Skip to main content

Genetic Mechanisms Enhancing Plant Biodiversity

  • Chapter
  • First Online:

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 7))

Abstract

Biodiversity is essential for an evolving ecosystem and as a resource for further development of natural products by breeding. At present agriculture is under pressure by the demand for increased crop production and the public anticipation for sustainable cultivation practices. Undeniably, the prerequisite for adaptation of an organism to changing environmental conditions is genetic variability. The answer to the concern that the persistent accumulation of desirable alleles in a few cultivars could erode genetic variability and ultimately impede further improvement, comes from the fields of genetic and epigenetic studies that have revealed a range of mechanisms which result in remarkable variability even in narrow gene pools.

We review small and large scale mutations and transposable element activity that create genetic variability, as well as epigenetic mechanisms that could give rise to variation not necessarily depending on DNA sequence alterations. Major points include the naturally occurring mutation rate that might explain the difficulty in controlling weeds with single-target herbicides, in addition to the advances in plant breeding through intentional mutation. Moreover, allele expression biases are presented in polyploid species, as well as the implication of transposable element activity in intra-species variation.

Another major point refers to the reduced expression levels of a locus that correlates with DNA methylation, a process that has further been associated with phenomena such as paramutation, parental imprinting, and heterosis. Intriguingly, transposable element activity in cases like during environmental stress, has been implied to be controlled by DNA methylation and demethylation systems causing genome restructure, together with the fact that methylated nucleotides are themselves hot-spots for mutations.

Other major points involve histones, proteins responsible for DNA packaging and organization, that are involved in gene activation and silencing, for example during stress conditions or at different developmental stages. Lastly, some RNA molecules are implicated both in endogenous gene regulation and the control of invading genetic entities, which is particularly important when using biotechnological methods for the development of novel crops through the introduction of transgenes. Overall, epigenetic changes seem to happen more frequently and be reversible, whereas spontaneous DNA mutations are often random and more stable.

In conclusion, plant biodiversity can serve as a resource for sustainable agriculture. It is important for plant breeders to take advantage of the range of modern tools and knowledge of plant genomes, so that breeding is less a ‘hit and miss’ process, but a more precise strategy, where successful selection for crop improvement is increasingly supported by understanding the genetic variation underlying the phenotype.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams KL, Cronn R, Percifield R, Wendel JF (2003) Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci USA 100:4649–4654. doi:10.1073/pnas.0630618100

    PubMed  CAS  Google Scholar 

  • Adams KL, Percifield R, Wendel JF (2004) Organ-specific silencing of duplicated genes in a newly synthesized cotton allotetraploid. Genetics 168:2217–2226. doi:10.1534/genetics.104.033522

    PubMed  CAS  Google Scholar 

  • Agius F, Kapoor A, Zhu JK (2006) Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation. Proc Natl Acad Sci USA 103:11796–11801. doi:10.1073/pnas.0603563103

    PubMed  CAS  Google Scholar 

  • Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135:187–204. doi:10.1023/B:EUPH.0000014914.85465.4f

    Google Scholar 

  • Akimoto K, Katakami H, Kim HJ, Ogawa E, Sano CM, Wada Y, Sano H (2007) Epigenetic inheritance in rice plants. Ann Bot 100:205–217. doi:10.1093/aob/mcm110

    PubMed  CAS  Google Scholar 

  • Alvarez-Venegas R, Pien S, Sadder M, Witmer X, Grossniklaus U, Arramova Z (2003) ATX-1 an Arabidopsis homologue of trithorax activates flower homeotic genes. Curr Biol 13:627–637. doi:10.1016/S0960-9822(03)00243-4

    PubMed  CAS  Google Scholar 

  • Aufsatz W, Mette MF, Van Der Winden J, Matzke M, Matzke AJ (2002) HDA6, a putative histone deacetylase needed to enhance DNA methylation induced by double-stranded RNA. EMBO J 21:6832–6841. doi:10.1093/emboj/cdf663

    PubMed  CAS  Google Scholar 

  • Baroux C, Spillane C, Grossniklaus U (2002) Evolutionary origins of the endosperm in flowering plants. Genome Biol 3:1026.1–1026.5. doi:10.1186/gb-2002-3-9-reviews1026

    Google Scholar 

  • Bartel DP (2004) MicroRNAs. Cell 116:281–297. doi:10.1016/S0092-8674(04)00045-5

    PubMed  CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58. doi:10.1080/07352680590910410

    CAS  Google Scholar 

  • Bastow R, Mylne J, Lister C, Lippman Z, Martiennsen R, Dean C (2004) Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427:164–167. doi:10.1038/nature02269

    PubMed  CAS  Google Scholar 

  • Baumbusch LO, Thorstensen T, Kraus V, Fischer A, Numann K, Assalkhou R, Schulz I, Reuter G, Aalen RB (2001) The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionary conserved classes. Nucleic Acids Res 29:4319–4333. doi:10.1093/nar/29.21.4319

    PubMed  CAS  Google Scholar 

  • Bennetzen JL (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 15:621–627. doi:10.1016/j.gde.2005.09.010

    PubMed  CAS  Google Scholar 

  • Bennetzen JL, Ma J, Devos KM (2005) Mechanisms of recent genome size variation in flowering plants. Ann Bot 95:127–132. doi:10.1093/aob/mci008

