McDermott MW, Parsa AT, Manuel-Garcia Verdugo J, Berger MS, Alvarez-Buylla A (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427:740–744

    Article  PubMed  CAS  Google Scholar 

  14. Lois C, Alvarez-Buylla A (1993) Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci USA 90:2074–2077

    Article  PubMed  CAS  Google Scholar 

  15. Doetsch F, Alvarez-Buylla A (1996) Network of tangential pathways for neuronal migration in adult mammalian brain. Proc Natl Acad Sci USA 93:14895–14900

    Article  PubMed  CAS  Google Scholar 

  16. Han YG, Spassky N, Romaguera-Ros M, Garcia-Verdugo JM, Aguilar A, Schneider-Maunoury S, Alvarez-Buylla A (2008) Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells. Nat Neurosci 11:277–284

    Article  PubMed  CAS  Google Scholar 

  17. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716

    Article  PubMed  CAS  Google Scholar 

  18. Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148

    Article  PubMed  CAS  Google Scholar 

  19. Curtis MA, Kam M, Nannmark U, Anderson MF, Axell MZ, Wikkelso C, Holtas S, van Roon-Mom WM, Bjork-Eriksson T, Nordborg C, Frisen J, Dragunow M, Faull RL, Eriksson PS (2007) Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315:1243–1249

    Article  PubMed  CAS  Google Scholar 

  20. van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415:1030–1034

    Article  PubMed  CAS  Google Scholar 

  21. Ma DK, Kim WR, Ming GL, Song H (2009) Activity-dependent extrinsic regulation of adult olfactory bulb and hippocampal neurogenesis. Ann N Y Acad Sci 1170:664–673

    Article  PubMed  Google Scholar 

  22. Vukovic J, Blackmore DG, Jhaveri D, Bartlett PF (2011) Activation of neural precursors in the adult neurogenic niches. Neurochem Int 59(3):341–346

    PubMed  CAS  Google Scholar 

  23. Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbors: stem cells and their niche. Cell 116:769–778

    Article  PubMed  CAS  Google Scholar 

  24. Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425:479–494

    Article  PubMed  CAS  Google Scholar 

  25. Lim DA, Tramontin AD, Trevejo JM, Herrera DG, Garcia-Verdugo JM, Alvarez-Buylla A (2000) Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28:713–726

    Article  PubMed  CAS  Google Scholar 

  26. Lim DA, Alvarez-Buylla A (1999) Interaction between astrocytes and adult subventricular zone precursors stimulates neurogenesis. Proc Natl Acad Sci USA 96:7526–7531

    Article  PubMed  CAS  Google Scholar 

  27. Seri B, Garcia-Verdugo JM, Collado-Morente L, McEwen BS, Alvarez-Buylla A (2004) Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol 478:359–378

    Article  PubMed  Google Scholar 

  28. Shen Q, Goderie SK, Jin L, Karanth N, Sun Y, Abramova N, Vincent P, Pumiglia K, Temple S (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304:1338–1340

    Article  PubMed  CAS  Google Scholar 

  29. Ward NL, Lamanna JC (2004) The neurovascular unit and its growth factors: coordinated response in the vascular and nervous systems. Neurol Res 26:870–883

    Article  PubMed  CAS  Google Scholar 

  30. Lendahl U, Zimmerman L, McKay RDG (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60:585–595

    Article  PubMed  CAS  Google Scholar 

  31. Nguyen L, Rigo JM, Malgrange B, Moonen G, Belachew S (2003) Untangling the functional potential of PSA-NCAM-expressing cells in CNS development and brain repair strategies. Curr Med Chem 10:2185–2196

    Article  PubMed  CAS  Google Scholar 

  32. Erlandsson A, Enarsson M, Forsberg-Nilsson K (2001) Immature neurons from CNS stem cells proliferate in response to PDGF. J Neurosci 21:3483–3491

    PubMed  CAS  Google Scholar 

  33. Jackson EL, Garcia-Verdugo JM, Gil-Perotin S, Roy M, Quinones-Hinojosa A, VandenBerg S, Alvarez-Buylla A (2006) PDGFR alpha-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 51:187–199

    Article  PubMed  CAS  Google Scholar 

  34. Yoon K, Gaiano N (2005) Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat Neurosci 8:709–715

    Article  PubMed  CAS  Google Scholar 

  35. Cai J, Wu Y, Mirua T, Pierce JL, Lucero MT, Albertine KH, Spangrude GJ, Rao MS (2002) Properties of a fetal multipotent neural stem cell (NEP cell). Dev Biol 251:221–240

    Article  PubMed  CAS  Google Scholar 

  36. Singh SK, Clarke ID, Hide T, Dirks PB (2004) Cancer stem cells in nervous system tumors. Oncogene 23:7267–7273

    Article  PubMed  CAS  Google Scholar 

  37. Leone DP, Relvas JB, Campos LS, Hemmi S, Brakebusch C, Fassler R, Ffrench-Constant C, Suter U (2005) Regulation of neural progenitor proliferation and survival by beta1 integrins. J Cell Sci 118:2589–2599

    Article  PubMed  CAS  Google Scholar 

  38. Campos LS (2005) Beta1 integrins and neural stem cells: making sense of the extracellular environment. Bioessays 27:698–707

    Article  PubMed  CAS  Google Scholar 

  39. Shen Q, Wang Y, Kokovay E, Lin G, Chuang SM, Goderie SK, Roysam B, Temple S (2008) Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3:289–300

    Article  PubMed  CAS  Google Scholar 

  40. Alonso G (2001) Proliferation of progenitor cells in the adult rat brain correlates with the presence of vimentin-expressing astrocytes. Glia 34:253–266

    Article  PubMed  CAS  Google Scholar 

  41. Miyagi S, Kato H, Okuda A (2009) Role of SoxB1 transcription factors in development. Cell Mol Life Sci 66:3675–3684

    Article  PubMed  CAS  Google Scholar 

  42. Scott CE, Wynn SL, Sesay A, Cruz C, Cheung M, Gomez Gaviro MV, Booth S, Gao B, Cheah KS, Lovell-Badge R, Briscoe J (2010) SOX9 induces and maintains neural stem cells. Nat Neurosci 13:1181–1189

    Article  PubMed  CAS  Google Scholar 

  43. Louis SA, Rietze RL, Deleyrolle L, Wagey RE, Thomas TE, Eaves AC, Reynolds BA (2008) Enumeration of neural stem and progenitor cells in the neural colony-forming cell assay. Stem Cells (Dayton, Ohio) 26:988–996

    Article  Google Scholar 

  44. Hartfuss E, Galli R, Heins N, Gotz M (2001) Characterization of CNS precursor subtypes and radial glia. Dev Biol 229:15–30

