Skip to main content

Status of the Pursuit of the Diatom Phylogeny: Are Traditional Views and New Molecular Paradigms Really That Different?

  • Chapter
  • First Online:

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 19))

Abstract

Diatoms are often referred to one of six structural groups. The two major groups are centrics and pennates, and each is further subdivided. Centrics are either radial centrics or (bi-)multipolar (or simply polar) centrics. The former typically are circular and lack any prominent structures which may be paired or multiply arranged so as to give some sort of visually prominent polarity to the cell. Polar centrics have such structures and often have elongate outlines. Pennates are either araphid pennates or raphid pennates, depending on whether or not they possess a raphe. These structural groups have been arranged differently through time, whether the source of data was morphology and the method of analysis noncanonical or whether the data were molecular and analyzed by more formal methods. Both congruence and conflict between these various approaches have been claimed. Diatomists have rejected traditional views because they conflict with molecular results in some instances, and yet reject molecular results because they conflict with morphologically based results in others. Such conflicts are rarely formally tested. Here, we formally test several traditional hypotheses and a recent molecular-based reclassification of diatoms against a three-gene combined molecular dataset. Centrics are strongly rejected as monophyletic. However, some relationships could not be rejected. Monophyly of araphids is not statistically worse than the best tree (in which araphids are recovered as a grade). Monophyly of radial centrics and of polar centrics cannot be rejected, nor can a competing hypothesis (in which radial centrics are a grade and the Thalassiosirales are part of that grade). This last result is congruent with complex morphological characters and is an example of the value of formally testing conflict and congruence between datasets, and of the potential value of formal phylogenetic analysis of diatom morphology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adl, S.M., Simpson, A.G.B., Farmer, M.A., Andersen, R.A., Anderson, O.R., Barta, J.R., Bowser, S.S., Brugerolle, G.U.Y., Fensome, R.A., Fredericq, S., James, T.Y., Karpov, S., Kugrens, P., Krug, J., Lane, C.E., Lewis, L.A., Lodge, J., Lynn, D.H., Mann, D.G., McCourt, R.M., Mendoza, L., Moestrup, O., Mozley-Standridge, S.E., Nerad, T.A., Shearer, C.A., Smirnov, A.V., Spiegel, F.W. and Taylor, M.F.J.R. (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J. Eukaryot. Microbiol. 52: 399–451.

    Article  PubMed  Google Scholar 

  • Adl, S.M., Leander, B.S., Simpson, A.G.B., Archibald, J.M., Anderson, O.R., Bass, D., Bowser, S.S., Brugerolle, G., Farmer, M.A., Karpov, S., Kolisko, M., Lane, C.E., Lodge, D.J., Mann, D.G., Meisterfeld, R., Mendoza, L., Moestrup, Ojvind, Mozley-Standridge, S.E., Smirnov, A.V., and Spiegel, F. (2007) Diversity, nomenclature, and taxonomy of protists. Syst. Biol. 56: 684–689.

    Article  PubMed  Google Scholar 

  • Alverson, A.J. and Theriot, E.C. (2005) Comments on recent progress toward reconstructing the diatom phylogeny. J. Nanosci. Nanotech. 5: 57–62.

    Article  PubMed  CAS  Google Scholar 

  • Alverson, A.J., Jansen, R.K. and Theriot, E.C. (2007) Bridging the Rubicon: phylogenetic analysis reveals repeated colonizations of marine and fresh waters by thalassiosiroid diatoms. Mol. Phylogenet. Evol. 45: 193–210.

    Article  PubMed  CAS  Google Scholar 

  • Chepurnov, V.A., Mann, D.G., von Dassow, P., Vanormelingen, P., Gillard, J., Inzé, D., Sabbe, K. and Vyverman, W. (2008) In search of new tractable diatoms for experimental biology. BioEssays 30: 692–702.

    Article  PubMed  Google Scholar 

  • Cox, E.J. and Williams, D.M. (2000) Systematics of naviculoid diatoms: the interrelationships of some taxa with a stauros. Eur. J. Phycol. 35: 273–282.

    Article  Google Scholar 

  • Edgar, S.M. and Theriot, E.C. (2003) Heritability of mantle areolar characters in Aulacoseira subarctica (Bacillariophyta). J. Phycol. 39: 1057–1066.

    Article  Google Scholar 

  • Edgar, S.M. and Theriot, E.C. (2004) Phylogeny of Aulacoseira (Bacillariophyta) based on morphology and molecules. J. Phycol. 40: 772–788.

    Article  CAS  Google Scholar 

  • Ehara, M., Inagaki, Y., Watanabe, K.I. and Ohama, T. (2000) Phylogenetic analysis of diatom coxI genes and implications of a fluctuating GC content on mitochondrial genetic code evolution. Curr. Genet. 37: 29–33.

    Article  PubMed  CAS  Google Scholar 

  • Gatesy, J. and Arctander, P. (2000) Hidden morphological support for the phylogenetic placement of Pseudoryx nghetinhensis with bovine bovids: A combined analysis of gross anatomical evidence and DNA sequences from five genes. Syst. Biol. 49: 515–538.

    Article  PubMed  CAS  Google Scholar 

  • Gatesy, J. and Baker, R.H. (2005) Hidden likelihood support in genomic data: can forty-five wrongs make a right? Syst. Biol. 54: 483–492.