    PubMed  CAS  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366. doi:10.1038/35053110

    PubMed  CAS  Google Scholar 

  • Bhasin M, Reinherz EL, Reche PA (2006) Recognition and classification of histones using support vector machine. J Comput Biol 13:102–112. doi:10.1089/cmb.2006.13.102 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  • Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691. doi:10.1105/tpc.021410

    PubMed  CAS  Google Scholar 

  • Budar F, Thia-Toong L, Van Montagu M, Hernalsteens J-P (1986) Agrobacterium-mediated gene transfer results mainly in transgenic plants transmitting T-DNA as a single Mendelian factor. Genetics 114:303–313, PMID: 17246346, PMCID: PMC1202937

    Google Scholar 

  • Capy P, Gasperi G, Biemont C, Bazin C (2000) Stress and transposable elements: co-evolution or useful parasites? Heredity 85:101–106. doi:10.1046/j.1365-2540.2000.00751.x

    PubMed  CAS  Google Scholar 

  • Castiglione MR, Cremonini R, Frediani M (2002) DNA methylation patterns on plant chromosomes. Caryologica 55:275–282. doi:10.1007/s00709-010-0116-x

    Google Scholar 

  • Chandler V, Stam M (2004) Chromatin conversations: mechanisms and implications of paramutation. Nat Rev Genet 5:532–544. doi:10.1038/nrg1378

    PubMed  CAS  Google Scholar 

  • Chen X, Liu X, Wu D, Shu QY (2006) Recent progress of rice mutation breeding and germplasm enhancement in China. Plant Mutat Rep 1:4–6

    Google Scholar 

  • Chinnusamy V, Zhu J-K (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:1–7. doi:10.1016/j.pbi.2008.12.006

    Google Scholar 

  • Choi CS, Sano H (2007) Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol Genet Genomics 277:589–600. doi:10.1007/s00438-007-0209-1

    PubMed  CAS  Google Scholar 

  • Choi Y, Gehring M, Johnson L, Hannon M, Harada JJ, Goldberg RB, Jacobsen SE, Fischer RL (2002) DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110:33–42. doi:10.1016/S0092-8674(02)00807-3

    PubMed  CAS  Google Scholar 

  • Cosgrove MS, Boeke JD, Wolberger C (2004) Regulated nucleosome mobility and the histone code. Nat Struct Mol Biol 11:1037–1043. doi:10.1038/nsmb851 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  • Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157–161. doi:10.1038/43657

    PubMed  CAS  Google Scholar 

  • Cullis CA (2005) Mechanisms and control of rapid genomic change in flax. Ann Bot 95:201–206. doi:10.1093/aob/mci013

    PubMed  CAS  Google Scholar 

  • Davuluri GR, Tuinen A, Mustilli AC, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlig J, Pennings HMJ, Bowler C (2004) Manipulation of DET1 expression in tomato results in photomorphogenic phenotypes caused by post-transcriptional gene silencing. Plant J 40:344–354. doi:10.1111/j.1365-313X.2004.02218.x

    PubMed  CAS  Google Scholar 

  • Davuluri GR, vanTuinen A, Fraser PD, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlig J, Bramley PM, Pennings HM, Bowler C (2005) Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat Biotechnol 23:890–895. doi:10.1038/nbt1108

    PubMed  CAS  Google Scholar 

  • De Chiara TM, Robertson EJ, Efstratiadis A (1991) Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64:849–859. doi:10.1016/0092-8674(91)90513-X

    Google Scholar 

  • Dou Y, Milne TA, Tackett AJ, Smith ER, Fukuda A, Wysocka J, Ailis DC, Chait BT, Hess JL, Roeder R (2005) Physical association and coordinate function of H3K4 methylotransferase MLL1 and the H4K16 acetylotransferase MOF. Cell 121:873–885. doi:10.1016/j.cell.2005.04.031

    PubMed  CAS  Google Scholar 

  • Dudley JW, Lambert RJ (2004) 100 generations of selection for oil and protein in corn. Plant Breed Rev 24:79–110

    Google Scholar 

  • Eady CC, Kamoi T, Kato M, Porter NG, Davis S, Shaw M, Kamoi A, Imai S (2008) Silencing onion lachrymatory factor synthase causes a significant change in the sulfur secondary metabolite profile. Plant Physiol 147:2096–2106. doi:10.1104/pp. 108.123273

    PubMed  CAS  Google Scholar 

  • Elbasir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200. doi:10.1101/gad.862301

    Google Scholar 

  • Elliot FC (1958) Plant breeding and cytogenetics. McGraw Hill Book Company, Inc., New York

    Google Scholar 

  • Fasoula DA (1990) Correlations between auto-, allo- and nill-competition and their implications in plant breeding. Euphytica 50:57–62. doi:10.1007/BF00023161

    Google Scholar 

  • Fasoula VA, Boerma HR (2005) Divergent selection at ultra-low plant density for seed protein and oil content within soybean cultivars. Field Crops Res 91:217–229. doi:10.1016/j.fcr.2004.07.018 DOI:dx.doi.org

    Google Scholar 

  • Fasoula VA, Boerma HR (2007) Intra-cultivar variation for seed weight and other agronomic traits within three elite soybean cultivars. Crop Sci 47:367–373. doi:10.2135/cropsci2005.09.0334