    Article  PubMed  CAS  Google Scholar 

  45. Noctor SC, Flint AC, Weissman TA, Wong WS, Clinton BK, Kriegstein AR (2002) Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci 22:3161–3173

    PubMed  CAS  Google Scholar 

  46. Ma DK, Bonaguidi MA, Ming GL, Song H (2009) Adult neural stem cells in the mammalian central nervous system. Cell Res 19:672–682

    Article  PubMed  CAS  Google Scholar 

  47. Egger B, Gold KS, Brand AH (2010) Notch regulates the switch from symmetric to asymmetric neural stem cell division in the Drosophila optic lobe. Development (Cambridge, England) 137:2981–2987

    Article  CAS  Google Scholar 

  48. Kageyama R, Ohtsuka T, Shimojo H, Imayoshi I (2009) Dynamic regulation of Notch signaling in neural progenitor cells. Curr Opin Cell Biol 21:733–740

    Article  PubMed  CAS  Google Scholar 

  49. Reynolds BA, Tetzlaff W, Weiss S (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12:4565–4574

    PubMed  CAS  Google Scholar 

  50. Reynolds BA, Weiss S (1996) Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 175:1–13

    Article  PubMed  CAS  Google Scholar 

  51. Gritti A, Parati EA, Cova L, Frolichsthal P, Galli R, Wanke E, Faravelli L, Morassutti DJ, Roisen F, Nickel DD, Vescovi AL (1996) Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J Neurosci 16:1091–1100

    PubMed  CAS  Google Scholar 

  52. Johe KK, Hazel TG, Muller T, Dugich Djordjevic MM, McKay RD (1996) Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev 10:3129–3140

    Article  PubMed  CAS  Google Scholar 

  53. Suslov ON, Kukekov VG, Ignatova TN, Steindler DA (2002) Neural stem cell heterogeneity demonstrated by molecular phenotyping of clonal neurospheres. Proc Natl Acad Sci USA 99:14506–14511

    Article  PubMed  CAS  Google Scholar 

  54. Reynolds BA, Rietze RL (2005) Neural stem cells and neurospheres–re-evaluating the relationship. Nat Methods 2:333–336

    Article  PubMed  CAS  Google Scholar 

  55. Singec I, Knoth R, Meyer RP, Maciaczyk J, Volk B, Nikkhah G, Frotscher M, Snyder EY (2006) Defining the actual sensitivity and specificity of the neurosphere assay in stem cell biology. Nat Methods 3:801–806

    Article  PubMed  CAS  Google Scholar 

  56. Pardo B, Honegger P (2000) Differentiation of rat striatal embryonic stem cells in vitro: monolayer culture vs. three-dimensional coculture with differentiated brain cells. J Neurosci Res 59:504–512

    Article  PubMed  CAS  Google Scholar 

  57. Okabe S, Forsberg-Nilsson K, Spiro AC, Segal M, McKay RD (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev 59:89–102

    Article  PubMed  CAS  Google Scholar 

  58. Andang M, Moliner A, Doege CA, Ibanez CF, Ernfors P (2008) Optimized mouse ES cell culture system by suspension growth in a fully defined medium. Nat Protoc 3:1013–1017

    Article  PubMed  CAS  Google Scholar 

  59. Conti L, Pollard SM, Gorba T, Reitano E, Toselli M, Biella G, Sun Y, Sanzone S, Ying QL, Cattaneo E, Smith A (2005) Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol 3:e283

    Article  PubMed  CAS  Google Scholar 

  60. Bailey P, Cushing H (1926) A classification of tumors of the glioma group on a histogenic basis. J. Lippincott, Philadelphia

    Google Scholar 

  61. Virchow R (1858) Cellular pathology. Berlin

    Google Scholar 

  62. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  PubMed  Google Scholar 

  63. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  PubMed  CAS  Google Scholar 

  64. Nakada M, Nakada S, Demuth T, Tran NL, Hoelzinger DB, Berens ME (2007) Molecular targets of glioma invasion. Cell Mol Life Sci 64:458–478

    Article  PubMed  CAS  Google Scholar 

  65. Rasheed BK, McLendon RE, Friedman HS, Friedman AH, Fuchs HE, Bigner DD, Bigner SH (1995) Chromosome 10 deletion mapping in human gliomas: a common deletion region in 10q25. Oncogene 10:2243–2246

    PubMed  CAS  Google Scholar 

  66. Wong AJ, Bigner SH, Bigner DD, Kinzler KW, Hamilton SR, Vogelstein B (1987) Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc Natl Acad Sci USA 84:6899–6903

    Article  PubMed  CAS  Google Scholar 

  67. Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068

    Article  CAS  Google Scholar 

  68. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA Jr, Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812

    Article  PubMed  CAS  Google Scholar 

  69. Rich JN, Bigner DD (2004) Development of novel targeted therapies in the treatment of malignant glioma. Nat Rev Drug Discov 3:430–446

    Article  PubMed  CAS  Google Scholar 

  70. Riddick G, Fine H (2011) Integration and analysis of genome-scale data from gliomas. Nat Rev Neurol 7:439–450

    Article  PubMed  CAS  Google Scholar 

  71. Brennan C, Momota H, Hambardzumyan D, Ozawa T, Tandon A, Pedraza A, Holland E (2009) Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS One 4:e7752

    Article  PubMed  CAS  Google Scholar 

  72. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O’Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110

    Article  PubMed  CAS  Google Scholar 

  73. Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H (2011) The brain tumor microenvironment. Glia 59:1169–1180

    Article  PubMed  Google Scholar 

  74. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  75. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507

    Article  PubMed  CAS  Google Scholar 

  76. Le DM, Besson A, Fogg DK, Choi KS, Waisman DM, Goodyer CG, Rewcastle B, Yong VW (2003) Exploitation of astrocytes by glioma cells to facilitate invasiveness: a mechanism involving matrix metalloproteinase-2 and the urokinase-type plasminogen activator-plasmin cascade. J Neurosci 23:4034–4043

    PubMed  Google Scholar 

  77. Hoelzinger DB, Demuth T, Berens ME (2007) Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. J Natl Cancer Inst 99:1583–1593

    Article  PubMed  CAS  Google Scholar 

  78. Badie B, Schartner JM (2000) Flow cytometric characterization of tumor-associated macrophages in experimental gliomas. Neurosurgery 46:957–961, Discussion 961–952

    PubMed  CAS  Google Scholar 

  79. Parney IF, Waldron JS, Parsa AT (2009) Flow cytometry and in vitro analysis of human glioma-associated macrophages. Laboratory investigation. J Neurosurg 110:572–582

    Article  PubMed  CAS  Google Scholar 

  80. Pollack IF, Okada H, Chambers WH (2000) Exploitation of immune mechanisms in the treatment of central nervous system cancer. Semin Pediatr Neurol 7:131–143

    Article  PubMed  CAS  Google Scholar 

  81. Packer R (1999) childhood medulloblastoma: progress and future challenges. Brain Dev 21:75–81

    Article  PubMed  CAS  Google Scholar 

  82. Giese A, Westphal M (1996) Glioma invasion in the central nervous system. Neurosurgery 39:235–250, Discussion 250–232

    Article  PubMed  CAS  Google Scholar 

  83. Giese A, Rief MD, Loo MA, Berens ME (1994) Determinants of human astrocytoma migration. Cancer Res 54:3897–3904

    PubMed  CAS  Google Scholar 

  84. Bellail AC, Hunter SB, Brat DJ, Tan C, Van Meir EG (2004) Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int J Biochem Cell Biol 36:1046–1069

    Article  PubMed  CAS  Google Scholar 

  85. Lund-Johansen M, Bjerkvig R, Humphrey PA, Bigner SH, Bigner DD, Laerum OD (1990) Effect of epidermal growth factor on glioma cell growth, migration, and invasion in vitro. Cancer Res 50:6039–6044

    PubMed  CAS  Google Scholar 

  86. Lund-Johansen M, Forsberg K, Bjerkvig R, Laerum OD (1992) Effects of growth factors on a human glioma cell line during invasion into rat brain aggregates in culture. Acta Neuropathol 84:190–197

    Article  PubMed  CAS  Google Scholar 

  87. Hong X, Jiang F, Kalkanis SN, Zhang ZG, Zhang XP, DeCarvalho AC, Katakowski M, Bobbitt K, Mikkelsen T, Chopp M (2006) SDF-1 and CXCR4 are up-regulated by VEGF and contribute to glioma cell invasion. Cancer Lett 236:39–45

    Article  PubMed  CAS  Google Scholar 

  88. Ponten J, Westermark B (1978) Properties of human malignant glioma cells in vitro. Med Biol 56:184–193

    PubMed  CAS  Google Scholar 

  89. Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, Park JK, Fine HA (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9:391–403

    Article  PubMed  CAS  Google Scholar 

  90. Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 100:15178–15183

    Article  PubMed  CAS  Google Scholar 

  91. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    PubMed  CAS  Google Scholar 

  92. Pollard SM, Yoshikawa K, Clarke ID, Danovi D, Stricker S, Russell R, Bayani J, Head R, Lee M, Bernstein M, Squire JA, Smith A, Dirks P (2009) Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4:568–580

    Article  PubMed  CAS  Google Scholar 

  93. Kelly JJ, Stechishin O, Chojnacki A, Lun X, Sun B, Senger DL, Forsyth P, Auer RN, Dunn JF, Cairncross JG, Parney IF, Weiss S (2009) Proliferation of human glioblastoma stem cells occurs independently of exogenous mitogens. Stem Cells (Dayton, Ohio) 27:1722–1733

    Article  CAS  Google Scholar 

  94. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648

    Article  PubMed  CAS  Google Scholar 

  95. Tohyama T, Lee V, Rorke L, Marvin M, McKay R, Trojanowsky J (1992) Nestin expression ion embryonic human neuroepithelim and in human neuroepithelial tumor cells. Lab Invest 66:303–313

    PubMed  CAS  Google Scholar 

  96. Dahlstrand J, Lardelli M, Lendahl U (1995) Nestin mRNA expression correlates with the central nervous system progenitor cell state in many, but not all, regions of developing central nervous system. Brain Res Dev Brain Res 84:109–129

    Article  PubMed  CAS  Google Scholar 

  97. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021

    Article  PubMed  CAS  Google Scholar 

  98. Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA (2002) Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39:193–206

    Article  PubMed  Google Scholar 

  99. Dirks PB (2010) Brain tumor stem cells: the cancer stem cell hypothesis writ large. Mol Oncol 4:420–430

    Article  PubMed  Google Scholar 

  100. Park DM, Rich JN (2009) Biology of glioma cancer stem cells. Mol Cells 28:7–12

    Article  PubMed  CAS  Google Scholar 

  101. Huse JT, Holland EC (2010) Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev 10:319–331

    Article  CAS  Google Scholar 

  102. Ogden AT, Waziri AE, Lochhead RA, Fusco D, Lopez K, Ellis JA, Kang J, Assanah M, McKhann GM, Sisti MB, McCormick PC, Canoll P, Bruce JN (2008) Identification of A2B5 + CD133- tumor-initiating cells in adult human gliomas. Neurosurgery 62:505–514, Discussion 514–505

    Article  PubMed  Google Scholar 

  103. Wang J, Sakariassen PO, Tsinkalovsky O, Immervoll H, Boe SO, Svendsen A, Prestegarden L, Rosland G, Thorsen F, Stuhr L, Molven A, Bjerkvig R, Enger PO (2008) CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int J Cancer 122:761–768

    Article  PubMed  CAS  Google Scholar 

  104. Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A (2007) Tumor growth need not be driven by rare cancer stem cells. Science 317:337

    Article  PubMed  CAS  Google Scholar 

  105. Rosen JM, Jordan CT (2009) The increasing complexity of the cancer stem cell paradigm. Science 324:1670–1673

    Article  PubMed  CAS  Google Scholar 

  106. Dai C, Celestino J, Okada Y, Louis D, Fuller G, Holland E (2001) PDGF autocrine stimulation dedifferentiates cultured astrocyets and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astroyctes in vivo. Genes Dev 15:1913–1925

    Article  PubMed  CAS  Google Scholar 

  107. Demoulin J-B, Enarsson M, Larsson J, Essaghir A, Heldin C-H, Forsberg-Nilsson K (2006) The gene expression profile of PDGF-treated neural stem cells corresponds to partially differentiated neurons and glia. Growth Factors 24:184–196

    Article  PubMed  CAS  Google Scholar 

  108. Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W, Small JE, Herrlinger U, Ourednik V, Black PM, Breakefield XO, Snyder EY (2000) Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA 97:12846–12851

    Article  PubMed  CAS  Google Scholar 

  109. Glass R, Synowitz M, Kronenberg G, Walzlein JH, Markovic DS, Wang LP, Gast D, Kiwit J, Kempermann G, Kettenmann H (2005) Glioblastoma-induced attraction of endogenous neural precursor cells is associated with improved survival. J Neurosci 25:2637–2646

    Article  PubMed  CAS  Google Scholar 

  110. Staflin K, Honeth G, Kalliomaki S, Kjellman C, Edvardsen K, Lindvall M (2004) Neural progenitor cell lines inhibit rat tumor growth in vivo. Cancer Res 64:5347–5354

