Skip to main content

Electron Transfer-Induced Fragmentation in (Bio)Molecules by Atom-Molecule Collisions

Negative Ion Formation

  • Chapter
  • First Online:

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Ion-pair formation to gas phase molecules induced by electron transfer has been studied by investigating the products of collisions between fast potassium atoms and target molecules using a crossed molecular-beam technique. The negative ions formed in such collisions are TOF mass analysed. As far as (bio)molecules are concerned, TOF mass spectra at different collision energies reveal interesting anionic patterns with reduced fragmentation at lower impact energies. In the unimolecular decomposition of the temporary negative ion (TNI), complex internal rearrangement may involve the cleavage and formation of new bonds. In this chapter we report some of the recent achievements in negative ion formation of some polyatomic molecules with the special attention to biological relevant targets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Boudaiffa, B., Cloutier, P., Hunting, D., Huels, M.A., Sanche, L., Science. 287, 1658–1660 (2000)

    Article  ADS  Google Scholar 

  2. Huels, M.A., Boudaiffa, B., Cloutier, P., Hunting, D., and Sanche, L., J. Am. Chem. Soc. 125, 4467–4477 (2003)

    Article  Google Scholar 

  3. Ptasinska, S., Denifl, S., Grill, V., Märk, T.D., Illenberger, E., and Scheier, P., Phys. Rev. Lett. 95, 093201 (2005)

    Article  ADS  Google Scholar 

  4. Abdoul-Carime, H., Limão-Vieira, P., Petrushko, I., Mason, N.J., Gohlke, S., and Illenberger, E., Chem. Phys. Lett. 393, 442–447 (2004)

    Article  ADS  Google Scholar 

  5. Zamenhof, S., Degiovanni, R., Greer, S., Nature. 181, 827–289 (1958)

    Article  ADS  Google Scholar 

  6. Lawrence, T.S., Davis, M.A., Maybaum, J., Stetson, P.L., Ensminger, W.D., Radiat. Res. 123, 192–198 (1990)

    Article  Google Scholar 

  7. Abdoul-Carime, H., Huels, M.A., Bruning, F., Illenberger, E., Sanche, L., J. Chem. Phys. 113, 2517–2521 (2000)

    Article  ADS  Google Scholar 

  8. Abdoul-Carime, H., Huels, M.A., Illenberger, E., Sanche, L., J. Am. Chem. Soc. 123, 5354–5355 (2001)

    Article  Google Scholar 

  9. Denifl, S., Matejcik, S., Ptasinska, S., Gstir, B., Probst, M., Scheier, P., Illenberger, E., Märk, T.D., J. Chem. Phys. 120, 704–709 (2004)

    Article  ADS  Google Scholar 

  10. Almeida, D., Antunes, R., Martins, G., Eden, S., Ferreira da Silva, F., Nunes, Y., Garcia, G., and Limão-Vieira, P., Phys. Chem. Chem. Phys. 13, 15657–15665 (2011)

    Google Scholar 

  11. Kleyn, A.W., Moutinho, A.M.C., J. Phys. B., 34, R1–R44 (2001)

    Article  ADS  Google Scholar 

  12. Limão-Vieira, P., Moutinho, A.M.C., and Los, J., J. Chem. Phys. 124, 054306 (2006)

    Article  ADS  Google Scholar 

  13. Antunes, R., Almeida, D., Martins, G., Mason, N.J., Garcia, G., Maneira, M.J.P., Nunes, Y., and Limão-Vieira, P., Phys. Chem. Chem. Phys. 12, 12513–12519 (2010)

    Article  Google Scholar 

  14. Kleyn, A.W., Los, J., and Gislason, E.A., Phys. Rep., 90, 1–71 (1982)

    Article  ADS  Google Scholar 

  15. Fenzlaff, H.P., Illenberger, E., Int. J. Mass Spect. Ion Proc. 59, 185–202 (1984)

    Article  Google Scholar 

  16. Christophorou L.G., McCorkle D.L., and Christodoulides, A.A. (1984) Electron-Molecule Interactions and Their Applications, vol. 2. Academic Press, Inc., NY

