Skip to main content

Abstract

The vestibular system projects onto the cerebellum via three major pathways that are composed of primary and secondary vestibular mossy fiber afferents and tertiary vestibular climbing fibers. Vestibular primary afferent mossy fibers project to the ipsilateral uvula-nodulus (folia 9d and 10). Secondary vestibular mossy fibers originate from three of the five vestibular nuclei: medial, descending, and superior (MVN, DVN, and SVN). These mossy fibers terminate in the uvula-nodulus and flocculus. The MVN, DVN, and SVN receive convergent vestibular, optokinetic, and neck proprioceptive information. Vestibular tertiary afferents originate from two subnuclei of the inferior olive, the β-nucleus and dorsomedial cell column (DMCC), and send climbing fibers to the contralateral uvula-nodulus. The β-nucleus and DMCC receive direct projections from the parasolitary nucleus (Psol). The Psol, β-nucleus, and DMCC convey information to the cerebellum from the vertical semicircular canals and otoliths, but not from the horizontal semicircular canals. Climbing fiber projections are arrayed in sagittal zones, establishing a mediolateral map on the uvula-nodulus of the 180° of possible head angles during roll-tilt. Signals conveyed from climbing fibers are preeminent in modulating the discharge of both complex and simple spikes (CSs and SSs) in cerebellar Purkinje cells. This discharge is fed back onto a fraction of neurons in the dorsal aspect of the descending and medial vestibular nuclei as well as the prepositus hypoglossal nucleus. The vestibulocerebellum imposes a climbing fiber-constructed coordinate system on postural responses and permits adaptive guidance of movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alley K, Baker R, Simpson JI (1975) Afferents to the vestibulo-cerebellum and the origin of the visual climbing fibers in the rabbit. Brain Res 98:582–589

    Article  PubMed  CAS  Google Scholar 

  • Andersen P, Eccles JC, Voorhoeve PE (1964) Postsynaptic inhibition of cerebellar Purkinje cells. J Neurophysiol 27:1138–1153

    PubMed  CAS  Google Scholar 

  • Apps R, Garwicz M (2005) Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci 6:297–311

    Article  PubMed  CAS  Google Scholar 

  • Armstrong DM, Edgley SA (1988) Discharges of interpositus and Purkinje cells of the cat cerebellum during locomotion under different conditions. J Physiol 400:425–445

    PubMed  CAS  Google Scholar 

  • Barmack NH (1996) GABAergic pathways convey vestibular information to the beta nucleus and dorsomedial cell column of the inferior olive. In: Cohen B, Büttner-Ennever J, Highstein SM (eds) New directions in vestibular research. New York Academy of Sciences, New York, pp 541–552

    Google Scholar 

  • Barmack NH, Shojaku H (1992) Vestibularly induced slow oscillations in climbing fiber responses of Purkinje cells in the cerebellar nodulus of the rabbit. Neuroscience 50:1–5

    Article  PubMed  CAS  Google Scholar 

  • Barmack NH, Shojaku H (1995) Vestibular and visual signals evoked in the uvula-nodulus of the rabbit cerebellum by natural stimulation. J Neurophysiol 74:2573–2589

    PubMed  CAS  Google Scholar 

  • Barmack NH, Yakhnitsa V (2003) Cerebellar climbing fibers modulate simple spikes in cerebellar Purkinje cells. J Neurosci 23:7904–7916

    PubMed  CAS  Google Scholar 

  • Barmack NH, Yakhnitsa V (2008) Distribution of granule cells projecting to focal Purkinje cells in mouse uvula-nodulus. Neuroscience 156:216–221

    Article  PubMed  CAS  Google Scholar 

  • Barmack NH, Yakhnitsa V (2011) Microlesions of the inferior olive reduce vestibular modulation of Purkinje cell complex and simple spikes in mouse cerebellum. J Neurosci 31:9824–9835

    Article  PubMed  CAS  Google Scholar 

  • Barmack NH, Baughman RW, Eckenstein FP (1992a) Cholinergic innervation of the cerebellum of rat, rabbit, cat and monkey as revealed by choline acetyltransferase activity and immunohistochemistry. J Comp Neurol 317:233–249