    Article  PubMed  CAS  Google Scholar 

  111. Tropepe V, Craig CG, Morshead CM, van der Kooy D (1997) Transforming growth factor-alpha null and senescent mice show decreased neural progenitor cell proliferation in the forebrain subependyma. J Neurosci 17:7850–7859

    PubMed  CAS  Google Scholar 

  112. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    Article  PubMed  CAS  Google Scholar 

  113. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A, Davidoff A, Gilbertson RJ (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82

    Article  PubMed  CAS  Google Scholar 

  114. Preston M, Sherman LS (2011) Neural stem cell niches: roles for the hyaluronan-based extracellular matrix. Front Biosci (Schol Ed) 3:1165–1179

    Article  Google Scholar 

  115. Delpech B, Maingonnat C, Girard N, Chauzy C, Maunoury R, Olivier A, Tayot J, Creissard P (1993) Hyaluronan and hyaluronectin in the extracellular matrix of human brain tumour stroma. Eur J Cancer 29A:1012–1017

    Article  PubMed  CAS  Google Scholar 

  116. Bignami A, Perides G, Asher R, Dahl D (1992) The astrocyte–extracellular matrix complex in CNS myelinated tracts: a comparative study on the distribution of hyaluronate in rat, goldfish and lamprey. J Neurocytol 21:604–613

    Article  PubMed  CAS  Google Scholar 

  117. De Clerck YA, Shimada H, Gonzalez-Gomez I, Raffel C (1994) Tumoral invasion in the central nervous system. J Neurooncol 18:111–121

    Article  PubMed  Google Scholar 

  118. Englund U, Bjorklund A, Wictorin K, Lindvall O, Kokaia M (2002) Grafted neural stem cells develop into functional pyramidal neurons and integrate into host cortical circuitry. Proc Natl Acad Sci USA 99:17089–17094

    Article  PubMed  CAS  Google Scholar 

  119. Tabar V, Panagiotakos G, Greenberg ED, Chan BK, Sadelain M, Gutin PH, Studer L (2005) Migration and differentiation of neural precursors derived from human embryonic stem cells in the rat brain. Nat Biotechnol 23:601–606

    Article  PubMed  CAS  Google Scholar 

  120. Akiyama Y, Jung S, Salhia B, Lee S, Hubbard S, Taylor M, Mainprize T, Akaishi K, van Furth W, Rutka JT (2001) Hyaluronate receptors mediating glioma cell migration and proliferation. J Neurooncol 53:115–127

    Article  PubMed  CAS  Google Scholar 

  121. Koochekpour S, Pilkington GJ, Merzak A (1995) Hyaluronic acid/CD44H interaction induces cell detachment and stimulates migration and invasion of human glioma cells in vitro. Int J Cancer 63:450–454

    Article  PubMed  CAS  Google Scholar 

  122. Yu Q, Stamenkovic I (1999) Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev 13:35–48

    Article  PubMed  CAS  Google Scholar 

  123. Garcion E, Halilagic A, Faissner A, ffrench-Constant C (2004) Generation of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C. Development (Cambridge, England) 131:3423–3432

    Article  CAS  Google Scholar 

  124. Steindler DA, Settles D, Erickson HP, Laywell ED, Yoshiki A, Faissner A, Kusakabe M (1995) Tenascin knockout mice: barrels, boundary molecules, and glial scars. J Neurosci 15:1971–1983

    PubMed  CAS  Google Scholar 

  125. Gates MA, Fillmore H, Steindler DA (1996) Chondroitin sulfate proteoglycan and tenascin in the wounded adult mouse neostriatum in vitro: dopamine neuron attachment and process outgrowth. J Neurosci 16:8005–8018

    PubMed  CAS  Google Scholar 

  126. Nishio T, Kawaguchi S, Yamamoto M, Iseda T, Kawasaki T, Hase T (2005) Tenascin-C regulates proliferation and migration of cultured astrocytes in a scratch wound assay. Neuroscience 132:87–102

    Article  PubMed  CAS  Google Scholar 

  127. Maris C, Rorive S, Sandras F, D’Haene N, Sadeghi N, Bieche I, Vidaud M, Decaestecker C, Salmon I (2008) Tenascin-C expression relates to clinicopathological features in pilocytic and diffuse astrocytomas. Neuropathol Appl Neurobiol 34:316–329

    Article  PubMed  CAS  Google Scholar 

  128. Sarkar S, Nuttall RK, Liu S, Edwards DR, Yong VW (2006) Tenascin-C stimulates glioma cell invasion through matrix metalloproteinase-12. Cancer Res 66:11771–11780

    Article  PubMed  CAS  Google Scholar 

  129. Yong VW (1999) The potential use of MMP inhibitors to treat CNS diseases. Expert Opin Investig Drugs 8:255s–268s

    Article  Google Scholar 

  130. Rao VH, Lees GE, Kashtan CE, Nemori R, Singh RK, Meehan DT, Rodgers K, Berridge BR, Bhattacharya G, Cosgrove D (2003) Increased expression of MMP-2, MMP-9 (type IV collagenases/gelatinases), and MT1-MMP in canine X-linked Alport syndrome (XLAS). Kidney Int 63:1736–1748

    Article  PubMed  CAS  Google Scholar 

  131. Wang M, Wang T, Liu S, Yoshida D, Teramoto A (2003) The expression of matrix metalloproteinase-2 and -9 in human gliomas of different pathological grades. Brain Tumor Pathol 20:65–72

    Article  PubMed  Google Scholar 

  132. Rao JS, Bhoopathi P, Chetty C, Gujrati M, Lakka SS (2007) MMP-9 short interfering RNA induced senescence resulting in inhibition of medulloblastoma growth via p16(INK4a) and mitogen-activated protein kinase pathway. Cancer Res 67:4956–4964

    Article  PubMed  CAS  Google Scholar 

  133. Gabelloni P, Da Pozzo E, Bendinelli S, Costa B, Nuti E, Casalini F, Orlandini E, Da Settimo F, Rossello A, Martini C (2010) Inhibition of metalloproteinases derived from tumours: new insights in the treatment of human glioblastoma. Neuroscience 168:514–522

    Article  PubMed  CAS  Google Scholar 

  134. Gingras MC, Roussel E, Roth JA, Moser RP (1995) Little expression of cytokine mRNA by fresh tumour-infiltrating mononuclear leukocytes from glioma and lung adenocarcinoma. Cytokine 7:580–588

    Article  PubMed  CAS  Google Scholar 

  135. Mahesparan R, Read TA, Lund-Johansen M, Skaftnesmo KO, Bjerkvig R, Engebraaten O (2003) Expression of extracellular matrix components in a highly infiltrative in vivo glioma model. Acta Neuropathol 105:49–57

    PubMed  CAS  Google Scholar 

  136. Gladson CL (1996) Expression of integrin alpha v beta 3 in small blood vessels of glioblastoma tumors. J Neuropathol Exp Neurol 55:1143–1149

    Article  PubMed  CAS  Google Scholar 

  137. Bello L, Francolini M, Marthyn P, Zhang J, Carroll RS, Nikas DC, Strasser JF, Villani R, Cheresh DA, Black PM (2001) Alpha(v)beta3 and alpha(v)beta5 integrin expression in glioma periphery. Neurosurgery 49:380–389, Discussion 390

    PubMed  CAS  Google Scholar 

  138. Brooks PC, Stromblad S, Sanders LC, von Schalscha TL, Aimes RT, Stetler-Stevenson WG, Quigley JP, Cheresh DA (1996) Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 85:683–693

    Article  PubMed  CAS  Google Scholar 

  139. Heldin CH (2001) Signal transduction: multiple pathways, multiple options for therapy. Stem Cells (Dayton, Ohio) 19:295–303

    Article  CAS  Google Scholar 

  140. Burrows RC, Wancio D, Levitt P, Lillien L (1997) Response diversity and the timing of progenitor cell maturation are regulated by developmental changes in EGFR expression in the cortex. Neuron 19:251–267

    Article  PubMed  CAS  Google Scholar 

  141. Zhu G, Mehler MF, Mabie PC, Kessler JA (1999) Developmental changes in progenitor cell responsiveness to cytokines. J Neurosci Res 56:131–145

    Article  PubMed  CAS  Google Scholar 

  142. Ramnarain DB, Park S, Lee DY, Hatanpaa KJ, Scoggin SO, Otu H, Libermann TA, Raisanen JM, Ashfaq R, Wong ET, Wu J, Elliott R, Habib AA (2006) Differential gene expression analysis reveals generation of an autocrine loop by a mutant epidermal growth factor receptor in glioma cells. Cancer Res 66:867–874

    Article  PubMed  CAS  Google Scholar 

  143. Nishikawa R, Ji XD, Harmon RC, Lazar CS, Gill GN, Cavenee WK, Huang HJ (1994) A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proc Natl Acad Sci USA 91:7727–7731

    Article  PubMed  CAS  Google Scholar 

  144. Krakstad C, Chekenya M (2010) Survival signalling and apoptosis resistance in glioblastomas: opportunities for targeted therapeutics. Mol Cancer 9:135

    Article  PubMed  CAS  Google Scholar 

  145. Mukasa A, Wykosky J, Ligon KL, Chin L, Cavenee WK, Furnari F (2010) Mutant EGFR is required for maintenance of glioma growth in vivo, and its ablation leads to escape from receptor dependence. Proc Natl Acad Sci USA 107:2616–2621

    Article  PubMed  CAS  Google Scholar 

  146. Santos FP, Quintas-Cardama A (2011) New drugs for chronic myelogenous leukemia. Curr Hematol Malig Rep 6:96–103

    Article  PubMed  Google Scholar 

  147. Morris PG, Abrey LE (2010) Novel targeted agents for platelet-derived growth factor receptor and c-KIT in malignant gliomas. Target Oncol 5:193–200

    Article  PubMed  Google Scholar 

  148. Andrae J, Gallini R, Betsholtz C (2008) Role of platelet-derived growth factors in physiology and medicine. Genes Dev 22:1276–1312

    Article  PubMed  CAS  Google Scholar 

  149. Orr-Urtreger A, Lonai P (1992) Platelet-derived growth factor-A and its receptor are expressed in separate, but adjacent cell layers of the mouse embryo. Development (Cambridge, England) 115:1045–1058

    CAS  Google Scholar 

  150. Pringle N, Mudhar H, Collarini E, Richardson W (1992) PDGF receptors in the rat CNS: during late neurogenesis, PDGF alpha-receptor expression appears to be restricted to glial cells of the oligodendrocyte lineage. Development (Cambridge, England) 115:535–551

    CAS  Google Scholar 

  151. Heldin C-H, Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 4:1283–1316

    Google Scholar 

  152. Uhrbom L, Hesselager G, Nister M, Westermark B (1998) Induction of brain tumors in mice using a recombinant platelet-derived growth factor B-chain retrovirus. Cancer Res 58:5275–5279

    PubMed  CAS  Google Scholar 

  153. Appolloni I, Calzolari F, Tutucci E, Caviglia S, Terrile M, Corte G, Malatesta P (2009) PDGF-B induces a homogeneous class of oligodendrogliomas from embryonic neural progenitors. Int J Cancer 124:2251–2259

    Article  PubMed  CAS  Google Scholar 

  154. Lindberg N, Kastemar M, Olofsson T, Smits A, Uhrbom L (2009) Oligodendrocyte progenitor cells can act as cell of origin for experimental glioma. Oncogene 28:2266–2275

    Article  PubMed  CAS  Google Scholar 

  155. Assanah MC, Bruce JN, Suzuki SO, Chen A, Goldman JE, Canoll P (2009) PDGF stimulates the massive expansion of glial progenitors in the neonatal forebrain. Glia 57:1835–1847

    Article  PubMed  CAS  Google Scholar 

  156. Forsberg-Nilsson K, Erlandsson A, Zhang X-Q, Ueda H, Svensson K, Nister M, Trapp B, Peterson A, Westermark B (2003) Oligodendrocyte precursor hypercellularity and abnormal retina development in mice overexpressing PDGF-B in myelinating tracts. Glia 41:276–289

    Article  PubMed  Google Scholar 

  157. Fruttiger M, Karlsson L, Hall A, Abrahamsson A, Calver A, Boström H, Willets K, Bertold C-H, Heath J, Betsholtz C, Richardson W (1999) Defective oligodendrocyte development and severe hypomyelination in PDGF-A knockout mice. Development (Cambridge, England) 126:457–467

    CAS  Google Scholar 

  158. Niklasson M, Bergstrom T, Zhang XQ, Gustafsdottir SM, Sjogren M, Edqvist PH, Vennstrom B, Forsberg M, Forsberg-Nilsson K (2010) Enlarged lateral ventricles and aberrant behavior in mice overexpressing PDGF-B in embryonic neural stem cells. Exp Cell Res 316:2779–2789

    Article  PubMed  CAS  Google Scholar 

  159. Hede SM, Hansson I, Afink GB, Eriksson A, Nazarenko I, Andrae J, Genove G, Westermark B, Nister M (2008) GFAP promoter driven transgenic expression of PDGFB in the mouse brain leads to glioblastoma in a Trp53 null background. Glia 57(11)