    Google Scholar 

  • Fasoula VA, Fasoula DA (2002) Principles underlying genetic improvement for high and stable crop yield potential. Field Crop Res 75:191–209. doi:10.1016/S0378-4290(02)00026-6 DOI:dx.doi.org

    Google Scholar 

  • Fasoulas AC (2000) Building up resistance to Verticillium wilt in cotton through honeycomb breeding. In: Gillham FM (ed) New frontiers in cotton research. Proceedings of the 2nd world cotton research conference, 6–12 Sept 1998, Athens, pp 120–124

    Google Scholar 

  • Felsenfeld G, Groudine M (2003) Controlling the double helix. Nature 421:448–453. doi:10.1038/nature01411DOI:dx.doi.org

    PubMed  Google Scholar 

  • Fermin G, Tennant P, Gonsalves C, Lee D, Gonsalves D (2004) Comparative development and impact of transgenic papayas in Hawaii, Jamaica, and Venezuela. Methods Mol Biol 286:399–430. doi:10.1385/1-59259-827-7:399

    Google Scholar 

  • Fire A, Xu SQ, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811. doi:10.1038/35888

    PubMed  CAS  Google Scholar 

  • Floyd SK, Bowman JL (2005) MicroRNAs: micro-managing the plant genome. In: Meyer P (ed) Plant epigenetics. Blackwell Scientific Publications, Oxford, pp 244–279

    Google Scholar 

  • Fransz PF, Alonso-Blanco C, Liharska TB, Peeters AJM, Zabel P, Hans de Jong J et al (1996) High-resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibres. Plant J 9:421–430. doi:10.1046/j.1365-313X.1996.09030421

    PubMed  CAS  Google Scholar 

  • Freese E (1959) The difference between spontaneous and base-analogue induced mutations of phage T4. Proc Natl Acad Sci USA 45:622–633. doi:10.1073/pnas.45.4.622

    PubMed  CAS  Google Scholar 

  • Fu W, Wu K, Duan J (2007) Sequence and expression analysis of histone deacetylases in rice. Biochem Biophys Res Commun 356:843–850. doi:10.1016/j.bbrc.2007.03.010

    PubMed  CAS  Google Scholar 

  • Galaud JP, Gaspar T, Boyer N (1993) Inhibition of internode growth due to mechanical stress in Bryonia dioica: relationship between changes in DNA methylation and ethylene metabolism. Physiol Plant 87:25–30. doi:10.1007/BF02912989

    CAS  Google Scholar 

  • Gavilano LB, Coleman NP, Burnley L-E, Bowman ML, Kalengamaliro NE, Hayes A, Bush L, Siminszky B (2006) Genetic Engineering of Nicotiana tabacum for Reduced Nornicotine Content. J Agric Food Chem 54:9071–9078. doi:10.1021/jf0610458

    PubMed  CAS  Google Scholar 

  • Gethi JG, Labate JA, Lamkey KR, Smith ME, Kresovich S (2002) SSR variation in important U.S. maize inbred lines. Crop Sci 42:951–957

    CAS  Google Scholar 

  • Grant-Downton RT, Dickinson HG (2005) Epigenetics and its implications for plant biology. 1. The epigenetic network in plants. Ann Bot 96:1143–1164. doi:10.1093/aob/mci273

    Google Scholar 

  • Grant-Downton RT, Dickinson HG (2006) Epigenetics and its implications for plant biology. 2. The ‘epigenetic epiphany’: epigenetics, evolution and beyond. Ann Bot 97:11–27. doi:10.1093/aob/mcj001

    Google Scholar 

  • Griffiths AJF, Miller JH, Suzuki DT, Lewontin RC, Gelbart WM (1993) An introduction to genetic analysis. W.H. Freeman & Company, New York

    Google Scholar 

  • Gustafsson A, Gadd I (1965) Mutations and crop improvement. II. The genus Lupinus(Leguminosae). Hereditas 53:15–39. doi:10.1111/j.1601-5223.1965.tb01977

    Google Scholar 

  • Haig D, Westoby M (1989) Parent specific gene expression and the triploid endosperm. Am Nat 134:147–155. doi:10.1086/284971

    Google Scholar 

  • Hall IM, Grewal SI (2003) Structure and function of heterochromatin: implications for epigenetic gene silencing and genome organization. In: Hannon GJ (ed) RNAi: a guide to gene silencing. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 205–232

    Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in post-transcriptional gene silencing in plants. Science 286:950–952. doi:10.1126/science.286.5441.950

    PubMed  CAS  Google Scholar 

  • Hashida SN, Uchiyama T, Martin C, Kishima Y, Sano Y, Mikami T (2006) The temperature-dependent change in methylation of the Antirrhinum transposon Tam3 is controlled by the activity of its transposase. Plant Cell 18:104–118. doi:10.1105/tpc.105.037655

    PubMed  CAS  Google Scholar 

  • Henderson IR, Jacobsen SE (2007) Epigenetic inheritance in plants. Nature 44:418–424. doi:10.1038/nature05917

    Google Scholar 

  • Hollick JB, Dorweiler JE, Chandler VL (1997) Paramutation and related allelic interactions. Trends Genet 13:302–308. doi:10.1016/S0168-9525(97)01184-0

    PubMed  CAS  Google Scholar 

  • Jacobsen SE, Meyerowitz EM (1997) Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science 277:1100–1103. doi:10.1126/science.277.5329.1100

    PubMed  CAS  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080. doi:10.1126/science.1063127 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  • Jiang C-X, Wright RJ, El-Zik KM, Paterson AH (1998) Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci USA 95:4419–4424, PMID: 9539752, PMCID: PMC22504

    Google Scholar 

  • Jiang N, Bao Z, Zhang X, Eddy SR, Wessler SR (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431:569–573. doi:10.1038/nature02953

    PubMed  CAS  Google Scholar 

  • John MC, Amasino RM (1989) Extensive changes in DNA methylation patterns accompany activation of a silent T-DNA ipt gene in Agrobacterium tumefaciens-transformed plant cells. Mol Cell Biol 9:4298–4303, PMID: 2479825, PMCID: PMC362510

    Google Scholar 

  • Jones PA, Rideout WM, Shen J-C, Spruck CH, Tsai YC (1992) Methylation, mutation and cancer. BioEssays 14:33–36. doi:10.1002/bies.950140107

    PubMed  CAS  Google Scholar 

  • Jost JP, Siegmann M, Sun L, Leung R (1995) Mechanisms of DNA demethylation in chicken embryos. Purification and properties of a 5-methylcytosine-DNA glycosylase. J Biol Chem 270:9734–9739. doi:10.1074/jbc.270.17.9734

    Google Scholar 

  • Kankel MW, Ramsey DE, Stokes TL, Flowers SK, Haag JR, Jeddeloh JA, Riddle NC, Verbsky ML, Richards EJ (2003) Arabidopsis MET1 cytosine methyltransferase mutants. Genetics 163:1109–1122, PMID: 12663548, PMCID: PMC1462485

    Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2002) Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160:1651–1659, PMID: 11973318, PMCID: PMC1462064

    Google Scholar 

  • Kazazian HH Jr (2004) Mobile elements: drivers of genome evolution. Science 303:1626–1632. doi:10.1126/science.1089670

    PubMed  CAS  Google Scholar 

  • Kermicle JL, Alleman M (1990) Gametic imprinting in maize in relation to the angiosperm life cycle. Development 108 (Suppl):9–14. PMID: 2090436

    Google Scholar 

  • Khoshoo TN (1959) Polyploidy in gymnosperms. Evolution 13:24–39, http://www.jstor.org/ stable/2405943

    Google Scholar 

  • Kidwell MG, Lisch D (2002) Transposable elements as sources of genomic variation. In: Craig NL, Craigie R, Gellert M, Lambowitz AM (eds) Moblie DNA II. American Society for Microbiology Press, Washington, DC, pp 59–90

    Google Scholar 

  • Kinoshita T, Yadegari R, Harada JH, Goldberg RB, Fisher RL (1999) Imprinting of the MEDEA Polycomb gene in the Arabidopsis endosperm. Plant Cell 11:1945–1952. doi:10.1105/tpc.11.10.1945

    PubMed  CAS  Google Scholar 

  • Kinoshita T, Miura A, Choi Y, Kinoshita Y, Cao X, Jacobsen SE, Fischer RL, Kakutani T (2004) One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science 303:521–523. doi:10.1126/science.1089835

    PubMed  CAS  Google Scholar 

  • Kovarik A, Koukalova B, Bezdek M, Opatrn Z (1997) Hypermethylation of tobacco heterochromatic loci in response to osmotic stress. Theor Appl Genet 95:301–306. doi:10.1007/s001220050563

    Google Scholar 

  • Kusaba M, Miyahara K, Iida S, Fukuoka H, Takano T, Sassa H, Nishimura M, Nishio T (2003) Low glutelin content 1: a dominant mutation that suppresses the glutelin multigene family via RNA silencing in rice. Plant Cell 15:1455–1467. doi:10.1105/tpc.011452

    PubMed  CAS  Google Scholar 

  • Labra M, Ghiani A, Citterio S, Sgorbati S, Sala F, Vannini C, Ruffini-Castiglione M, Bracale M (2002) Analysis of cytosine methylation pattern in response to water deficitin pea roottips. Plant Biol 4:694–699. doi:10.1055/s-2002-37398

    CAS  Google Scholar 

  • Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663–4670. doi:10.1093/emboj/cdf476

    PubMed  CAS  Google Scholar 

  • Lippman Z, Gendrel A-V, Black M, Vaughn M, Dedhla N, McComble R, Lavine K, Mittal V, May B, Kasschau KD, Carrington JC, Doerge RW, Colot V, Martienssen R (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471–476. doi:10.1038/nature02651

    PubMed  CAS  Google Scholar 

  • Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536. doi:10.1016/j.cell.2008.03.029

    PubMed  CAS  Google Scholar 

  • Long JA, Ohno C, Smith ZR, Meyerowitz EM (2006) TOPLESS regulates apical embryonic fate in Arabidopsis. Science 312:1520–1523. doi:10.1126/science.1123841

    PubMed  CAS  Google Scholar 

  • Louwers M, Haring M, Stam M (2005) When alleles meet: paramutation. In: Meyer P (ed) Plant epigenetics. Blackwell Scientific Publications, Oxford, pp 134–173

    Google Scholar 

  • Luger K, Mder AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260. doi:10.1038/38444