    Google Scholar 

  17. Limão-Vieira, P., Moutinho, A.M.C., Los, J., J. Chem. Phys. 124, 054306 (2006)

    Article  ADS  Google Scholar 

  18. Limão-Vieira, P., private communication

    Google Scholar 

  19. Aten, J.A., and Los, J., J. Phys. E. Sci. Instr. 8, 408–410 (1973)

    Article  ADS  Google Scholar 

  20. Compton, R.N., Carman Jr, H.S., Desfrancois, C., Abdoul-Carime, H., Schermann, J.P., Hendricks, J.H., Lyapustina, S.A., and Bowen, K.H.,. J. Chem. Phys. 105, 3472–3478 (1996)

    Article  ADS  Google Scholar 

  21. Alizadeh, E., Ferreira da Silva, F., Zappa, F., Mauracher, A., Probst, M., Denifl, S., Bacher, A., Märk, T.D., Limão-Vieira, P., Scheier, P., Int. J. Mass Spectrom. 271, 15–21 (2008)

    Google Scholar 

  22. Sailer, W., Pelc, A., Matejcik, S., Illenberger, E., Scheier, P., and Märk, T.D.,. J. Chem. Phys. 117, 7989–7994 (2002)

    Article  ADS  Google Scholar 

  23. Sommerfeld, T., Phys. Chem. Chem. Phys. 4, 2511–2516 (2002)

    Article  Google Scholar 

  24. Gustev, G.L., and Bartlett, R.J., J. Chem. Phys. 105, 8785–8792 (1996)

    Article  ADS  Google Scholar 

  25. Walker, I.C., Fluendy, M.A.D., Int. J. Mass Spectrom. 205, 171–182 (2001)

    Article  Google Scholar 

  26. Denifl, S., Ptasinska, Probst, M., Hrusak, J., Scheier, P., and Märk, T.D., J. Phys. Chem. A 108, 6562–6569 (2004)

    Google Scholar 

  27. Denifl, S., Ptasinska, S., Hanel, G., Gstir, B., Probst, M., Scheier, P., and Märk, T.D., J. Chem. Phys. 120, 6557–6565 (2004)

    Article  ADS  Google Scholar 

  28. Aflatooni, K., Gallup, G.A., Burrow, P.D., J. Phys. Chem. A 102, 6205–6207 (1998)

    Article  Google Scholar 

  29. Schiedt, J., Weinkauf, R., Neumark, D.M., Schlag, E.W., Chem. Phys. 239, 511–524 (1998)

    Article  Google Scholar 

  30. Burrow, P., Gallup, G., Scheer, A., Denifl, S., Ptasinska, S., Märk, T.D., and Scheier, P., J. Chem. Phys. 124, 124310 (2006)

    Article  ADS  Google Scholar 

  31. Skalicky, T., Chollet, C., Pasquier, N., Allan, M., Phys. Chem. Chem. Phys. 4, 3583–3590 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

PLV acknowledges the Portuguese Foundation for Science and Technology (FCT-MCTES) for the research grant POCI/FIS/58845/2004 & PPCDT/FIS/58845/2004, and together with GG acknowledges the Spanish-Portuguese Project HP2006-0042; Ministerio de Ciencia e Innovación (project FIS2009-10245), Spain is also acknowledge. FFS acknowledges FCT-MCTES for the SFRH/BPD/68979/2010 financial support. Some of this work forms part of the EU/ESF COST Actions: Electron Controlled Chemical Lithography (ECCL) CM0601, The Chemical Cosmos CM0805 and the Nano-scale Insights in Ion Beam Cancer Therapy (Nano-IBCT) MP1002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Limão-Vieira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Limão-Vieira, P., da Silva, F.F., Gómez-Tejedor, G.G. (2012). Electron Transfer-Induced Fragmentation in (Bio)Molecules by Atom-Molecule Collisions. In: García Gómez-Tejedor, G., Fuss, M. (eds) Radiation Damage in Biomolecular Systems. Biological and Medical Physics, Biomedical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2564-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2564-5_3

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2563-8

  • Online ISBN: 978-94-007-2564-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics