Skip to main content

Worth the Weight: Adipose Stem Cells in Human Disease

  • Chapter
  • First Online:
  • 1032 Accesses

Abstract

Adipose Stem Cells (ASCs) are at the forefront of reconstructive and regenerative medicine, currently offering perhaps the most significant utilization of stem cells in the treatment of injured and dysfunctional connective or mesenchymal tissue; be it in bone, cartilage, fat, muscle, or heart tissues. However, these cells are also at the heart of adipogenesis and adipose endocrine function, playing key roles in numerous diseases and disorders relating to obesity, lipidystrophies, diabetes, and metabolic dysfunction. Adipose is an extremely heterogeneous tissue, with research indicating that cross-talk between numerous cells types creates a dynamic niche where cell populations are continually shifting to direct endogenous stem/progenitor cell activity. The study of these dynamics may elucidate additional aspects of stem cell influence over adipose health and dysfunction, as well as other mechanisms of cross-talk and cell differentiation which are mirrored in major ­tissues such as the liver, heart, and brain, thus allowing for new sources of adult stem/progenitor cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228

    Article  PubMed  CAS  Google Scholar 

  2. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295, PMCID: 138633

    Article  PubMed  CAS  Google Scholar 

  3. Rodriguez AM, Pisani D, Dechesne CA, Turc-Carel C, Kurzenne JY, Wdziekonski B et al (2005) Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. J Exp Med 201(9):1397–1405, PMCID: 2213197

    Article  PubMed  CAS  Google Scholar 

  4. Strem BM, Zhu M, Alfonso Z, Daniels EJ, Schreiber R, Beygui R et al (2005) Expression of cardiomyocytic markers on adipose tissue-derived cells in a murine model of acute myocardial injury. Cytotherapy 7(3):282–291

    Article  PubMed  CAS  Google Scholar 

  5. Tholpady SS, Aojanepong C, Llull R, Jeong JH, Mason AC, Futrell JW et al (2005) The ­cellular plasticity of human adipocytes. Ann Plast Surg 54(6):651–656

    Article  PubMed  CAS  Google Scholar 

  6. Katz AJ, Tholpady A, Tholpady SS, Shang H, Ogle RC (2005) Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells 23(3):412–423

    Article  PubMed  CAS  Google Scholar 

  7. Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213(2):341–347

    Article  PubMed  CAS  Google Scholar 

  8. Gimble JM, Katz AJ, Bunnell BA (2007) Adipose-derived stem cells for regenerative medicine. Circ Res 100(9):1249–1260

    Article  PubMed  CAS  Google Scholar 

  9. D’Ippolito G, Schiller PC, Ricordi C, Roos BA, Howard GA (1999) Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res 14(7):1115–1122

    Article  PubMed  Google Scholar 

  10. Savitz SI, Dinsmore JH, Wechsler LR, Rosenbaum DM, Caplan LR (2004) Cell therapy for stroke. NeuroRx 1(4):406–414, PMCID: 534949

    Article  PubMed  Google Scholar 

  11. McLean K, Gong Y, Choi Y, Deng N, Yang K, Bai S et al (2011) Human ovarian carcinoma-associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production. J Clin Invest 121(8):3206–3219

    Article  PubMed  CAS  Google Scholar 

  12. Vacanti V, Kong E, Suzuki G, Sato K, Canty JM, Lee T (2005) Phenotypic changes of adult porcine mesenchymal stem cells induced by prolonged passaging in culture. J Cell Physiol 205(2):194–201

    Article  PubMed  CAS  Google Scholar 

  13. Aust L, Devlin B, Foster SJ, Halvorsen YD, Hicok K, du Laney T et al (2004) Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy 6(1):7–14

    Article  PubMed  CAS  Google Scholar 

  14. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  PubMed  CAS  Google Scholar 

  15. Miyazaki M, Zuk PA, Zou J, Yoon SH, Wei F, Morishita Y et al (2008) Comparison of human mesenchymal stem cells derived from adipose tissue and bone marrow for ex vivo gene ­therapy in rat spinal fusion model. Spine (Phila Pa 1976) 33(8):863–869

    Article  Google Scholar 

  16. Garg A (2004) Regional adiposity and insulin resistance. J Clin Endocrinol Metab 89(9):4206–4210

    Article  PubMed  CAS  Google Scholar 

  17. Scherer PE (2006) Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes 55(6):1537–1545

    Article  PubMed  CAS  Google Scholar 

  18. Dixit VD (2008) Adipose-immune interactions during obesity and caloric restriction: ­reciprocal mechanisms regulating immunity and health span. J Leukoc Biol 84(4):882–892, PMCID: 2638733

    Article  PubMed  CAS  Google Scholar 

  19. Hegele RA, Leff T (2004) Unbuckling lipodystrophy from insulin resistance and hypertension. J Clin Invest 114(2):163–165, PMCID: 449754

    PubMed  CAS  Google Scholar 

  20. Rudich A, Ben-Romano R, Etzion S, Bashan N (2005) Cellular mechanisms of insulin resistance, lipodystrophy and atherosclerosis induced by HIV protease inhibitors. Acta Physiol Scand 183(1):75–88

    Article  PubMed  CAS  Google Scholar 

  21. Chazenbalk G, Bertolotto C, Heneidi S, Jumabay M, Trivax B, Aronowitz J et al (2011) Novel pathway of adipogenesis through cross-talk between adipose tissue macrophages, adipose stem cells and adipocytes: evidence of cell plasticity. PLoS One 6(3):e17834, PMCID: 3069035

    Article  PubMed  CAS  Google Scholar 

  22. Chazenbalk G, Trivax BS, Yildiz BO, Bertolotto C, Mathur R, Heneidi S et al (2010) Regulation of adiponectin secretion by adipocytes in the polycystic ovary syndrome: role of tumor ­necrosis factor-{alpha}. J Clin Endocrinol Metab 95(2):935–942, PMCID: 2840865

    Article  PubMed  CAS  Google Scholar 

  23. Lago F, Dieguez C, Gomez-Reino J, Gualillo O (2007) Adipokines as emerging mediators of immune response and inflammation. Nat Clin Pract Rheumatol 3(12):716–724

    Article  PubMed  CAS  Google Scholar 

  24. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM et al (2001) The hormone resistin links obesity to diabetes. Nature 409(6818):307–312

    Article  PubMed  CAS  Google Scholar 

  25. Ahima RS, Lazar MA (2008) Adipokines and the peripheral and neural control of energy balance. Mol Endocrinol 22(5):1023–1031, PMCID: 2366188

    Article  PubMed  CAS  Google Scholar 

  26. Gesta S, Tseng YH, Kahn CR (2007) Developmental origin of fat: tracking obesity to its source. Cell 131(2):242–256

    Article  PubMed  CAS  Google Scholar 

  27. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  PubMed  CAS  Google Scholar 

  28. Tallone T, Realini C, Bohmler A, Kornfeld C, Vassalli G, Moccetti T et al (2011) Adult human adipose tissue contains several types of multipotent cells. J Cardiovasc Transl Res 4(2):200–210

    Article  PubMed  Google Scholar 

  29. Ankrum J, Karp JM (2010) Mesenchymal stem cell therapy: two steps forward, one step back. Trends Mol Med 16(5):203–209, PMCID: 2881950

    Article  PubMed  Google Scholar 

  30. Daquinag AC, Zhang Y, Amaya-Manzanares F, Simmons PJ, Kolonin MG (2011) An isoform of decorin is a resistin receptor on the surface of adipose progenitor cells. Cell Stem Cell 9(1):74–86

    Article  PubMed  CAS  Google Scholar 

  31. Billon N, Monteiro MC, Dani C (2008) Developmental origin of adipocytes: new insights into a pending question. Biol Cell 100(10):563–575

    Article  PubMed  CAS  Google Scholar 

  32. Howson KM, Aplin AC, Gelati M, Alessandri G, Parati EA, Nicosia RF (2005) The postnatal rat aorta contains pericyte progenitor cells that form spheroidal colonies in suspension culture. Am J Physiol Cell Physiol 289(6):C1396–C1407

    Article  PubMed  CAS  Google Scholar 

  33. De Francesco F, Tirino V, Desiderio V, Ferraro G, D’Andrea F, Giuliano M et al (2009) Human CD34/CD90 ASCs are capable of growing as sphere clusters, producing high levels of VEGF and forming capillaries. PLoS One 4(8):e6537, PMCID: 2717331

    Article  PubMed  CAS  Google Scholar 

  34. Hong SJ, Traktuev DO, March KL (2010) Therapeutic potential of adipose-derived stem cells in vascular growth and tissue repair. Curr Opin Organ Transplant 15(1):86–91

    Article  PubMed  Google Scholar 

  35. Korn J, Christ B, Kurz H (2002) Neuroectodermal origin of brain pericytes and vascular smooth muscle cells. J Comp Neurol 442(1):78–88

    Article  PubMed  Google Scholar 

  36. Dore-Duffy P, Katychev A, Wang X, Van Buren E (2006) CNS microvascular pericytes exhibit multipotential stem cell activity. J Cereb Blood Flow Metab 26(5):613–624

    Article  PubMed  CAS  Google Scholar 

  37. Traktuev DO, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R et al (2008) A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal ­surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 102(1):77–85

    Article  PubMed  CAS  Google Scholar 

  38. Traktuev DO, Prater DN, Merfeld-Clauss S, Sanjeevaiah AR, Saadatzadeh MR, Murphy M et al (2009) Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells. Circ Res 104(12):1410–1420

    Article  PubMed  CAS  Google Scholar 

  39. Diaz-Flores L, Gutierrez R, Madrid JF, Varela H, Valladares F, Acosta E et al (2009) Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol 24(7):909–969

    PubMed  CAS  Google Scholar 

  40. Ingram DA, Mead LE, Moore DB, Woodard W, Fenoglio A, Yoder MC (2005) Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood 105(7):2783–2786

    Article  PubMed  CAS  Google Scholar 

  41. Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K et al (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104(9):2752–2760

    Article  PubMed  CAS  Google Scholar 

  42. Cousin B, Andre M, Arnaud E, Penicaud L, Casteilla L (2003) Reconstitution of lethally irradiated mice by cells isolated from adipose tissue. Biochem Biophys Res Commun 301(4):1016–1022

    Article  PubMed  CAS  Google Scholar 

  43. Varma MJ, Breuls RG, Schouten TE, Jurgens WJ, Bontkes HJ, Schuurhuis GJ et al (2007) Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells. Stem Cells Dev 16(1):91–104

    Article  PubMed  Google Scholar 

  44. Majka SM, Fox KE, Psilas JC, Helm KM, Childs CR, Acosta AS et al (2010) De novo generation of white adipocytes from the myeloid lineage via mesenchymal intermediates is age, ­adipose depot, and gender specific. Proc Natl Acad Sci USA 107(33):14781–14786, PMCID: 2930432

    Article  PubMed  CAS  Google Scholar 

  45. Kuwana M, Okazaki Y, Kodama H, Izumi K, Yasuoka H, Ogawa Y et al (2003) Human circulating CD14+ monocytes as a source of progenitors that exhibit mesenchymal cell differentiation. J Leukoc Biol 74(5):833–845

    Article  PubMed  CAS  Google Scholar 

  46. Zhao Y, Glesne D, Huberman E (2003) A human peripheral blood monocyte-derived subset acts as pluripotent stem cells. Proc Natl Acad Sci USA 100(5):2426–2431, PMCID: 151357

    Article  PubMed  CAS  Google Scholar 

  47. Fraser JK, Wulur I, Alfonso Z, Hedrick MH (2006) Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol 24(4):150–154

    Article  PubMed  CAS  Google Scholar 

  48. Bouloumie A, Curat CA, Sengenes C, Lolmede K, Miranville A, Busse R (2005) Role of macrophage tissue infiltration in metabolic diseases. Curr Opin Clin Nutr Metab Care 8(4):347–354

    Article  PubMed  CAS  Google Scholar 

  49. Chen JS, Chen YL, Greenberg AS, Chen YJ, Wang SM (2005) Magnolol stimulates lipolysis in lipid-laden RAW 264.7 macrophages. J Cell Biochem 94(5):1028–1037

    Article  PubMed  CAS  Google Scholar 

  50. Greenberg AS, Obin MS (2006) Obesity and the role of adipose tissue in inflammation and metabolism. Am J Clin Nutr 83(2):461S–465S

    PubMed  CAS  Google Scholar 

  51. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ et al (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112(12):1821–1830, PMCID: 296998

    PubMed  CAS  Google Scholar 

  52. Suganami T, Nishida J, Ogawa Y (2005) A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol 25(10):2062–2068

    Article  PubMed  CAS  Google Scholar 

  53. Gainsford T, Willson TA, Metcalf D, Handman E, McFarlane C, Ng A et al (1996) Leptin can induce proliferation, differentiation, and functional activation of hemopoietic cells. Proc Natl Acad Sci USA 93(25):14564–14568, PMCID: 26173

    Article  PubMed  CAS  Google Scholar 

  54. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112(12):1796–1808, PMCID: 296995

    PubMed  CAS  Google Scholar 

  55. Yagi K, Kondo D, Okazaki Y, Kano K (2004) A novel preadipocyte cell line established from mouse adult mature adipocytes. Biochem Biophys Res Commun 321(4):967–974

    Article  PubMed  CAS  Google Scholar 

  56. Cousin B, Munoz O, Andre M, Fontanilles AM, Dani C, Cousin JL et al (1999) A role for preadipocytes as macrophage-like cells. FASEB J 13(2):305–312

    PubMed  CAS  Google Scholar 

  57. Charriere G, Cousin B, Arnaud E, Andre M, Bacou F, Penicaud L et al (2003) Preadipocyte conversion to macrophage. Evidence of plasticity. J Biol Chem 278(11):9850–9855

    Article  PubMed  CAS  Google Scholar 

  58. Prunet-Marcassus B, Cousin B, Caton D, Andre M, Penicaud L, Casteilla L (2006) From heterogeneity to plasticity in adipose tissues: site-specific differences. Exp Cell Res 312(6):727–736