    Google Scholar 

  160. Williams B, Park J, Alberta J, Muhlebach S, Hwang G, Roberts T, Stiles C (1997) A PDGF-regulated immediate early gene response initiates neuronal differentiation in ventricular zone progenitor cells. Neuron 18:553–562

    Article  PubMed  CAS  Google Scholar 

  161. Erlandsson A, Brannvall K, Gustafsdottir S, Westermark B, Forsberg-Nilsson K (2006) Autocrine/paracrine platelet-derived growth factor regulates proliferation of neural progenitor cells. Cancer Res 66:8042–8048

    Article  PubMed  CAS  Google Scholar 

  162. Chojnacki A, Mak G, Weiss S (2011) PDGFRα expression distinguishes GFAP-expressing neural stem cells from PDGF-responsive neural precursors in the adult periventricular area. J Neurosci 31:9503–9512

    Article  PubMed  CAS  Google Scholar 

  163. Thery C, Hetier E, Evrard C, Mallat M (1990) Expression of macrophage colony-stimulating factor gene in the mouse brain during development. J Neurosci Res 26:129–133

    Article  PubMed  CAS  Google Scholar 

  164. Raivich G, Gehrmann J, Kreutzberg GW (1991) Increase of macrophage colony-stimulating factor and granulocyte-macrophage colony-stimulating factor receptors in the regenerating rat facial nucleus. J Neurosci Res 30:682–686

    Article  PubMed  CAS  Google Scholar 

  165. Murphy GM Jr, Zhao F, Yang L, Cordell B (2000) Expression of macrophage colony-stimulating factor receptor is increased in the AbetaPP(V717F) transgenic mouse model of Alzheimer’s disease. Am J Pathol 157:895–904

    Article  PubMed  CAS  Google Scholar 

  166. Lue LF, Rydel R, Brigham EF, Yang LB, Hampel H, Murphy GM Jr, Brachova L, Yan SD, Walker DG, Shen Y, Rogers J (2001) Inflammatory repertoire of Alzheimer’s disease and nondemented elderly microglia in vitro. Glia 35:72–79

    Article  PubMed  CAS  Google Scholar 

  167. Du Yan S, Zhu H, Fu J, Yan SF, Roher A, Tourtellotte WW, Rajavashisth T, Chen X, Godman GC, Stern D, Schmidt AM (1997) Amyloid-beta peptide-receptor for advanced glycation endproduct interaction elicits neuronal expression of macrophage-colony stimulating factor: a proinflammatory pathway in Alzheimer disease. Proc Natl Acad Sci USA 94:5296–5301

    Article  PubMed  CAS  Google Scholar 

  168. Mitrasinovic OM, Perez GV, Zhao F, Lee YL, Poon C, Murphy GM Jr (2001) Overexpression of macrophage colony-stimulating factor receptor on microglial cells induces an inflammatory response. J Biol Chem 276:30142–30149

    Article  PubMed  CAS  Google Scholar 

  169. Yang M, Donaldson AE, Marshall CE, Shen J, Iacovitti L (2004) Studies on the differentiation of dopaminergic traits in human neural progenitor cells in vitro and in vivo. Cell Transplant 13:535–547

    Article  PubMed  Google Scholar 

  170. Schabitz WR, Kruger C, Pitzer C, Weber D, Laage R, Gassler N, Aronowski J, Mier W, Kirsch F, Dittgen T, Bach A, Sommer C, Schneider A (2008) A neuroprotective function for the hematopoietic protein granulocyte-macrophage colony stimulating factor (GM-CSF). J Cereb Blood Flow Metab 28:29–43

    Article  PubMed  CAS  Google Scholar 

  171. Kruger C, Laage R, Pitzer C, Schabitz WR, Schneider A (2007) The hematopoietic factor GM-CSF (granulocyte-macrophage colony-stimulating factor) promotes neuronal differentiation of adult neural stem cells in vitro. BMC Neurosci 8:88

    Article  PubMed  CAS  Google Scholar 

  172. Alterman RL, Stanley ER (1994) Colony stimulating factor-1 expression in human glioma. Mol Chem Neuropathol 21:177–188

    Article  PubMed  CAS  Google Scholar 

  173. Komohara Y, Ohnishi K, Kuratsu J, Takeya M (2008) Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol 216:15–24

    Article  PubMed  CAS  Google Scholar 

  174. Bender AM, Collier LS, Rodriguez FJ, Tieu C, Larson JD, Halder C, Mahlum E, Kollmeyer TM, Akagi K, Sarkar G, Largaespada DA, Jenkins RB (2010) Sleeping beauty-mediated somatic mutagenesis implicates CSF1 in the formation of high-grade astrocytomas. Cancer Res 70:3557–3565

    Article  PubMed  CAS  Google Scholar 

  175. Glaspy J (1996) Clinical applications of stem cell factor. Curr Opin Hematol 3:223–229

    Article  PubMed  CAS  Google Scholar 

  176. Dolci S, Williams DE, Ernst MK, Resnick JL, Brannan CI, Lock LF, Lyman SD, Boswell HS, Donovan PJ (1991) Requirement for mast cell growth factor for primordial germ cell survival in culture. Nature 352:809–811

    Article  PubMed  CAS  Google Scholar 

  177. Lowry PA, Zsebo KM, Deacon DH, Eichman CE, Quesenberry PJ (1991) Effects of rrSCF on multiple cytokine responsive HPP-CFC generated from SCA + Lin- murine hematopoietic progenitors. Exp Hematol 19:994–996

    PubMed  CAS  Google Scholar 

  178. Heinrich MC, Dooley DC, Freed AC, Band L, Hoatlin ME, Keeble WW, Peters ST, Silvey KV, Ey FS, Kabat D et al (1993) Constitutive expression of steel factor gene by human stromal cells. Blood 82:771–783

    PubMed  CAS  Google Scholar 

  179. Migliaccio AR, Migliaccio G, Mancini G, Ratajczak M, Gewirtz AM, Adamson JW (1993) Induction of the murine “W phenotype” in long-term cultures of human cord blood cells by c-kit antisense oligomers. J Cell Physiol 157:158–163

    Article  PubMed  CAS  Google Scholar 

  180. Keshet E, Lyman SD, Williams DE, Anderson DM, Jenkins NA, Copeland NG, Parada LF (1991) Embryonic RNA expression patterns of the c-kit receptor and its cognate ligand suggest multiple functional roles in mouse development. EMBO J 10:2425–2435