    Article  PubMed  CAS  Google Scholar 

  • Barmack NH, Baughman RW, Eckenstein FP (1992b) Cholinergic innervation of the cerebellum of the rat by secondary vestibular afferents. In: Tomko DL, Guedry F, Cohen B (eds) Sensing and controlling motion: vestibular and sensorimotor function. New York Academy of Sciences, New York, pp 566–579

    Google Scholar 

  • Barmack NH, Baughman RW, Eckenstein FP, Shojaku H (1992c) Secondary vestibular cholinergic projection to the cerebellum of rabbit and rat as revealed by choline acetyltransferase immunohistochemistry, retrograde and orthograde tracers. J Comp Neurol 317:250–270

    Article  PubMed  CAS  Google Scholar 

  • Barmack NH, Baughman RW, Errico P, Shojaku H (1993a) Vestibular primary afferent projection to the cerebellum of the rabbit. J Comp Neurol 327:521–534

    Article  PubMed  CAS  Google Scholar 

  • Barmack NH, Fagerson M, Fredette BJ, Mugnaini E, Shojaku H (1993b) Activity of neurons in the beta nucleus of the inferior olive of the rabbit evoked by natural vestibular stimulation. Exp Brain Res 94:203–215

    Article  PubMed  CAS  Google Scholar 

  • Barmack NH, Fredette BJ, Mugnaini E (1998) Parasolitary nucleus: a source of GABAergic vestibular information to the inferior olive of rat and rabbit. J Comp Neurol 392:352–372

    Article  PubMed  CAS  Google Scholar 

  • Barmack NH, Qian ZY, Yoshimura J (2000) Regional and cellular distribution of protein kinase C in rat cerebellar Purkinje cells. J Comp Neurol 427:235–254

    Article  PubMed  CAS  Google Scholar 

  • Barmack NH, Errico P, Ferraresi A, Fushiki H, Pettorossi VE, Yakhnitsa V (2002) Cerebellar nodulectomy impairs spatial memory of vestibular and optokinetic stimulation in rabbits. J Neurophysiol 87:962–975

    PubMed  CAS  Google Scholar 

  • Barnes JA, Ebner BA, Duvick LA, Gao W, Chen G, Orr HT, Ebner TJ (2011) Abnormalities in the climbing fiber-Purkinje cell circuitry contribute to neuronal dysfunction in ATXN1[82Q] mice. J Neurosci 31:12778–12789

    Article  PubMed  CAS  Google Scholar 

  • Bernard JF (1987) Topographical organization of olivocerebellar and corticonuclear connections in the rat – an WGA-HRP study: I. Lobules IX, X, and the flocculus. J Comp Neurol 263:241–258

    Article  PubMed  CAS  Google Scholar 

  • Bishop GA, Ho RH (1986) Cell bodies of origin of serotonin-immunoreactive afferents to the inferior olivary complex of the rat. Brain Res 399:369–373

    Article  PubMed  CAS  Google Scholar 

  • Blazquez P, Partsalis A, Gerrits NM, Highstein SM (2000) Input of anterior and posterior semicircular canal interneurons encoding head-velocity to the dorsal Y group of the vestibular nuclei. J Neurophysiol 83:2891–2904

    PubMed  CAS  Google Scholar 

  • Bloedel JR, Bracha V (2009) Cerebellar functions. In: Binder MD, Hirokawa N, Windhorst U (eds) Encyclopedic reference of neuroscience, vol I. Springer, Heidelberg, pp 667–671

    Chapter  Google Scholar 

  • Brand S, Dahl AL, Mugnaini E (1976) The length of parallel fibers in the cat cerebellar cortex. An experimental light and electron microscopic study. Exp Brain Res 26:39–58

    PubMed  CAS  Google Scholar 

  • Brodal A (1974) Anatomy of the vestibular nuclei and their connections. In: Kornhuber HH (ed) Handbook of sensory physiology, vestibular system, morphology, vol 6. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Brodal A, Brodal P (1985) Observations on the secondary vestibulocerebellar projections in the macaque monkey. Exp Brain Res 58:62–74

    Article  PubMed  CAS  Google Scholar 

  • Brodal A, Pompeiano O (1957) The vestibular nuclei in the cat. J Anat 91:438–454

    PubMed  CAS  Google Scholar 

  • Brodal A, Torvik A (1957) The origin of secondary vestibulo-cerebellar fibers in cats: an experimental anatomical study. Arch Psychiatr Nervenkr Z Gesamte Neurol Psychiatr 195:550–567

    PubMed  CAS  Google Scholar 

  • Cajal SR (1911) Histologie du système nerveux de l’homme et des vertebrés, vol II. Maloine, Paris

    Google Scholar 

  • Carleton SC, Carpenter MB (1984) Distribution of primary vestibular fibers in the brainstem and cerebellum of the monkey. Brain Res 294:281–298

    Article  PubMed  CAS  Google Scholar 

  • Carpenter MB, Stein BM, Peter P (1972) Primary vestibulocerebellar fibers in the monkey: distribution of fibers arising from distinctive cell groups of the vestibular ganglia. Am J Anat 135:221–250

    Article  PubMed  CAS  Google Scholar 

  • Cavanagh JB (1994) Is Purkinje cell loss in Leigh’s disease an excitotoxic event secondary to damage to inferior olivary nuclei? Neuropathol Appl Neurobiol 20:599–603

    Article  PubMed  CAS  Google Scholar 

  • Cohen D, Yarom Y (1998) Patches of synchronized activity in the cerebellar cortex evoked by mossy-fiber stimulation: questioning the role of parallel fibers. Proc Natl Acad Sci USA 95:15032–15036

    Article  PubMed  CAS  Google Scholar 

  • De Zeeuw CI, Wentzel P, Mugnaini E (1993) Fine structure of the dorsal cap of the inferior olive and its GABAergic and non-GABAergic input from the nucleus prepositus hypoglossi in rat and rabbit. J Comp Neurol 327:63–82

    Article  PubMed  Google Scholar 

  • Ebner TJ, Bloedel JR (1981) Role of climbing fiber afferent input in determining responsiveness of Purkinje cells to mossy fiber inputs. J Neurophysiol 45:962–971

    PubMed  CAS  Google Scholar 

  • Eccles JC, Llinás R, Sasaki K (1966a) The excitatory synaptic action of climbing fibers on the Purkinje cells of the cerebellum. J Physiol (Lond) 182:268–296

    CAS  Google Scholar 

  • Eccles JC, Llinás R, Sasaki K (1966b) The mossy fibre-granule cell relay of the cerebellum and its inhibitory control by Golgi cells. Exp Brain Res 1:82–101

    PubMed  CAS  Google Scholar 

  • Eccles JC, Ito M, Szentágothai J (1967) The cerebellum as a neuronal machine. Springer, New York

    Google Scholar 

  • Epema AH, Gerrits NM, Voogd J (1990) Secondary vestibulocerebellar projections to the flocculus and uvulo-nodular lobule of the rabbit: a study using HRP and double fluorescent tracer techniques. Exp Brain Res 80:72–82

    Article  PubMed  CAS  Google Scholar 

  • Falk T, Garver WS, Erickson RP, Wilson JM, Yool AJ (1999) Expression of Niemann-Pick type C transcript in rodent cerebellum in vivo and in vitro. Brain Res 839:49–57

    Article  PubMed  CAS  Google Scholar 

  • Fushiki H, Barmack NH (1997) Topography and reciprocal activity of cerebellar Purkinje cells in the uvula-nodulus modulated by vestibular stimulation. J Neurophysiol 78:3083–3094

    PubMed  CAS  Google Scholar 

  • Gerrits NM, Epema AH, Van Linge A, Dalm E (1989) The primary vestibulocerebellar projection in the rabbit: absence of primary afferents in the flocculus. Neurosci Lett 105:27–33

    Article  PubMed  CAS  Google Scholar 

  • Ghez C, Thach WT (2000) The cerebellum. In: Schwartz J, Jessel TM, Kandel ER (eds) Principles of neuroscience. Elsevier, New York, pp 832–852

    Google Scholar 

  • Graf W, Simpson JI, Leonard CS (1988) Spatial organization of visual messages of the rabbit’s cerebellar flocculus. II. Complex and simple spike responses of Purkinje cells. J Neurophysiol 60:2091–2121

    PubMed  CAS  Google Scholar 

  • Granit R, Phillips CG (1956) Excitatory and inhibitory processes acting upon individual Purkinje cells of the cerebellum in cats. J Physiol (Lond) 133:520–547

    CAS  Google Scholar 

  • Gundappa-Sulur G, De Schutter E, Bower JM (1999) Ascending granule cell axon: an important component of cerebellar cortical circuitry. J Comp Neurol 408:580–596

    Article  PubMed  CAS  Google Scholar 

  • Hida C, Tsukamoto T, Awano H, Yamamoto T (1994) Ultrastructural localization of anti-Purkinje cell antibody-binding sites in paraneoplastic cerebellar degeneration. Arch Neurol 51:555–558

    Article  PubMed  CAS  Google Scholar 

  • Highstein SM, Holstein GR (2005) The anatomy of the vestibular nuclei. Prog Brain Res 151:157–203

    Article  Google Scholar 

  • Ishikawa K, Watanabe M, Yoshizawa K, Fujita T, Iwamoto H, Yoshizawa T, Harada K, Nakamagoe K, Komatsuzaki Y, Satoh A, Doi M, Ogata T, Kanazawa I, Shoji S, Mizusawa H (1999) Clinical, neuropathological, and molecular study in two families with spinocerebellar ataxia type 6 (SCA6). J Neurol Neurosurg Psychiatry 67:86–89

    Article  PubMed  CAS  Google Scholar 

  • Isope P, Barbour B (2002) Properties of unitary granule cell → Purkinje cell synapses in adult rat cerebellar slices. J Neurosci 22:9668–9678

    PubMed  CAS  Google Scholar 

  • Ito M (1976) Cerebellar learning control of vestibulo-ocular mechanisms. In: Desiraju T (ed) Mechanisms in transmission of signals for conscious behavior. Elsevier, Amsterdam, pp 1–22

    Google Scholar 

  • Ito M (2002) The molecular organization of cerebellar long-term depression. Nat Rev Neurosci 3:896–902

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Jastreboff PJ, Miyashita Y (1982) Specific effects of unilateral lesions in the flocculus upon eye movements in albino rabbits. Exp Brain Res 45:233–242

    Article  PubMed  CAS  Google Scholar 

  • Kano M, Kano MS, Maekawa K (1991) Simple spike modulation of Purkinje cells in the cerebellar nodulus of the pigmented rabbit to optokinetic stimulation. Neurosci Lett 128:101–104

    Article  PubMed  CAS  Google Scholar 

  • Katoh A, Kitazawa H, Itohara S, Nagao S (1998) Dynamic characteristics and adaptability of mouse vestibulo-ocular and optokinetic response eye movements and the role of the flocculo-olivary system revealed by chemical lesions. Proc Natl Acad Sci USA 95:7705–7710

    Article  PubMed  CAS  Google Scholar 

  • Kaufman GD, Mustari MJ, Miselis RR, Perachio AA (1996) Transneuronal pathways to the vestibulocerebellum. J Comp Neurol 370:501–523

    Article  PubMed  CAS  Google Scholar 

  • Kevetter GA, Perachio A (1986) Distribution of vestibular afferents that innervate the sacculus and posterior canal in the gerbil. J Comp Neurol 254:410–424

    Article  PubMed  CAS  Google Scholar 

  • Kleinschmidt HJ, Collewijn H (1975) A search for habituation of vestibulo-ocular reactions to rotatory and linear sinusoidal accelerations in the rabbit. Exp Neurol 47:257–267

    Article  PubMed  CAS  Google Scholar 

  • Koeppen AH (2005) The pathogenesis of spinocerebellar ataxia. Cerebellum 4:62–73

    Article  PubMed  CAS  Google Scholar 

  • Korte GE (1979) The brainstem projection of the vestibular nerve in the cat. J Comp Neurol 184:279–292

    Article  PubMed  CAS  Google Scholar 

  • Kotchabhakdi N, Walberg F (1978) Cerebellar afferent projections from the vestibular nuclei in the cat: an experimental study with the method of retrograde axonal transport of horseradish peroxidase. Exp Brain Res 31:591–604

    PubMed  CAS  Google Scholar 

  • Lisberger SG, Pavelko TA, Bronte-Stewart HM, Stone LS (1994) Neural basis for motor learning in the vestibuloocular reflex of primates. II. Changes in the responses of horizontal gaze velocity Purkinje cells in the cerebellar flocculus and ventral paraflocculus. J Neurophysiol 72:954–973

    PubMed  CAS  Google Scholar 

  • Llinás R, Sugimori M (1980) Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol (Lond) 305:171–195

    Google Scholar 

  • Maklad A, Fritzsch B (2003) Partial segregation of posterior crista and saccular fibers to the nodulus and uvula of the cerebellum in mice, and its development. Brain Res Dev Brain Res 140:223–236

    Article  PubMed  CAS  Google Scholar 

  • Midtgaard J (1992) Stellate cell inhibition of Purkinje cells in the turtle cerebellum in vitro. J Physiol (Lond) 457:355–367

    CAS  Google Scholar 

  • Morton SM, Bastian AJ (2006) Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J Neurosci 26:9107–9116

    Article  PubMed  CAS  Google Scholar 

  • Mugnaini E (1983) The length of cerebellar parallel fibers in chicken and rhesus monkey. J Comp Neurol 220:7–15

    Article  PubMed  CAS  Google Scholar 

  • Nagao S (1983) Effects of vestibulocerebellar lesions upon dynamic characteristics and adaptation of vestibulo-ocular and optokinetic responses in pigmented rabbits. Exp Brain Res 53:36–46

    Article  PubMed  CAS  Google Scholar 

  • Nagao S (1989) Role of cerebellar flocculus in adaptive interaction between optokinetic eye movement response and vestibulo-ocular reflex in pigmented rabbits. Exp Brain Res 77:541–551

    PubMed  CAS  Google Scholar 

  • Nagao S, Kitazawa H (2003) Effects of reversible shutdown of the monkey flocculus on the retention of adaptation of the horizontal vestibulo-ocular reflex. Neuroscience 118:563–570

    Article  PubMed  CAS  Google Scholar 

  • Newlands SD, Purcell IM, Kevetter GA, Perachio AA (2002) Central projections of the utricular nerve in the gerbil. J Comp Neurol 452:11–23

    Article  PubMed  Google Scholar 

  • Newlands SD, Vrabec JT, Purcell IM, Stewart CM, Zimmerman BE, Perachio AA (2003) Central projections of the saccular and utricular nerves in macaques. J Comp Neurol 466:31–47

    Article  PubMed  Google Scholar 

  • Pichitpornchai C, Rawson JA, Rees S (1994) Morphology of parallel fibers in the cerebellar cortex of the rat: an experimental light and electron-microscopic study with biocytin. J Comp Neurol 342:206–220

    Article  PubMed  CAS  Google Scholar 

  • Pouzat C, Hestrin S (1997) Developmental regulation of basket/stellate cell → Purkinje cell synapses in the cerebellum. J Neurosci 17:9104–9112

    PubMed  CAS  Google Scholar 

  • Purcell IM, Perachio AA (2001) Peripheral patterns of terminal innervation of vestibular primary afferent neurons projecting to the vestibulocerebellum in the gerbil. J Comp Neurol 433:48–61

    Article  PubMed  CAS  Google Scholar 

  • Raman IM, Bean BP (1999) Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons. J Neurosci 19:1663–1674

    PubMed  CAS  Google Scholar 

  • Sakai K, Gofuku M, Kitagawa Y, Ogasawara T, Hirose G (1995) Induction of anti-Purkinje cell antibodies in vivo by immunizing with a recombinant 52-kDa paraneoplastic cerebellar degeneration-associated protein. J Neuroimmunol 60:135–141

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Barmack NH (1985) Zonal organization of the olivocerebellar projection to the uvula in rabbits. Brain Res 359:281–291

    Article  PubMed  CAS  Google Scholar 

  • Sato F, Sasaki H (1993) Morphological correlations between spontaneously discharging primary vestibular afferents and vestibular nucleus neurons in the cat. J Comp Neurol 333:554–556

    Article  PubMed  CAS  Google Scholar 

  • Schaefer A, O’Carroll D, Tan CL, Hillman D, Sugimori M, Llinas R, Greengard P (2007) Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med 204:1553–1558

    Article  PubMed  CAS  Google Scholar 

  • Schapiro MB, Rosman NP, Kemper TL (1984) Effects of chronic exposure to alcohol on the developing brain. Neurobehav Toxicol Teratol 6:351–356

    PubMed  CAS  Google Scholar 

  • Shojaku H, Sato Y, Ikarashi K, Kawasaki T (1987) Topographical distribution of Purkinje cells in the uvula and the nodulus projecting to the vestibular nuclei in cats. Brain Res 416:100–112

    Article  PubMed  CAS  Google Scholar 

  • Sims RE, Hartell NA (2006) Differential susceptibility to synaptic plasticity reveals a functional specialization of ascending axon and parallel fiber synapses to cerebellar Purkinje cells. J Neurosci 26:5153–5159

    Article  PubMed  CAS  Google Scholar 

  • Sugihara I, Wu HS, Shinoda Y (2001) The entire trajectories of single olivocerebellar axons in the cerebellar cortex and their contribution to cerebellar compartmentalization. J Neurosci 21:7715–7723

    PubMed  CAS  Google Scholar 

  • Szapiro G, Barbour B (2007) Multiple climbing fibers signal to molecular layer interneurons exclusively via glutamate spillover. Nat Neurosci 10:735–742

    Article  PubMed  CAS  Google Scholar 

  • Tabuchi T, Umetani T, Yamadori T (1989) Corticonuclear and corticovestibular projections from the uvula in the albino rat: differential projections from sublobuli of the uvula. Brain Res 492:176–186

    Article  PubMed  CAS  Google Scholar 

  • Tago H, McGeer PL, McGeer EG, Akiyama H, Hersh LB (1989) Distribution of choline acetyltransferase immunopositive structures in the rat brainstem. Brain Res 495:271–297

    Article  PubMed  CAS  Google Scholar 

  • Takeda T, Maekawa K (1989) Olivary branching projections to the flocculus, nodulus and uvula in the rabbit. II. Retrograde double labeling study with fluorescent dyes. Exp Brain Res 76:323–332

    Article  PubMed  CAS  Google Scholar 

  • Takei A, Hamada T, Yabe I, Sasaki H (2005) Treatment of cerebellar ataxia with 5-HT1A agonist. Cerebellum 4:211–215

    Article  PubMed  CAS  Google Scholar 

  • Thunnissen IE, Epema AH, Gerrits NM (1989) Secondary vestibulocerebellar mossy fiber projection to the caudal vermis in the rabbit. J Comp Neurol 290:262–277

    Article  PubMed  CAS  Google Scholar 

  • Voogd J, Gerrits NM, Ruigrok TJ (1996) Organization of the vestibulocerebellum. Ann N Y Acad Sci 781:553–579

    Article  PubMed  CAS  Google Scholar 

  • Walberg F, Dietrichs E (1988) The interconnection between the vestibular nuclei and the nodulus: a study of reciprocity. Brain Res 449:47–53

    Article  PubMed  CAS  Google Scholar 

  • Walter JT, Khodakhah K (2006) The linear computational algorithm of cerebellar Purkinje cells. J Neurosci 26:12861–12872

    Article  PubMed  CAS  Google Scholar 

  • Wentzel PR, Wylie DR, Ruigrok TJ, De Zeeuw CI (1995) Olivary projecting neurons in the nucleus prepositus hypoglossi, group y and ventral dentate nucleus do not project to the oculomotor complex in the rabbit and the rat. Neurosci Lett 190:45–48

    Article  PubMed  CAS  Google Scholar 

  • Wu HS, Sugihara I, Shinoda Y (1999) Projection patterns of single mossy fibers originating from the lateral reticular nucleus in the rat cerebellar cortex and nuclei. J Comp Neurol 411:97–118

    Article  PubMed  CAS  Google Scholar 

  • Wylie DR, DeZeeuw CI, DiGiorgi PL, Simpson JI (1994) Projections of individual Purkinje-cells of identified zones in the ventral nodulus to the vestibular and cerebellar nuclei in the rabbit. J Comp Neurol 349:448–463

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M (1979) Topographical representation in rabbit cerebellar flocculus for various afferent inputs from the brainstem investigated by means of retrograde axonal transport of horseradish peroxidase. Neurosci Lett 12:29–34

    Article  PubMed  CAS  Google Scholar 

  • Zee DS, Yee RD, Cogan DG, Robinson DA, Engel WK (1976) Ocular motor abnormalities in hereditary cerebellar ataxia. Brain 99:207–234

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neal H. Barmack Ph. D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Barmack, N.H., Yakhnitsa, V. (2013). Vestibulocerebellar Connections. In: Manto, M., Schmahmann, J.D., Rossi, F., Gruol, D.L., Koibuchi, N. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1333-8_18

Download citation

Publish with us

Policies and ethics