    Article  PubMed  CAS  Google Scholar 

  59. Seta N, Kuwana M (2007) Human circulating monocytes as multipotential progenitors. Keio J Med 56(2):41–47

    Article  PubMed  Google Scholar 

  60. Festy F, Hoareau L, Bes-Houtmann S, Pequin AM, Gonthier MP, Munstun A et al (2005) Surface protein expression between human adipose tissue-derived stromal cells and mature adipocytes. Histochem Cell Biol 124(2):113–121

    Article  PubMed  CAS  Google Scholar 

  61. Lumeng CN, Deyoung SM, Saltiel AR (2007) Macrophages block insulin action in adipocytes by altering expression of signaling and glucose transport proteins. Am J Physiol Endocrinol Metab 292(1):E166–E174

    Article  PubMed  CAS  Google Scholar 

  62. Charriere GM, Cousin B, Arnaud E, Saillan-Barreau C, Andre M, Massoudi A et al (2006) Macrophage characteristics of stem cells revealed by transcriptome profiling. Exp Cell Res 312(17):3205–3214

    Article  PubMed  CAS  Google Scholar 

  63. Anghelina M, Moldovan L, Zabuawala T, Ostrowski MC, Moldovan NI (2006) A subpopulation of peritoneal macrophages form capillarylike lumens and branching patterns in vitro. J Cell Mol Med 10(3):708–715

    Article  PubMed  Google Scholar 

  64. Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE et al (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109(10):1292–1298

    Article  PubMed  Google Scholar 

  65. Yoshimura K, Sato K, Aoi N, Kurita M, Hirohi T, Harii K (2008) Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg 32(1):48–55, discussion 6-7. PMCID: 2175019

    Article  PubMed  Google Scholar 

  66. Yoshimura K, Sato K, Aoi N, Kurita M, Inoue K, Suga H et al (2008) Cell-assisted lipotransfer for facial lipoatrophy: efficacy of clinical use of adipose-derived stem cells. Dermatol Surg 34(9):1178–1185

    Article  PubMed  CAS  Google Scholar 

  67. Zannettino AC, Paton S, Arthur A, Khor F, Itescu S, Gimble JM et al (2008) Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol 214(2):413–421

    Article  PubMed  CAS  Google Scholar 

  68. Oki Y, Watanabe S, Endo T, Kano K (2008) Mature adipocyte-derived dedifferentiated fat cells can trans-differentiate into osteoblasts in vitro and in vivo only by all-trans retinoic acid. Cell Struct Funct 33(2):211–222

    Article  PubMed  CAS  Google Scholar 

  69. Jumabay M, Matsumoto T, Yokoyama S, Kano K, Kusumi Y, Masuko T et al (2009) Dedifferentiated fat cells convert to cardiomyocyte phenotype and repair infarcted cardiac tissue in rats. J Mol Cell Cardiol 47(5):565–575

    Article  PubMed  CAS  Google Scholar 

  70. Jumabay M, Zhang R, Yao Y, Goldhaber JI, Bostrom KI (2010) Spontaneously beating cardiomyocytes derived from white mature adipocytes. Cardiovasc Res 85(1):17–27, PMCID: 2791054

    Article  PubMed  CAS  Google Scholar 

  71. Ohta Y, Takenaga M, Tokura Y, Hamaguchi A, Matsumoto T, Kano K et al (2008) Mature adipocyte-derived cells, dedifferentiated fat cells (DFAT), promoted functional recovery from spinal cord injury-induced motor dysfunction in rats. Cell Transplant 17(8):877–886

    Article  PubMed  Google Scholar 

  72. Borges J, Mueller MC, Padron NT, Tegtmeier F, Lang EM, Stark GB (2003) Engineered adipose tissue supplied by functional microvessels. Tissue Eng 9(6):1263–1270

    Article  PubMed  CAS  Google Scholar 

  73. Ersek RA, Chang P, Salisbury MA (1998) Lipo layering of autologous fat: an improved technique with promising results. Plast Reconstr Surg 101(3):820–826

    Article  PubMed  CAS  Google Scholar 

  74. Yamaguchi M, Matsumoto F, Bujo H, Shibasaki M, Takahashi K, Yoshimoto S et al (2005) Revascularization determines volume retention and gene expression by fat grafts in mice. Exp Biol Med (Maywood) 230(10):742–748

    CAS  Google Scholar 

  75. Carpaneda CA, Ribeiro MT (1994) Percentage of graft viability versus injected volume in adipose autotransplants. Aesthetic Plast Surg 18(1):17–19

    Article  PubMed  CAS  Google Scholar 

  76. Chang EI, Bonillas RG, El-ftesi S, Ceradini DJ, Vial IN, Chan DA et al (2009) Tissue engineering using autologous microcirculatory beds as vascularized bioscaffolds. FASEB J 23(3):906–915, PMCID: 2653982

    Article  PubMed  CAS  Google Scholar 

  77. Gurtner GC, Chang E (2008) “Priming” endothelial progenitor cells: a new strategy to improve cell based therapeutics. Arterioscler Thromb Vasc Biol 28(6):1034–1035

    Article  PubMed  CAS  Google Scholar 

  78. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314–321

    Article  PubMed  CAS  Google Scholar 

  79. Frangogiannis NG, Michael LH, Entman ML (2000) Myofibroblasts in reperfused myocardial infarcts express the embryonic form of smooth muscle myosin heavy chain (SMemb). Cardiovasc Res 48(1):89–100

    Article  PubMed  CAS  Google Scholar 

  80. Badillo AT, Redden RA, Zhang L, Doolin EJ, Liechty KW (2007) Treatment of diabetic wounds with fetal murine mesenchymal stromal cells enhances wound closure. Cell Tissue Res 329(2):301–311

    Article  PubMed  Google Scholar 

  81. Medina A, Scott PG, Ghahary A, Tredget EE (2005) Pathophysiology of chronic nonhealing wounds. J Burn Care Rehabil 26(4):306–319

    Article  PubMed  Google Scholar 

  82. Bai X, Alt E (2010) Myocardial regeneration potential of adipose tissue-derived stem cells. Biochem Biophys Res Commun 401(3):321–326

    Article  PubMed  CAS  Google Scholar 

  83. Kim WS, Park BS, Sung JH, Yang JM, Park SB, Kwak SJ et al (2007) Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci 48(1):15–24

    Article  PubMed  CAS  Google Scholar 

  84. Blanton MW, Hadad I, Johnstone BH, Mund JA, Rogers PI, Eppley BL et al (2009) Adipose stromal cells and platelet-rich plasma therapies synergistically increase revascularization during wound healing. Plast Reconstr Surg 123(2 Suppl):56S–64S

    Article  PubMed  CAS  Google Scholar 

  85. Altman AM, Abdul Khalek FJ, Seidensticker M, Pinilla S, Yan Y, Coleman M et al (2010) Human tissue-resident stem cells combined with hyaluronic acid gel provide fibrovascular-integrated soft-tissue augmentation in a murine photoaged skin model. Plast Reconstr Surg 125(1):63–73