    PubMed  CAS  Google Scholar 

  181. Erlandsson A, Larsson J, Forsberg-Nilsson K (2004) Stem cell factor is a chemoattractant and a survival factor for CNS stem cells. Exp Cell Res 301:201–210

    Article  PubMed  CAS  Google Scholar 

  182. Zhang SC, Fedoroff S (1997) Cellular localization of stem cell factor and c-kit receptor in the mouse nervous system. J Neurosci Res 47:1–15

    Article  PubMed  CAS  Google Scholar 

  183. Das AV, James J, Zhao X, Rahnenfuhrer J, Ahmad I (2004) Identification of c-Kit receptor as a regulator of adult neural stem cells in the mammalian eye: interactions with Notch signaling. Dev Biol 273:87–105

    Article  PubMed  CAS  Google Scholar 

  184. Went PT, Dirnhofer S, Bundi M, Mirlacher M, Schraml P, Mangialaio S, Dimitrijevic S, Kononen J, Lugli A, Simon R, Sauter G (2004) Prevalence of KIT expression in human tumors. J Clin Oncol 22:4514–4522

    Article  PubMed  CAS  Google Scholar 

  185. Sun L, Hui AM, Su Q, Vortmeyer A, Kotliarov Y, Pastorino S, Passaniti A, Menon J, Walling J, Bailey R, Rosenblum M, Mikkelsen T, Fine HA (2006) Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell 9:287–300

    Article  PubMed  CAS  Google Scholar 

  186. Aguirre A, Rubio ME, Gallo V (2010) Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature 467:323–327

    Article  PubMed  CAS  Google Scholar 

  187. Wang L, Chopp M, Zhang RL, Zhang L, Letourneau Y, Feng YF, Jiang A, Morris DC, Zhang ZG (2009) The Notch pathway mediates expansion of a progenitor pool and neuronal differentiation in adult neural progenitor cells after stroke. Neuroscience 158:1356–1363

    Article  PubMed  CAS  Google Scholar 

  188. Ying M, Wang S, Sang Y, Sun P, Lal B, Goodwin CR, Guerrero-Cazares H, Quinones-Hinojosa A, Laterra J, Xia S (2011) Regulation of glioblastoma stem cells by retinoic acid: role for Notch pathway inhibition. Oncogene 30(31):3454–3467

    Article  PubMed  CAS  Google Scholar 

  189. Kanamori M, Kawaguchi T, Nigro JM, Feuerstein BG, Berger MS, Miele L, Pieper RO (2007) Contribution of Notch signaling activation to human glioblastoma multiforme. J Neurosurg 106:417–427

    Article  PubMed  Google Scholar 

  190. Petersen PH, Zou K, Krauss S, Zhong W (2004) Continuing role for mouse Numb and Numbl in maintaining progenitor cells during cortical neurogenesis. Nat Neurosci 7:803–811

    Article  PubMed  CAS  Google Scholar 

  191. Schreck KC, Taylor P, Marchionni L, Gopalakrishnan V, Bar EE, Gaiano N, Eberhart CG, Schreck KC, Taylor P, Marchionni L, Gopalakrishnan V, Bar EE, Gaiano N, Eberhart CG (2010) The Notch target Hes1 directly modulates Gli1 expression and Hedgehog signaling: a potential mechanism of therapeutic resistance. Clin Cancer Res 16:6060–6070

    Article  PubMed  CAS  Google Scholar 

  192. Pierfelice TJ, Schreck KC, Dang L, Asnaghi L, Gaiano N, Eberhart CG (2011) Notch3 activation promotes invasive glioma formation in a tissue site-specific manner. Cancer Res 71:1115–1125

    Article  PubMed  CAS  Google Scholar 

  193. Zhang XP, Zheng G, Zou L, Liu HL, Hou LH, Zhou P, Yin DD, Zheng QJ, Liang L, Zhang SZ, Feng L, Yao LB, Yang AG, Han H, Chen JY (2008) Notch activation promotes cell proliferation and the formation of neural stem cell-like colonies in human glioma cells. Mol Cell Biochem 307:101–108

    Article  PubMed  CAS  Google Scholar 

  194. Yan B, Omar FM, Das K, Ng WH, Lim C, Shiuan K, Yap CT, Salto-Tellez M (2008) Characterization of Numb expression in astrocytomas. Neuropathology 28:479–484

    Article  PubMed  Google Scholar 

  195. Purow BW, Haque RM, Noel MW, Su Q, Burdick MJ, Lee J, Sundaresan T, Pastorino S, Park JK, Mikolaenko I, Maric D, Eberhart CG, Fine HA (2005) Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res 65:2353–2363

    Article  PubMed  CAS  Google Scholar 

  196. Seidel S, Garvalov BK, Wirta V, von Stechow L, Schanzer A, Meletis K, Wolter M, Sommerlad D, Henze AT, Nister M, Reifenberger G, Lundeberg J, Frisen J, Acker T (2010) A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha. Brain 133:983–995

    Article  PubMed  Google Scholar 

  197. Li JL, Sainson RC, Shi W, Leek R, Harrington LS, Preusser M, Biswas S, Turley H, Heikamp E, Hainfellner JA, Harris AL (2007) Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo. Cancer Res 67:11244–11253

    Article  PubMed  CAS  Google Scholar 

  198. Gilbert CA, Daou MC, Moser RP, Ross AH (2010) Gamma-secretase inhibitors enhance temozolomide treatment of human gliomas by inhibiting neurosphere repopulation and xenograft recurrence. Cancer Res 70:6870–6879

    Article  PubMed  CAS  Google Scholar 

  199. Ahn S, Joyner AL (2005) In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature 437:894–897

    Article  PubMed  CAS  Google Scholar 

  200. Becher OJ, Hambardzumyan D, Fomchenko EI, Momota H, Mainwaring L, Bleau AM, Katz AM, Edgar M, Kenney AM, Cordon-Cardo C, Blasberg RG, Holland EC (2008) Gli activity correlates with tumor grade in platelet-derived growth factor-induced gliomas. Cancer Res 68:2241–2249

    Article  PubMed  CAS  Google Scholar 

  201. Ehtesham M, Sarangi A, Valadez JG, Chanthaphaychith S, Becher MW, Abel TW, Thompson RC, Cooper MK (2007) Ligand-dependent activation of the hedgehog pathway in glioma progenitor cells. Oncogene 26:5752–5761

    Article  PubMed  CAS  Google Scholar 

  202. Dahmane N, Sanchez P, Gitton Y, Palma V, Sun T, Beyna M, Weiner H, Ruiz i Altaba A (2001) The Sonic Hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis. Development (Cambridge, England) 128:5201–5212