    Google Scholar 

  • Ma X-F, Fang P, Gustafson JP (2004) Polyploidization-induced genome variation in triticale. Genome 47:839–848. doi:10.1139/G04-051

    PubMed  CAS  Google Scholar 

  • Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110:563–574. doi:10.1016/S0092-8674(02)00908-X

    PubMed  CAS  Google Scholar 

  • Matzke M, Aufsatz W, Kanno T, Daxinger L, Papp I, Mette MF, Matzke AJM (2004) Genetic analysis of RNA-mediated transcriptional gene silencing. Biochim Biophys Acta 1677:129–141

    PubMed  CAS  Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801. doi:10.1126/science.15739260

    PubMed  CAS  Google Scholar 

  • McCormick S (2004) Control of male gametophyte development. Plant Cell 16(Suppl):S142–S153. doi:10.1105/tpc.016659

    PubMed  CAS  Google Scholar 

  • Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349. doi:10.1038/nature02873

    PubMed  CAS  Google Scholar 

  • Mlynarova L, Nap JP, Bisseling T (2007) The SWI/SNF chromatin-remodeling gene AtCHR12 mediates temporary growth arrest in Arabidopsis thaliana upon perceiving environmental stress. Plant J 51:874–885. doi:10.1111/j.1365-313X.2007.03185.x

    PubMed  CAS  Google Scholar 

  • Mochida K, Yamazaki Y, Ogihara Y (2003) Discrimination of homoeologous gene expression in hexaploid wheat by SNP analysis of contigs grouped from a large number of expressed sequence tags. Mol Gen Genet 270:371–377. doi:10.1007/s00438-003-0939-7

    CAS  Google Scholar 

  • Morales-Ruiz T, Ortega-Galisteo AP, Ponferrada-Marn MI, Martnez-Macas MI, Ariza RR, Roldán-Arjona T (2006) DEMETER and REPRESSOR OF SILENCING 1 encode 5-methylcytosine DNA glycosylases. Proc Natl Acad Sci USA 103:6853–6858. doi:10.1073/ pnas.0601109103

    PubMed  CAS  Google Scholar 

  • Morel JB, Godon C, Mourrain P, Beclin C, Boutet S, Feuerbach F, Proux F, Vaucheret H (2002) Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post -transcriptional gene silencing and virus resistance. Plant Cell 14:629–639. doi:10.1105/tpc.010358

    PubMed  CAS  Google Scholar 

  • Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37:997–1002. doi:10.1038/ng1615

    PubMed  CAS  Google Scholar 

  • Muskens MWM, Vissers APA, Mol JNM, Kooter JM (2000) Role of inverted DNA repeats in transcriptional and post-transcriptional gene silencing. Plant Mol Biol 43:243–260. doi:10.1023/A:1006491613768

    PubMed  CAS  Google Scholar 

  • Mysore KS, Nam J, Gelvin SB (2000) An Arabidopsis histoneH2Amutant is deficient in Agrobacterium T-DNA integration. Proc Natl Acad Sci USA 97:948–953, PMID: 10639185, PMCID: PMC15436

    Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene in to petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289. doi:10.1105/tpc.2.4.279

    PubMed  CAS  Google Scholar 

  • Nishimura M, Morita R, Kusaba M (2009) Utilization and molecular characterization of seed protein composition mutants in rice plants. JARQ 43:1–5

    CAS  Google Scholar 

  • Ogita S, Uefuji H, Yamaguchi Y, Koizumi N, Sano H (2003) Producing decaffeinated coffee plants. Nature 423:823. doi:10.1038/423823a

    CAS  Google Scholar 

  • Olufowote JO, Xu Y, Chen X, Park WD, Beachell HM, Dilday RH, Goto M, McCouch SR (1997) Comparative evaluation of within-cultivar variation of rice (Oryza sativa L.) using microsatellite and RFLP markers. Genome 40:370–378. doi:10.1139/g97-050

    Google Scholar 

  • Ossowski S, Schneeberger K, Lucas-Lledó JI, Warthmann N, Clark RM, Shaw RG, Weigel D, Lynch M (2010) The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327:92–94. doi:10.1126/science.1180677

    PubMed  CAS  Google Scholar 

  • Otto SP, Whitton J (2000) Polyploidy incidence and evolution. Annu Rev Genet 34:401–437. doi:10.1146/annurev.genet.34.1.401

    PubMed  CAS  Google Scholar 

  • Papp I, Mette MF, Aufsatz W, Daxinger L, Schauer SE, Ray A, van der Winden J, Matzke M, Matzke AJM (2003) Evidence for nuclear processing of plant microRNA and short interfering RNA precursors. Plant Physiol 132:1382–1390. doi:10.1104/pp.103.021980

    PubMed  CAS  Google Scholar 

  • Parizotto EA, Dunoyer P, Rahm N, Himber C, Voinnet O (2004) In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev 18:2237–2242. doi:10.1101/gad.307804

    PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Peterson DG, Estill JC, Chapman BA (2003) Structure and evolution of cereal genomes. Curr Opin Genet Dev 13:644–650. doi:10.1016/j.gde.2003.10.002

    PubMed  CAS  Google Scholar 

  • Patterson GI, Thorpe CJ, Chandler VL (1993) Paramutation, an allelic interaction, is associated with a stable and heritable reduction of transcription of the maize b regulatory gene. Genetics 135:881–894, PMID: 7507455, PMCID: PMC 1205727

    Google Scholar 

  • Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10:886–895. doi:10.1016/S0960-9822(00)00610-2

    PubMed  CAS  Google Scholar 

  • Probst AV, Fagard M, Proux F, Mourrain P, Boutet S, Earley K, Lawrence RJ, Pikaard CS, Murfett J, Furner I, Vaucheret H, Mittelsten SO (2004) Arabidopsis histone deacetylase HDA6 is required for maintenance of transcriptional gene silencing and determines nuclear organization of rDNA repeats. Plant Cell 16:1021–1034. doi:10.1105/tpc.018754

    PubMed  CAS  Google Scholar 

  • Prymakowska-Bosak M, Przewloka MR, Slusarczyk J, Kuras M, Lichota J, Kilianczyk B, Jerzmanowski A (1999) Linker histones play a role in male meiosis and the development of pollen grains in tobacco. Plant Cell 11:2317–2329. doi:10.1105/tpc.11.12.2317

    PubMed  CAS  Google Scholar 

  • Rapp RA, Wendel JF (2005) Epigenetics and plant evolution. New Phytol 168:81–91. doi:10.1111/j.1469-8137.2005.01491

    PubMed  CAS  Google Scholar 

  • Rasmusson DC, Phillips RL (1997) Plant breeding progress and genetic diversity from de novo variation and elevated epistasis. Crop Sci 37:303–310

    Google Scholar 

  • Regina A, Bird A, Topping D, Bowden S, Freeman J, Barsby T, Kosar-Hashemi B, Li Z, Rahman S, Morell M (2006) High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc Natl Acad Sci USA 103:3546–3551. doi:10.1073/pnas.0510737103

    PubMed  CAS  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626. doi:10.1101/gad.1004402

    PubMed  CAS  Google Scholar 

  • Reuter G, Fischer A, Hofmann I (2005) Heterochromatin and the control of gene silencing in plants. In: Meyer P (ed) Plant epigenetics. Blackwell Scientific Publications, Oxford, pp 134–173

    Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520. doi:10.1016/S0092-8674(02)00863-2

    PubMed  CAS  Google Scholar 

  • Rideout WM 3rd, Coetzee G, Olumi A, Jones P (1990) 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science 249:1288–1290. doi:10.1126/science.1697983

    PubMed  CAS  Google Scholar 

  • Roth BM, Pruss GJ, Vance VB (2004) Plant viral suppressors of RNA silencing. Virus Res 102:97–108. doi:10.1016/j.virusres.2004.01.020

    PubMed  CAS  Google Scholar 

  • Rusche LN, Kirchmaier AL, Rine J (2003) The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem 72:481–516. doi:10.1146/annurev.biochem.72.121801.161547

    PubMed  CAS  Google Scholar 

  • Schwartz YB, Pirrotta V (2008) Polycomb complexes and epigenetic states. Curr Opin Cell Biol 20:266–273. doi:10.1016/j.ceb.2008.03.002

    PubMed  CAS  Google Scholar 

  • Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208. doi:10.1016/S0092-8674(03)00759-1

    PubMed  CAS  Google Scholar 

  • Sheldon CC, Burn JE, Perez PP, Metzger J, Edwards JA, Peacock WJ, Dennis ES (1999) The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11:445–458, PMID: 10072403, PMCID: PMC144185

    Google Scholar 

  • Shen JC, Rideout WM III, Jones PA (1994) The rate of hydrolytic deamination of 5-methylcytosine in double-stranded DNA. Nucleic Acids Res 22:972–976. doi:10.1093/nar/22.6.972

    PubMed  CAS  Google Scholar 

  • Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285. doi:10.1038/nrg2072

    PubMed  CAS  Google Scholar 

  • Slotkin RK, Freeling M, Lisch D (2005) Heritable transposon silencing initiated by a naturally occurring transposon inverted duplication. Nat Genet 37:641–644. doi:10.1038/ng1576

    PubMed  CAS  Google Scholar 

  • Smith WK, Gorz HJ (1965) Sweetclover improvement. Adv Agron 17:163–231

    Google Scholar 

  • Soltis DE, Soltis PS (1995) The dynamic nature of polyploid genomes. Proc Natl Acad Sci USA 92:8089–8091

    PubMed  CAS  Google Scholar 

  • Stam M, Belele CL, Ramakrishna W, Dorweiler JE, Bennetzen JL, Chandler VL (2002) The regulatory regions required for B paramutation and expression are located far upstream of the maize b1 transcribed sequences. Genetics 162:917–930, PMID: 12399399, PMCID: PMC 1462281

    Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, Columbia

    Google Scholar 

  • Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H (2002) Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem 277:37741–37746. doi:10.1074/jbc.M204050200

    PubMed  CAS  Google Scholar 

  • Sung S, Amasino RM (2004) Vernalization and epigemetics: how plants remember winter. Curr Opin Plant Biol 7:4–10. doi:10.1016/j.pbi.2003.11.010

    PubMed  CAS  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019. doi:10.1105/tpc.104.022830

    PubMed  CAS  Google Scholar 

  • Sunkar R, Kapoor A, Zhu J-K (2006) Post transcriptional induction of two cu/zn superoxide dismutase genes in Arabidopsis is mediated by down regulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065. doi:10.1105/tpc.106.041673

    PubMed  CAS  Google Scholar 

  • Sweredoski M, DeRose-Wilson L, Gaut BS (2008) A comperative computational analysis of nonautonomous Helitron elements between maize and rice. BMC Genomics 9:467. doi:10.1186/1471-2164/9/467

    PubMed  Google Scholar 

  • Takeda S, Sugimoto K, Otsuki H, Hirochika H (1999) A 13-bp cis-regulatory element in the LTR promoter of the tobacco retrotransposon Tto1 is involved in responsiveness to tissue culture, wounding, methyl jasmonate and fungal elicitors. Plant J 18:383–393. doi:10.1046/j.1365-313X.1999.00460.x

    PubMed  CAS  Google Scholar 

  • Tatra GS, Miranda J, Chinnappa CC, Reid DM (2000) Effect of light quality and 5-azacytidine on genomic methylation and stem elongation in two ecotypes of Stellaria longipes. Physiol Plant 109:313–321. doi:10.1034/j.1399-3054.2000.100313.x

    CAS  Google Scholar 

  • Thomas BC, Pedersen B, Freeling M (2006) Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes. Genome Res 16:934–946. doi:10.1101/gr.4708406

    PubMed  CAS  Google Scholar 

  • Tian L, Chen ZF (2001) Blocking histone deacetylation in Arabidopsis induces pleiotropic effects on plant gene regulation and development. Proc Natl Acad Sci USA 98:200–205. doi:10.1073/pnas.011347998

    PubMed  CAS  Google Scholar 

  • Tokatlidis IS (2000) Variation within maize lines and hybrids in the absence of competition and relation between hybrid potential yield per plant with line traits. J Agric Sci 134:391–398. doi:10.1017/S0021859699007637

    Google Scholar 

  • Tokatlidis IS, Tsialtas JT, Xynias IN, Tamoutsidis E, Irakli M (2004) Variation within a bread wheat cultivar for grain yield, protein content, carbon isotope discrimination and ash content. Field Crops Res 86:33–42. doi:10.1016/S0378-4290(03)00169-2

    Google Scholar 

  • Tokatlidis IS, Xynias IN, Tsialtas JT, Papadopoulos II (2006) Single-plant selection at ultra low density to improve stability of a bread wheat cultivar. Crop Sci 46:90–97. doi:10.2135/cropsci2005.0125

    Google Scholar 

  • Tokatlidis IS, Tsikrikoni C, Tsialtas JT, Lithourgidis AS, Bebeli PJ (2008) Variability within cotton cultivars for yield, fibre quality and physiological traits. J Agric Sci 146:483–490. doi:10.1017/S0021859608007867

    Google Scholar 

  • Tokatlidis IS, Papadopoulos II, Baxevanos D, Koutita O (2010) Genotype ×environment effects on single-plant selection at low density for yield and stability in climbing dry bean populations. Crop Sci 50:775–783. doi:10.2135/cropsci2009.08.0459

    Google Scholar 

  • Tokatlidis IS, Tsikrikoni C, Lithourgidis AS, Tsialtas JT, Tzantarmas C (2011) Intra-cultivar variation in cotton: response to single-plant yield selection at low density. J Agric Sci 149:197–204. doi:10.1017/S0021859610000596

    Google Scholar 

  • Tranel PJ, Wright TR (2002) Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci 50:700–712. doi:10.1614/0043-1745(2002) 050[0700:RROWTA]2.0.CO;2

    CAS  Google Scholar 

  • Tsaftaris AS, Kafka M (1998) Mechanisms of heterosis in crop plants. J Crop Prod 1:95–111. doi:10.1300/J144v01n01_05

    Google Scholar 

  • Tsaftaris AS, Polidoros AN (2000) DNA methylation and plant breeding. Plant Breed Rev 18:87–176

    CAS  Google Scholar 

  • Tsaftaris AS, Polidoros AN, Kapazoglou A, Tani E, Kovacevic NM (2008) Epigenetics and plant breeding. Plant Breed Rev 30:49–178

    CAS  Google Scholar 

  • Tschiersch B, Hofmann A, Krauss V, Dorn R, Korge G, Reuter G (1994) The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)39 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J 13:3822–3831

    PubMed  CAS  Google Scholar 

  • Turner BM (2000) Histone acetylation and an epigenetic code. BioEssays 22:836–845. doi:10.1002/1521-1878(200009)22:9 < 836::AID-BIES9 > 3.0.CO;2-X

    PubMed  CAS  Google Scholar 

  • van der Krol AR, Mur LA, Beld M, Mol JNM, Stuitje AR (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2:291–299. doi:10.1105/tpc.2.4.291

    PubMed  Google Scholar 

  • Van Holde KE (1988) Chromatin, Springer series in molecular biology. Springer, New York

    Google Scholar 

  • Vance V, Vaucheret H (2001) RNA silencing in plants-defense and counterdefense. Science 292:2277–2280. doi:10.1126/science.1061334

    PubMed  CAS  Google Scholar 

  • Vaucheret H, Vazquez F, Crata P, Bartel DP (2004) The action of ARGONAUTE 1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18:1187–1197. doi:10.1101/gad.1201404

    PubMed  CAS  Google Scholar 

  • Voinnet O (2001) RNA silencing as a plant immune system against viruses. Trends Genet 17:449–459. doi:10.1016/S0168-9525(01)02367-8

    PubMed  CAS  Google Scholar 

  • Wang Q, Dooner HK (2006) Eukaryotic transposable elements and genome evolution special feature: remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc Natl Acad Sci USA 103:17644–17649. doi:10.1073/pnas.0603080103

    PubMed  CAS  Google Scholar 

  • Wang J, Tian L, Lee H-S, Wei NE, Jiang H, Watson B, Madlung A, Osborn TC, Doerge RW, Comai L, Jeffrey Chen ZJ (2006) Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics 172:507–517. doi:10.1534/genetics.105.047894

    PubMed  CAS  Google Scholar 

  • Wassenegger M, Heimes S, Riedel L, Sanger HL (1994) RNA-directed de novo methylation of genomic sequences in plants. Cell 76:567–576. doi:10.1016/0092-8674(94)90119-8

    PubMed  CAS  Google Scholar 

  • Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249. doi:10.1023/A:1006392424384

    PubMed  CAS  Google Scholar 

  • Wessler SR (1996) Plant retrotransposons: turned on by stress. Curr Biol 6:959–961. doi:10.1016/S0960-9822(02)00638-3

    PubMed  CAS  Google Scholar 

  • Weterings K, Russell SD (2004) Experimental analysis of the fertilization process. Plant Cell 16(Suppl):S107–S118. doi:10.1105/tpc.016873

    PubMed  CAS  Google Scholar 

  • Wolfe KH (2001) Yesterday’s polyploids and the mystery of diploidization. Nature Rev Genet 2:323–341. doi:10.1038/35072009

    Google Scholar 

  • Woodcock CL (2005) A milestone in the odyssey of higher-order chromatin structure. Nat Struct Mol Biol 12:639–640. doi:10.1038/nsmb0805-639

    PubMed  CAS  Google Scholar 

  • Wu K, Zhang L, Zhou C, Yu CW, Chaikam V (2008) HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. J Exp Bot 59:225–234. doi:10.1093/jxb/erm300

    PubMed  CAS  Google Scholar 

  • Xiao W, Gehring M, Choi Y, Margossian L, Pu H, Harada JJ, Goldberg RB, Pennell RI, Fischer RL (2003) Imprinting of the MEA Polycomb gene is controlled by antagonism between MET1 methyltransferase and DME glycosylase. Dev Cell 5:891–901. doi:10.1016/S1534-5807(03)00361-7

    PubMed  CAS  Google Scholar 

  • Yadegari R, Drews GN (2004) Female gametophyte development. Plant Cell 16(Suppl):S133–S141. doi:10.1105/tpc.018192

    PubMed  CAS  Google Scholar 

  • Ye J, Ai X, Eugeni EE, Zhang L, Carpenter LR, Jelinek MA, Freitas MA, Parthun MR (2005) Histone H4 lysine 91 acetylation. Mol Cell 18:123–130. doi:10.1016/j.molcel.2005.02.031 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  • Zhang YX, Gentzbittel L, Vear F, Nicolas P (1995) Assessment of inter- and intra-inbred line variability in sunflower (Helianthus annuus) by RFLPs. Genome 38:1040–1048. doi:10.1139/g95-138

    PubMed  CAS  Google Scholar 

  • Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW-L, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201. doi:10.1016/j.cell.2006.08.003

    PubMed  CAS  Google Scholar 

  • Zhang K, Sridhar VV, Zhu J, Kapoor A, Zhu JK (2007) Distinctive core histone post-translational modification patterns in Arabidopsis thaliana. PLoS ONE 2:e1210. doi:doi:10.1371/journal.pone.0001210

    Google Scholar 

  • Zheng X, Pontes O, Zhu J, Miki D, Zhang F, Li WX, Iida K, Kapoor A, Pikaard CS, Zhu JK (2008) ROS3 is an RNA-binding protein required for DNA demethylation in Arabidopsis. Nature 455:1259–1262. doi:10.1038/nature07305

    PubMed  CAS  Google Scholar 

  • Zhou C, Zhang L, Duan J, Miki B, Wu K (2005) HISTONE DEACETYLASE 19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell 17:1196–1204. doi:10.1105/tpc.104.028514

    PubMed  CAS  Google Scholar 

  • Zhu JK (2008) Epigenome sequencing comes of age. Cell 133:395–397. doi:10.1016/j.cell.2008.04.016

    PubMed  CAS  Google Scholar 

  • Zhu J, Kapoor A, Sridhar VV, Agius F, Zhu J-K (2007) The DNA glycosylase/lyase ROS1 functions in pruning DNA methylation patterns in Arabidopsis. Curr Biol 17:54–59. doi:10.1016/j.cub.2006.10.059

    PubMed  CAS  Google Scholar 

  • Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39:61–69. doi:10.1038/ng1929

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelia Sinapidou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sinapidou, E., Tokatlidis, I.S. (2011). Genetic Mechanisms Enhancing Plant Biodiversity. In: Lichtfouse, E. (eds) Genetics, Biofuels and Local Farming Systems. Sustainable Agriculture Reviews, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1521-9_3

Download citation

Publish with us

Policies and ethics