    Article  PubMed  CAS  Google Scholar 

  86. Nakamura S, Kishimoto S, Nambu M, Fujita M, Tanaka Y, Mori Y et al (2010) Fragmin/protamine microparticles as cell carriers to enhance viability of adipose-derived stromal cells and their subsequent effect on in vivo neovascularization. J Biomed Mater Res A 92(4):1614–1622

    PubMed  Google Scholar 

  87. Park A, Hogan MV, Kesturu GS, James R, Balian G, Chhabra AB (2010) Adipose-derived mesenchymal stem cells treated with growth differentiation factor-5 express tendon-specific markers. Tissue Eng Part A 16(9):2941–2951, PMCID: 2928041

    Article  PubMed  CAS  Google Scholar 

  88. Takikawa M, Nakamura S, Nambu M, Ishihara M, Fujita M, Kishimoto S et al (2011) Enhancement of vascularization and granulation tissue formation by growth factors in human platelet-rich plasma-containing fragmin/protamine microparticles. J Biomed Mater Res B Appl Biomater 97(2):373–380

    PubMed  Google Scholar 

  89. Edward M, Quinn JA, Mukherjee S, Jensen MB, Jardine AG, Mark PB et al (2008) Gadodiamide contrast agent ‘activates’ fibroblasts: a possible cause of nephrogenic systemic fibrosis. J Pathol 214(5):584–593

    Article  PubMed  CAS  Google Scholar 

  90. Bellini A, Mattoli S (2007) The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Lab Invest 87(9):858–870

    Article  PubMed  CAS  Google Scholar 

  91. Luo Z, Wang S, Zhang S (2011) Fabrication of self-assembling D-form peptide nanofiber scaffold d-EAK16 for rapid hemostasis. Biomaterials 32(8):2013–2020

    Article  PubMed  CAS  Google Scholar 

  92. Ruan L, Zhang H, Luo H, Liu J, Tang F, Shi YK et al (2009) Designed amphiphilic peptide forms stable nanoweb, slowly releases encapsulated hydrophobic drug, and accelerates animal hemostasis. Proc Natl Acad Sci USA 106(13):5105–5110, PMCID: 2663994

    Article  PubMed  CAS  Google Scholar 

  93. Murray MM, Spindler KP, Ballard P, Welch TP, Zurakowski D, Nanney LB (2007) Enhanced histologic repair in a central wound in the anterior cruciate ligament with a collagen-platelet-rich plasma scaffold. J Orthop Res 25(8):1007–1017

    Article  PubMed  CAS  Google Scholar 

  94. Thomopoulos S, Das R, Sakiyama-Elbert S, Silva MJ, Charlton N, Gelberman RH (2010) bFGF and PDGF-BB for tendon repair: controlled release and biologic activity by tendon fibroblasts in vitro. Ann Biomed Eng 38(2):225–234, PMCID: 2843401

    Article  PubMed  Google Scholar 

  95. Nihsen ES, Zopf DA, Ernst DM, Janis AD, Hiles MC, Johnson C (2007) Absorption of bioactive molecules into OASIS wound matrix. Adv Skin Wound Care 20(10):541–548

    Article  PubMed  Google Scholar 

  96. Chang Y, Ceacareanu B, Zhuang D, Zhang C, Pu Q, Ceacareanu AC et al (2006) Counter-regulatory function of protein tyrosine phosphatase 1B in platelet-derived growth factor- or fibroblast growth factor-induced motility and proliferation of cultured smooth muscle cells and in neointima formation. Arterioscler Thromb Vasc Biol 26(3):501–507

    Article  PubMed  CAS  Google Scholar 

  97. Impellizzeri P, Dardik H, Shah HJ, Brotman-O’Neil A, Ibrahim IM (2011) Vacuum-assisted closure therapy with omental transposition for salvage of infected prosthetic femoral-distal bypass involving the femoral anastomosis. J Vasc Surg 54(4):1154–1156

    Article  PubMed  Google Scholar 

  98. Nather A, Chionh SB, Han AY, Chan PP, Nambiar A (2010) Effectiveness of vacuum-assisted closure (VAC) therapy in the healing of chronic diabetic foot ulcers. Ann Acad Med Singapore 39(5):353–358

    PubMed  Google Scholar 

  99. Tamhankar AP, Ravi K, Everitt NJ (2009) Vacuum assisted closure therapy in the treatment of mesh infection after hernia repair. Surgeon 7(5):316–318

    Article  PubMed  CAS  Google Scholar 

  100. Childress B, Stechmiller JK, Schultz GS (2008) Arginine metabolites in wound fluids from pressure ulcers: a pilot study. Biol Res Nurs 10(2):87–92

    Article  PubMed  CAS  Google Scholar 

  101. Guzik TJ, Korbut R, Adamek-Guzik T (2003) Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol 54(4):469–487

    PubMed  CAS  Google Scholar 

  102. Feldmeier J, Carl U, Hartmann K, Sminia P (2003) Hyperbaric oxygen: Does it promote growth or recurrence of malignancy? Undersea Hyperb Med 30(1):1–18

    PubMed  CAS  Google Scholar 

  103. Jorgensen TB, Sorensen AM, Jansen EC (2008) Iatrogenic systemic air embolism treated with hyperbaric oxygen therapy. Acta Anaesthesiol Scand 52(4):566–568

    Article  PubMed  CAS  Google Scholar 

  104. Desmouliere A, Chaponnier C, Gabbiani G (2005) Tissue repair, contraction, and the myofibroblast. Wound Repair Regen 13(1):7–12

    Article  PubMed  Google Scholar 

  105. Quaggin SE, Kapus A (2011) Scar wars: mapping the fate of epithelial-mesenchymal-myofibroblast transition. Kidney Int 80(1):41–50

    Article  PubMed  Google Scholar 

  106. Kim L, Kim do K, Yang WI, Shin DH, Jung IM, Park HK et al (2008) Overexpression of transforming growth factor-beta 1 in the valvular fibrosis of chronic rheumatic heart disease. J Korean Med Sci 23(1):41–48, PMCID: 2526480

    Article  PubMed  Google Scholar 

  107. Yoon YS, Park JS, Tkebuchava T, Luedeman C, Losordo DW (2004) Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction. Circulation 109(25):3154–3157

    Article  PubMed  Google Scholar 

  108. Chen YT, Sun CK, Lin YC, Chang LT, Chen YL, Tsai TH et al (2011) Adipose-derived mesenchymal stem cell protects kidneys against ischemia-reperfusion injury through suppressing oxidative stress and inflammatory reaction. J Transl Med 9:51, PMCID: 3112438

    Article  PubMed  CAS  Google Scholar 

  109. Puissant B, Barreau C, Bourin P, Clavel C, Corre J, Bousquet C et al (2005) Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol 129(1):118–129

    Article  PubMed  Google Scholar 

  110. Ebrahimian TG, Pouzoulet F, Squiban C, Buard V, Andre M, Cousin B et al (2009) Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing. Arterioscler Thromb Vasc Biol 29(4):503–510

    Article  PubMed  CAS  Google Scholar 

  111. Eto H, Suga H, Inoue K, Aoi N, Kato H, Araki J et al (2011) Adipose injury-associated factors mitigate hypoxia in ischemic tissues through activation of adipose-derived stem/progenitor/stromal cells and induction of angiogenesis. Am J Pathol 178(5):2322–2332, PMCID: 3081200

    Article  PubMed  CAS  Google Scholar 

  112. Kubo N, Narumi S, Kijima H, Mizukami H, Yagihashi S, Hakamada K et al (2011) Efficacy of adipose tissue-derived mesenchymal stem cells for fulminant hepatitis in mice induced by concanavalin A. J Gastroenterol Hepatol doi: 10.111/j. 1440–1746.2011.06798.x

    Google Scholar 

  113. Lin G, Garcia M, Ning H, Banie L, Guo YL, Lue TF et al (2008) Defining stem and progenitor cells within adipose tissue. Stem Cells Dev 17(6):1053–1063, PMCID: 2865901

    Article  PubMed  CAS  Google Scholar 

  114. Siegel G, Schafer R, Dazzi F (2009) The immunosuppressive properties of mesenchymal stem cells. Transplantation 87(9 Suppl):S45–S49

    Article  PubMed  Google Scholar 

  115. Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL et al (2009) Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5(1):54–63

    Article  PubMed  CAS  Google Scholar 

  116. Ortiz LA, Dutreil M, Fattman C, Pandey AC, Torres G, Go K et al (2007) Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA 104(26):11002–11007, PMCID: 1891813

    Article  PubMed  CAS  Google Scholar 

  117. Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N et al (2003) Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci USA 100(14):8407–8411, PMCID: 166242

    Article  PubMed  CAS  Google Scholar 

  118. Kunter U, Rong S, Djuric Z, Boor P, Muller-Newen G, Yu D et al (2006) Transplanted mesenchymal stem cells accelerate glomerular healing in experimental glomerulonephritis. J Am Soc Nephrol 17(8):2202–2212

    Article  PubMed  CAS  Google Scholar 

  119. Lee RH, Seo MJ, Reger RL, Spees JL, Pulin AA, Olson SD et al (2006) Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci USA 103(46):17438–17443, PMCID: 1634835

    Article  PubMed  CAS  Google Scholar 

  120. Ringden O, Uzunel M, Rasmusson I, Remberger M, Sundberg B, Lonnies H et al (2006) Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 81(10):1390–1397

    Article  PubMed  Google Scholar 

  121. Phinney DG, Isakova I (2005) Plasticity and therapeutic potential of mesenchymal stem cells in the nervous system. Curr Pharm Des 11(10):1255–1265

    Article  PubMed  CAS  Google Scholar 

  122. Erhayiem B, Dhingsa R, Hawkey CJ, Subramanian V (2011) Ratio of visceral to subcutaneous fat area is a biomarker of complicated Crohn’s disease. Clin Gastroenterol Hepatol 9(8):684.e1–687.e1

    Article  Google Scholar 

  123. Garcia-Olmo D, Herreros D, De-La-Quintana P, Guadalajara H, Trebol J, Georgiev-Hristov T et al (2010) Adipose-derived stem cells in Crohn’s rectovaginal fistula. Case Rep Med 2010:961758, PMCID: 2833320

    CAS  Google Scholar 

  124. Olivier I, Theodorou V, Valet P, Castan-Laurell I, Guillou H, Bertrand-Michel J et al (2011) Is Crohn’s creeping fat an adipose tissue? Inflamm Bowel Dis 17(3):747–757

    Article  PubMed  Google Scholar 

  125. Cherubino M, Rubin JP, Miljkovic N, Kelmendi-Doko A, Marra KG (2011) Adipose-derived stem cells for wound healing applications. Ann Plast Surg 66(2):210–215

    Article  PubMed  CAS  Google Scholar 

  126. Brem H, Kodra A, Golinko MS, Entero H, Stojadinovic O, Wang VM et al (2009) Mechanism of sustained release of vascular endothelial growth factor in accelerating experimental diabetic healing. J Invest Dermatol 129(9):2275–2287

    Article  PubMed  CAS  Google Scholar 

  127. Simka M, Majewski E (2003) The social and economic burden of venous leg ulcers: focus on the role of micronized purified flavonoid fraction adjuvant therapy. Am J Clin Dermatol 4(8):573–581

    Article  PubMed  Google Scholar 

  128. Kim JH, Jung M, Kim HS, Kim YM, Choi EH (2011) Adipose-derived stem cells as a new therapeutic modality for ageing skin. Exp Dermatol 20(5):383–387

    Article  PubMed  CAS  Google Scholar 

  129. Tse KH, Kingham PJ, Novikov LN, Wiberg M (2011) Adipose tissue and bone marrow-derived stem cells react similarly in an ischaemia-like microenvironment. J Tissue Eng Regen Med. doi: 10.1002/term.452

    Google Scholar 

  130. Guo W, Pirtskhalava T, Tchkonia T, Xie W, Thomou T, Han J et al (2007) Aging results in paradoxical susceptibility of fat cell progenitors to lipotoxicity. Am J Physiol Endocrinol Metab 292(4):E1041–E1051

    Article  PubMed  CAS  Google Scholar 

  131. Madonna R, Renna FV, Cellini C, Cotellese R, Picardi N, Francomano F et al (2011) Age-dependent impairment of number and angiogenic potential of adipose tissue-derived progenitor cells. Eur J Clin Invest 41(2):126–133

    Article  PubMed  Google Scholar 

  132. Zhu M, Kohan E, Bradley J, Hedrick M, Benhaim P, Zuk P (2009) The effect of age on osteogenic, adipogenic and proliferative potential of female adipose-derived stem cells. J Tissue Eng Regen Med 3(4):290–301

    Article  PubMed  CAS  Google Scholar 

  133. Robson MC (1997) Wound infection. A failure of wound healing caused by an imbalance of bacteria. Surg Clin North Am 77(3):637–650

    Article  PubMed  CAS  Google Scholar 

  134. Madonna R, De Caterina R (2011) Stem cells and growth factor delivery systems for cardiovascular disease. J Biotechnol 154(4):291–297

    Article  PubMed  CAS  Google Scholar 

  135. Moseley TA, Zhu M, Hedrick MH (2006) Adipose-derived stem and progenitor cells as fillers in plastic and reconstructive surgery. Plast Reconstr Surg 118(3 Suppl):121S–128S

    Article  PubMed  CAS  Google Scholar 

  136. Coleman SR (2006) Structural fat grafting: more than a permanent filler. Plast Reconstr Surg 118(3 Suppl):108S–120S

    Article  PubMed  CAS  Google Scholar 

  137. Hausman DB, Lu J, Ryan DH, Flatt WP, Harris RB (2004) Compensatory growth of adipose tissue after partial lipectomy: involvement of serum factors. Exp Biol Med (Maywood) 229(6):512–520

    CAS  Google Scholar 

  138. Planat-Benard V, Menard C, Andre M, Puceat M, Perez A, Garcia-Verdugo JM et al (2004) Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ Res 94(2):223–229

    Article  PubMed  CAS  Google Scholar 

  139. Ryden M, Dicker A, Gotherstrom C, Astrom G, Tammik C, Arner P et al (2003) Functional characterization of human mesenchymal stem cell-derived adipocytes. Biochem Biophys Res Commun 311(2):391–397

    Article  PubMed  CAS  Google Scholar 

  140. Tang W, Zeve D, Suh JM, Bosnakovski D, Kyba M, Hammer RE et al (2008) White fat progenitor cells reside in the adipose vasculature. Science 322(5901):583–586, PMCID: 2597101

    Article  PubMed  CAS  Google Scholar 

  141. Yoshimura K, Asano Y, Aoi N, Kurita M, Oshima Y, Sato K et al (2010) Progenitor-enriched adipose tissue transplantation as rescue for breast implant complications. Breast J 16(2):169–175

    Article  PubMed  Google Scholar 

  142. Mizuno H, Zuk PA, Zhu M, Lorenz HP, Benhaim P, Hedrick MH (2002) Myogenic differentiation by human processed lipoaspirate cells. Plast Reconstr Surg 109(1):199–209, discussion 10-11

    Article  PubMed  Google Scholar 

  143. Hao W, Pang L, Jiang M, Lv R, Xiong Z, Hu YY (2010) Skeletal repair in rabbits using a novel biomimetic composite based on adipose-derived stem cells encapsulated in collagen I gel with PLGA-beta-TCP scaffold. J Orthop Res 28(2):252–257

    PubMed  CAS  Google Scholar 

  144. Hattori H, Sato M, Masuoka K, Ishihara M, Kikuchi T, Matsui T et al (2004) Osteogenic potential of human adipose tissue-derived stromal cells as an alternative stem cell source. Cells Tissues Organs 178(1):2–12

    Article  PubMed  Google Scholar 

  145. Oakes BW (2004) Orthopaedic tissue engineering: from laboratory to the clinic. Med J Aust 180(5 Suppl):S35–S38

    PubMed  Google Scholar 

  146. Obaid H, Connell D (2010) Cell therapy in tendon disorders: what is the current evidence? Am J Sports Med 38(10):2123–2132

    Article  PubMed  Google Scholar 

  147. Peterson B, Zhang J, Iglesias R, Kabo M, Hedrick M, Benhaim P et al (2005) Healing of critically sized femoral defects, using genetically modified mesenchymal stem cells from human adipose tissue. Tissue Eng 11(1–2):120–129

    Article  PubMed  CAS  Google Scholar 

  148. Di Rocco G, Iachininoto MG, Tritarelli A, Straino S, Zacheo A, Germani A et al (2006) Myogenic potential of adipose-tissue-derived cells. J Cell Sci 119(Pt 14):2945–2952

    Article  PubMed  CAS  Google Scholar 

  149. Gimble JM, Grayson W, Guilak F, Lopez MJ, Vunjak-Novakovic G (2011) Adipose tissue as a stem cell source for musculoskeletal regeneration. Front Biosci (Schol Ed) 3:69–81

    Article  Google Scholar 

  150. Jeon ES, Moon HJ, Lee MJ, Song HY, Kim YM, Bae YC et al (2006) Sphingosylphosphorylcholine induces differentiation of human mesenchymal stem cells into smooth-muscle-like cells through a TGF-beta-dependent mechanism. J Cell Sci 119(Pt 23):4994–5005

    Article  PubMed  CAS  Google Scholar 

  151. Kim M, Choi YS, Yang SH, Hong HN, Cho SW, Cha SM et al (2006) Muscle regeneration by adipose tissue-derived adult stem cells attached to injectable PLGA spheres. Biochem Biophys Res Commun 348(2):386–392

    Article  PubMed  CAS  Google Scholar 

  152. Scholz T, Sumarto A, Krichevsky A, Evans GR (2011) Neuronal differentiation of human adipose tissue-derived stem cells for peripheral nerve regeneration in vivo. Arch Surg 146(6):666–674

    Article  PubMed  Google Scholar 

  153. Dragoo JL, Choi JY, Lieberman JR, Huang J, Zuk PA, Zhang J et al (2003) Bone induction by BMP-2 transduced stem cells derived from human fat. J Orthop Res 21(4):622–629

    Article  PubMed  CAS  Google Scholar 

  154. Dragoo JL, Carlson G, McCormick F, Khan-Farooqi H, Zhu M, Zuk PA et al (2007) Healing full-thickness cartilage defects using adipose-derived stem cells. Tissue Eng 13(7):1615–1621

    Article  PubMed  CAS  Google Scholar 

  155. Dragoo JL, Samimi B, Zhu M, Hame SL, Thomas BJ, Lieberman JR et al (2003) Tissue-engineered cartilage and bone using stem cells from human infrapatellar fat pads. J Bone Jt Surg Br 85(5):740–747

    CAS  Google Scholar 

  156. Zuk P, Chou YF, Mussano F, Benhaim P, Wu BM (2011) Adipose-derived stem cells and BMP2: part 2. BMP2 may not influence the osteogenic fate of human adipose-derived stem cells. Connect Tissue Res 52(2):119–132

    Article  PubMed  CAS  Google Scholar 

  157. Chou YF, Zuk PA, Chang TL, Benhaim P, Wu BM (2011) Adipose-derived stem cells and BMP2: part 1. BMP2-treated adipose-derived stem cells do not improve repair of segmental femoral defects. Connect Tissue Res 52(2):109–118

    Article  PubMed  CAS  Google Scholar 

  158. Mesimaki K, Lindroos B, Tornwall J, Mauno J, Lindqvist C, Kontio R et al (2009) Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int J Oral Maxillofac Surg 38(3):201–209

    Article  PubMed  CAS  Google Scholar 

  159. Lendeckel S, Jodicke A, Christophis P, Heidinger K, Wolff J, Fraser JK et al (2004) Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Craniomaxillofac Surg 32(6):370–373

    Article  PubMed  Google Scholar 

  160. Heron M, Hoyert DL, Murphy SL, Xu J, Kochanek KD, Tejada-Vera B (2009) Deaths: final data for 2006. Natl Vital Stat Rep 57(14):1–134

    PubMed  Google Scholar 

  161. Psaltis PJ, Zannettino AC, Worthley SG, Gronthos S (2008) Concise review: mesenchymal stromal cells: potential for cardiovascular repair. Stem Cells 26(9):2201–2210

    Article  PubMed  Google Scholar 

  162. Sanz-Ruiz R, Gutierrez Ibanes E, Arranz AV, Fernandez Santos ME, Fernandez PL, Fernandez-Aviles F (2010) Phases I-III clinical trials using adult stem cells. Stem Cells Int 2010:579142, PMCID: 2975079

    PubMed  Google Scholar 

  163. Laflamme MA, Murry CE (2005) Regenerating the heart. Nat Biotechnol 23(7):845–856

    Article  PubMed  CAS  Google Scholar 

  164. Madonna R, De Caterina R (2010) Adipose tissue: a new source for cardiovascular repair. J Cardiovasc Med (Hagerstown) 11(2):71–80

    Article  Google Scholar 

  165. Efimenko A, Starostina EE, Rubina KA, Kalinina NI, Parfenova EV (2010) Viability and angiogenic activity of mesenchymal stromal cells from adipose tissue and bone marrow in hypoxia and inflammation in vitro. Tsitologiia 52(2):144–154