    CAS  Google Scholar 

  203. Uchida H, Arita K, Yunoue S, Yonezawa H, Shinsato Y, Kawano H, Hirano H, Hanaya R, Tokimura H (2011) Role of sonic hedgehog signaling in migration of cell lines established from CD133-positive malignant glioma cells. J Neurooncol 104(3):697–704

    Article  PubMed  CAS  Google Scholar 

  204. Wang K, Pan L, Che X, Cui D, Li C (2010) Sonic Hedgehog/GLI signaling pathway inhibition restricts cell migration and invasion in human gliomas. Neurol Res 32:975–980

    Article  PubMed  CAS  Google Scholar 

  205. Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A (2007) HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17:165–172

    Article  PubMed  CAS  Google Scholar 

  206. Moustakas A, Heldin CH (2009) The regulation of TGFbeta signal transduction. Development (Cambridge, England) 136:3699–3714

    Article  CAS  Google Scholar 

  207. Bodmer S, Strommer K, Frei K, Siepl C, de Tribolet N, Heid I, Fontana A (1989) Immunosuppression and transforming growth factor-beta in glioblastoma. Preferential production of transforming growth factor-beta 2. J Immunol 143:3222–3229

    PubMed  CAS  Google Scholar 

  208. Yamada N, Kato M, Yamashita H, Nister M, Miyazono K, Heldin CH, Funa K (1995) Enhanced expression of transforming growth factor-beta and its type-I and type-II receptors in human glioblastoma. Int J Cancer 62:386–392

    Article  PubMed  CAS  Google Scholar 

  209. Lu Y, Jiang F, Zheng X, Katakowski M, Buller B, To SS, Chopp M (2011) TGF-beta1 promotes motility and invasiveness of glioma cells through activation of ADAM17. Oncol Rep 25:1329–1335

    PubMed  CAS  Google Scholar 

  210. Ikushima H, Todo T, Ino Y, Takahashi M, Miyazawa K, Miyazono K (2009) Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell 5:504–514

    Article  PubMed  CAS  Google Scholar 

  211. Penuelas S, Anido J, Prieto-Sanchez RM, Folch G, Barba I, Cuartas I, Garcia-Dorado D, Poca MA, Sahuquillo J, Baselga J, Seoane J (2009) TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell 15:315–327

    Article  PubMed  CAS  Google Scholar 

  212. Bogdahn U, Hau P, Stockhammer G, Venkataramana NK, Mahapatra AK, Suri A, Balasubramaniam A, Nair S, Oliushine V, Parfenov V, Poverennova I, Zaaroor M, Jachimczak P, Ludwig S, Schmaus S, Heinrichs H, Schlingensiepen KH (2011) Targeted therapy for high-grade glioma with the TGF-beta2 inhibitor trabedersen: results of a randomized and controlled phase IIb study. Neuro Oncol 13:132–142

    Article  PubMed  CAS  Google Scholar 

  213. Schneider T, Becker A, Ringe K, Reinhold A, Firsching R, Sabel BA (2008) Brain tumor therapy by combined vaccination and antisense oligonucleotide delivery with nanoparticles. J Neuroimmunol 195:21–27

    Article  PubMed  CAS  Google Scholar 

  214. Yamada N, Kato M, ten Dijke P, Yamashita H, Sampath TK, Heldin CH, Miyazono K, Funa K (1996) Bone morphogenetic protein type IB receptor is progressively expressed in malignant glioma tumours. Br J Cancer 73:624–629

    Article  PubMed  CAS  Google Scholar 

  215. Klose A, Waerzeggers Y, Monfared P, Vukicevic S, Kaijzel EL, Winkeler A, Wickenhauser C, Lowik CW, Jacobs AH (2011) Imaging bone morphogenetic protein 7 induced cell cycle arrest in experimental gliomas. Neoplasia 13:276–285

    PubMed  CAS  Google Scholar 

  216. Pistollato F, Chen HL, Rood BR, Zhang HZ, D’Avella D, Denaro L, Gardiman M, te Kronnie G, Schwartz PH, Favaro E, Indraccolo S, Basso G, Panchision DM (2009) Hypoxia and HIF1alpha repress the differentiative effects of BMPs in high-grade glioma. Stem Cells (Dayton, Ohio) 27:7–17

    Article  CAS  Google Scholar 

  217. Piccirillo SG, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G, Brem H, Olivi A, Dimeco F, Vescovi AL (2006) Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444:761–765

    Article  PubMed  CAS  Google Scholar 

  218. Henderson BR, Fagotto F (2002) The ins and outs of APC and beta-catenin nuclear transport. EMBO Rep 3:834–839

    Article  PubMed  CAS  Google Scholar 

  219. Munji RN, Choe Y, Li G, Siegenthaler JA, Pleasure SJ (2011) Wnt signaling regulates neuronal differentiation of cortical intermediate progenitors. J Neurosci 31:1676–1687

    Article  PubMed  CAS  Google Scholar 

  220. Kalderon D (2002) Similarities between the Hedgehog and Wnt signaling pathways. Trends Cell Biol 12:523–531

    Article  PubMed  CAS  Google Scholar 

  221. Hirabayashi Y, Itoh Y, Tabata H, Nakajima K, Akiyama T, Masuyama N, Gotoh Y (2004) The Wnt/beta-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development (Dayton, Ohio) 131:2791–2801

    CAS  Google Scholar 

  222. Shimizu T, Kagawa T, Inoue T, Nonaka A, Takada S, Aburatani H, Taga T (2008) Stabilized beta-catenin functions through TCF/LEF proteins and the Notch/RBP-Jkappa complex to promote proliferation and suppress differentiation of neural precursor cells. Mol Cell Biol 28:7427–7441

    Article  PubMed  CAS  Google Scholar 

  223. Pu P, Zhang Z, Kang C, Jiang R, Jia Z, Wang G, Jiang H (2009) Downregulation of Wnt2 and beta-catenin by siRNA suppresses malignant glioma cell growth. Cancer Gene Ther 16:351–361

    Article  PubMed  CAS  Google Scholar 

  224. Koch A, Waha A, Tonn JC, Sorensen N, Berthold F, Wolter M, Reifenberger J, Hartmann W, Friedl W, Reifenberger G, Wiestler OD, Pietsch T (2001) Somatic mutations of WNT/wingless signaling pathway components in primitive neuroectodermal tumors. Int J Cancer 93:445–449

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Forsberg-Nilsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wicher, G., Holmqvist, K., Forsberg-Nilsson, K. (2012). Common Denominators of Self-renewal and Malignancy in Neural Stem Cells and Glioma. In: Srivastava, R., Shankar, S. (eds) Stem Cells and Human Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2801-1_17

Download citation

Publish with us

Policies and ethics