    PubMed  CAS  Google Scholar 

  166. van der Bogt KE, Schrepfer S, Yu J, Sheikh AY, Hoyt G, Govaert JA et al (2009) Comparison of transplantation of adipose tissue- and bone marrow-derived mesenchymal stem cells in the infarcted heart. Transplantation 87(5):642–652, PMCID: 2866004

    Article  PubMed  Google Scholar 

  167. Wang L, Deng J, Tian W, Xiang B, Yang T, Li G et al (2009) Adipose-derived stem cells are an effective cell candidate for treatment of heart failure: an MR imaging study of rat hearts. Am J Physiol Heart Circ Physiol 297(3):H1020–H1031

    Article  PubMed  CAS  Google Scholar 

  168. Cai L, Johnstone BH, Cook TG, Tan J, Fishbein MC, Chen PS et al (2009) IFATS collection: human adipose tissue-derived stem cells induce angiogenesis and nerve sprouting following myocardial infarction, in conjunction with potent preservation of cardiac function. Stem Cells 27(1):230–237, PMCID: 2936459

    Article  PubMed  CAS  Google Scholar 

  169. Schenke-Layland K, Strem BM, Jordan MC, Deemedio MT, Hedrick MH, Roos KP et al (2009) Adipose tissue-derived cells improve cardiac function following myocardial infarction. J Surg Res 153(2):217–223, PMCID: 2700056

    Article  PubMed  CAS  Google Scholar 

  170. van der Bogt KE, Sheikh AY, Schrepfer S, Hoyt G, Cao F, Ransohoff KJ et al (2008) Comparison of different adult stem cell types for treatment of myocardial ischemia. Circulation 118(14 Suppl):S121–S129

    Article  PubMed  Google Scholar 

  171. Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H et al (2006) Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 12(4):459–465

    Article  PubMed  CAS  Google Scholar 

  172. Danoviz ME, Nakamuta JS, Marques FL, dos Santos L, Alvarenga EC, dos Santos AA et al (2010) Rat adipose tissue-derived stem cells transplantation attenuates cardiac dysfunction post infarction and biopolymers enhance cell retention. PLoS One 5(8):e12077, PMCID: 2919414

    Article  PubMed  CAS  Google Scholar 

  173. Mazo M, Planat-Benard V, Abizanda G, Pelacho B, Leobon B, Gavira JJ et al (2008) Transplantation of adipose derived stromal cells is associated with functional improvement in a rat model of chronic myocardial infarction. Eur J Heart Fail 10(5):454–462

    Article  PubMed  Google Scholar 

  174. Thompson SA, Copeland CR, Reich DH, Tung L (2011) Mechanical coupling between ­myofibroblasts and cardiomyocytes slows electric conduction in fibrotic cell monolayers. Circulation 123(19):2083–2093

    Article  PubMed  CAS  Google Scholar 

  175. Freyman T, Polin G, Osman H, Crary J, Lu M, Cheng L et al (2006) A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J 27(9):1114–1122

    Article  PubMed  Google Scholar 

  176. Piao H, Youn TJ, Kwon JS, Kim YH, Bae JW, Bora S et al (2005) Effects of bone marrow derived mesenchymal stem cells transplantation in acutely infarcting myocardium. Eur J Heart Fail 7(5):730–738

    Article  PubMed  CAS  Google Scholar 

  177. Zimmet JM, Hare JM (2005) Emerging role for bone marrow derived mesenchymal stem cells in myocardial regenerative therapy. Basic Res Cardiol 100(6):471–481

    Article  PubMed  CAS  Google Scholar 

  178. Payne GA, Kohr MC, Tune JD (2011) Epicardial perivascular adipose tissue as a therapeutic target in obesity-related coronary artery disease. Br J Pharmacol; doi: 10.1111/j.1476–5381.2011.01370

    Google Scholar 

  179. Mazo M, Gavira JJ, Pelacho B, Prosper F (2011) Adipose-derived stem cells for myocardial infarction. J Cardiovasc Transl Res 4(2):145–153

    Article  PubMed  Google Scholar 

  180. Tobita M, Orbay H, Mizuno H (2011) Adipose-derived stem cells: current findings and future perspectives. Discov Med 11(57):160–170

    PubMed  Google Scholar 

  181. Casteilla L, Planat-Benard V, Laharrague P, Cousin B (2011) Adipose-derived stromal cells: their identity and uses in clinical trials, an update. World J Stem Cells 3(4):25–33, PMCID: 3097937

    Article  PubMed  Google Scholar 

  182. Sepe A, Tchkonia T, Thomou T, Zamboni M, Kirkland JL (2011) Aging and regional differences in fat cell progenitors - a mini-review. Gerontology 57(1):66–75, PMCID: 3031153

    Article  PubMed  Google Scholar 

  183. Takashima Y, Era T, Nakao K, Kondo S, Kasuga M, Smith AG et al (2007) Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell 129(7):1377–1388

    Article  PubMed  CAS  Google Scholar 

  184. Quirici N, Scavullo C, de Girolamo L, Lopa S, Arrigoni E, Deliliers GL et al (2010) Anti-L-NGFR and -CD34 monoclonal antibodies identify multipotent mesenchymal stem cells in human adipose tissue. Stem Cells Dev 19(6):915–925

    Article  PubMed  CAS  Google Scholar 

  185. Ishimura D, Yamamoto N, Tajima K, Ohno A, Yamamoto Y, Washimi O et al (2008) Differentiation of adipose-derived stromal vascular fraction culture cells into chondrocytes using the method of cell sorting with a mesenchymal stem cell marker. Tohoku J Exp Med 216(2):149–156

    Article  PubMed  Google Scholar 

  186. Fujimura J, Ogawa R, Mizuno H, Fukunaga Y, Suzuki H (2005) Neural differentiation of adipose-derived stem cells isolated from GFP transgenic mice. Biochem Biophys Res Commun 333(1):116–121

    Article  PubMed  CAS  Google Scholar 

  187. Kingham PJ, Kalbermatten DF, Mahay D, Armstrong SJ, Wiberg M, Terenghi G (2007) Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol 207(2):267–274

    Article  PubMed  CAS  Google Scholar 

  188. di Summa PG, Kingham PJ, Raffoul W, Wiberg M, Terenghi G, Kalbermatten DF (2010) Adipose-derived stem cells enhance peripheral nerve regeneration. J Plast Reconstr Aesthet Surg 63(9):1544–1552

    Article  PubMed  Google Scholar 

  189. Safford KM, Hicok KC, Safford SD, Halvorsen YD, Wilkison WO, Gimble JM et al (2002) Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun 294(2):371–379

    Article  PubMed  CAS  Google Scholar 

  190. Zavan B, Vindigni V, Gardin C, D’Avella D, Della Puppa A, Abatangelo G et al (2010) Neural potential of adipose stem cells. Discov Med 10(50):37–43

    PubMed  Google Scholar 

  191. Ripoll CB, Flaat M, Klopf-Eiermann J, Fisher-Perkins JM, Trygg CB, Scruggs BA et al (2011) Mesenchymal lineage stem cells have pronounced anti-inflammatory effects in the twitcher mouse model of Krabbe’s disease. Stem Cells 29(1):67–77

    Article  PubMed  CAS  Google Scholar 

  192. Lee ST, Chu K, Jung KH, Im WS, Park JE, Lim HC et al (2009) Slowed progression in models of Huntington disease by adipose stem cell transplantation. Ann Neurol 66(5):671–681

    Article  PubMed  CAS  Google Scholar 

  193. Lopatina T, Kalinina N, Karagyaur M, Stambolsky D, Rubina K, Revischin A et al (2011) Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo. PLoS One 6(3):e17899, PMCID: 3056777

    Article  PubMed  CAS  Google Scholar 

  194. Zhang HT, Cheng HY, Cai YQ, Ma X, Liu WP, Yan ZJ et al (2009) Comparison of adult neurospheres derived from different origins for treatment of rat spinal cord injury. Neurosci Lett 458(3):116–121

    Article  PubMed  CAS  Google Scholar 

  195. Ben-Hur T, Einstein O, Mizrachi-Kol R, Ben-Menachem O, Reinhartz E, Karussis D et al (2003) Transplanted multipotential neural precursor cells migrate into the inflamed white matter in response to experimental autoimmune encephalomyelitis. Glia 41(1):73–80

    Article  PubMed  Google Scholar 

  196. Kuhlmann T, Miron V, Cui Q, Wegner C, Antel J, Bruck W (2008) Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 131(Pt 7):1749–1758

    Article  PubMed  CAS  Google Scholar 

  197. Girolamo F, Ferrara G, Strippoli M, Rizzi M, Errede M, Trojano M et al (2011) Cerebral cortex demyelination and oligodendrocyte precursor response to experimental autoimmune encephalomyelitis. Neurobiol Dis 43(3):678–689

    Article  PubMed  CAS  Google Scholar 

  198. Ryu HH, Lim JH, Byeon YE, Park JR, Seo MS, Lee YW et al (2009) Functional recovery and neural differentiation after transplantation of allogenic adipose-derived stem cells in a canine model of acute spinal cord injury. J Vet Sci 10(4):273–284, PMCID: 2807262

    Article  PubMed  Google Scholar 

  199. Kang SK, Shin MJ, Jung JS, Kim YG, Kim CH (2006) Autologous adipose tissue-derived stromal cells for treatment of spinal cord injury. Stem Cells Dev 15(4):583–594

    Article  PubMed  CAS  Google Scholar 

  200. Bissell MJ, Radisky DC, Rizki A, Weaver VM, Petersen OW (2002) The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation 70(9-10):537–546, PMCID: 2933198

    Article  PubMed  Google Scholar 

  201. Donnenberg VS, Zimmerlin L, Rubin JP, Donnenberg AD (2010) Regenerative therapy after cancer: what are the risks? Tissue Eng Part B Rev 16(6):567–575, PMCID: 3011999

    Article  PubMed  Google Scholar 

  202. Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B et al (2009) Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One 4(4):e4992, PMCID: 2661372

    Article  PubMed  CAS  Google Scholar 

  203. Iyengar P, Combs TP, Shah SJ, Gouon-Evans V, Pollard JW, Albanese C et al (2003) Adipocyte-secreted factors synergistically promote mammary tumorigenesis through induction of anti-apoptotic transcriptional programs and proto-oncogene stabilization. Oncogene 22(41):6408–6423

    Article  PubMed  CAS  Google Scholar 

  204. Zhang Y, Bellows CF, Kolonin MG (2010) Adipose tissue-derived progenitor cells and cancer. World J Stem Cells 2(5):103–113, PMCID: 3097931

    Article  PubMed  Google Scholar 

  205. Lin G, Yang R, Banie L, Wang G, Ning H, Li LC et al (2010) Effects of transplantation of adipose tissue-derived stem cells on prostate tumor. Prostate 70(10):1066–1073, PMCID: 2877148

    Article  PubMed  Google Scholar 

  206. Prantl L, Muehlberg F, Navone NM, Song YH, Vykoukal J, Logothetis CJ et al (2010) Adipose tissue-derived stem cells promote prostate tumor growth. Prostate 70(15):1709–1715

    Article  PubMed  CAS  Google Scholar 

  207. Zimmerlin L, Donnenberg AD, Rubin JP, Basse P, Landreneau RJ, Donnenberg VS (2011) Regenerative therapy and cancer: in vitro and in vivo studies of the interaction between ­adipose-derived stem cells and breast cancer cells from clinical isolates. Tissue Eng Part A 17(1-2):93–106, PMCID: 3011910

    Article  PubMed  CAS  Google Scholar 

  208. Muehlberg FL, Song YH, Krohn A, Pinilla SP, Droll LH, Leng X et al (2009) Tissue-resident stem cells promote breast cancer growth and metastasis. Carcinogenesis 30(4):589–597

    Article  PubMed  CAS  Google Scholar 

  209. Pinilla S, Alt E, Abdul Khalek FJ, Jotzu C, Muehlberg F, Beckmann C et al (2009) Tissue resident stem cells produce CCL5 under the influence of cancer cells and thereby promote breast cancer cell invasion. Cancer Lett 284(1):80–85

    Article  PubMed  CAS  Google Scholar 

  210. Cousin B, Ravet E, Poglio S, De Toni F, Bertuzzi M, Lulka H et al (2009) Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo. PLoS One 4(7):e6278, PMCID: 2707007

    Article  PubMed  CAS  Google Scholar 

  211. Sun B, Roh KH, Park JR, Lee SR, Park SB, Jung JW et al (2009) Therapeutic potential of mesenchymal stromal cells in a mouse breast cancer metastasis model. Cytotherapy 11(3):289–298, 1 p following 98

    Article  PubMed  CAS  Google Scholar 

  212. Altanerova V, Horvathova E, Matuskova M, Kucerova L, Altaner C (2009) Genotoxic ­damage of human adipose-tissue derived mesenchymal stem cells triggers their terminal ­differentiation. Neoplasma 56(6):542–547

    Article  PubMed  CAS  Google Scholar 

  213. Altanerova V, Cihova M, Babic M, Rychly B, Ondicova K, Mravec B et al (2011) Human adipose tissue-derived mesenchymal stem cells expressing yeast cytosinedeaminase::uracil phosphoribosyltransferase inhibit intracerebral rat glioblastoma. Int J Cancer; doi: 10.1002/ijc.26278

    Google Scholar 

  214. Cavarretta IT, Altanerova V, Matuskova M, Kucerova L, Culig Z, Altaner C (2010) Adipose tissue-derived mesenchymal stem cells expressing prodrug-converting enzyme inhibit human prostate tumor growth. Mol Ther 18(1):223–231, PMCID: 2839205

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregorio Chazenbalk Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Heneidi, S., Chazenbalk, G. (2012). Worth the Weight: Adipose Stem Cells in Human Disease. In: Srivastava, R., Shankar, S. (eds) Stem Cells and Human Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2801-1_15

Download citation

Publish with us

Policies and ethics