    Article  PubMed  Google Scholar 

  • Gatesy, J. and O’Leary, M.A. (2001) Deciphering whale origins with molecules and fossils. Trends Ecol. Evol. 16: 562–570.

    Article  Google Scholar 

  • Gatesy, J., O’Grady, P. and Baker, R.H. (1999) Corroboration among data sets in simultaneous analysis: hidden support for phylogenetic relationships among higher level artiodactyl taxa. Cladistics 15: 271–313.

    Article  Google Scholar 

  • Gatesy, J., Amato, G., Norell, M., DeSalle, R. and Hayashi, C. (2003) Combined support for wholesale taxic atavism in gavialine crocodylians. Syst. Biol. 52: 403–422.

    Article  PubMed  Google Scholar 

  • Goertzen, L.R. and Theriot, E.C. (2003) Effect of taxon sampling, character weighting, and combined data on the interpretation of relationships among the heterokont algae. J. Phycol. 39: 423–439.

    Article  CAS  Google Scholar 

  • Jones, H.M., Simpson, G.E., Stickle, A.J. and Mann, D.G. (2005) Life history and systematics of Petroneis (Bacillariophyta), with special reference to British waters. Eur. J. Phycol. 40: 61–87.

    Article  Google Scholar 

  • Julius, M.L. and Tanimura, Y. (2001) Cladistic analysis of plicated Thalassiosira (Bacillariophyceae). Phycologia 40: 111–122.

    Article  Google Scholar 

  • Kluge, A.G. (1989) A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Syst. Zool. 38: 7–25.

    Article  Google Scholar 

  • Kociolek, J.P. and Stoermer, E.F. (1988) A preliminary investigation of the phylogenetic relationships among the freshwater apical pore field-bearing cymbelloid and gomphonemoid diatoms (Bacillariophyceae). J. Phycol. 24: 377–385.

    Google Scholar 

  • Kociolek, J.P. and Stoermer, E.F. (1989) Phylogenetic relationships and evolutionary history of the diatom genus Gomphoneis. Phycologia 28: 438–454.

    Article  Google Scholar 

  • Kociolek, J.P. and Stoermer, E.F. (1993) Freshwater gomphonemoid diatom phylogeny: preliminary results. Hydrobiologia 269270: 31–38.

    Article  Google Scholar 

  • Lee, M.S.Y., Hugall, A.F., Lawson, R. and Scanlon, J.D. (2007) Phylogeny of snakes (Serpentes): combining morphological and molecular data in likelihood, Bayesian and parsimony analyses. Syst. Biodivers. 5: 371–389.

    Article  Google Scholar 

  • Mann, D.G. and Evans, K.M. (2007) Molecular genetics and the neglected art of diatomics, In: J. Brodie and J. Lewis (eds.) Unraveling the Algae – The Past, Present and Future of Algal Systematics. CRC Press, Boca Raton, pp. 231–265.

    Google Scholar 

  • Medlin, L.K. and Kaczmarska, I. (2004) Evolution of the diatoms V: morphological and cytological support for the major clades and a taxonomic revision. Phycologia 43: 245–270.

    Article  Google Scholar 

  • Medlin, L.K., Williams, D.M. and Sims, P.A. (1993) The evolution of the diatoms (Bacillariophyta). I. Origin of the group and assessment of the monophyly of its major divisions. Eur. J. Phycol. 28: 261–275.

    Article  Google Scholar 

  • Medlin, L.K., Kooistra, W.H.C.F., Gersonde, R. and Wellbrock, U. (1996a) Evolution of the diatoms (Bacillariophyta): II. Nuclear-encoded small-subunit rRNA sequence comparisons confirm a paraphyletic origin for the centric diatoms. Mol. Biol. Evol. 13: 67–75.

    PubMed  CAS  Google Scholar 

  • Medlin, L.K., Kooistra, W.H.C.F., Gersonde, R. and Wellbrock, U. (1996b) Evolution of the diatoms (Bacillariophyta): III. Molecular evidence for the origin of the Thalassiosirales. Nova Hedw. Beih. 112: 221–234.

    Google Scholar 

  • Medlin, L.K., Kooistra, W.H.C.F. and Schmid, A.-M.M. (2000) A review of the evolution of the diatoms – a total approach using molecules, morphology and geology, In: A. Witkowski and J. Sieminska (eds.) The Origin and Early Evolution of the Diatoms: Fossil, Molecular and Biogeographical Approaches. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, pp. 13–36.

    Google Scholar 

  • Medlin, L.K., Sato, S., Mann, D.G. and Kooistra, W.H.C.F. (2008) Molecular evidence confirms sister relationship of Ardissonea, Climacosphenia and Toxarium within the bipolar centric diatoms (Bacillariophyta, Mediophyceae), and cladistic analyses confirm that extremely elongate shape has arisen twice in the diatoms. J. Phycol. 44: 1340–1348.

    Article  CAS  Google Scholar 

  • Olmstead, R.G. and Sweere, J.A. (1994) Combining data in phylogenetic systematics: an empirical approach using three molecular datasets in the Solanaceae. Syst. Biol. 43: 467

    Article  Google Scholar 

  • Posada, D. and Buckley, T.R. (2004) Model selection and model averaging in phylogenetics: advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 53: 793–808.

    Article  PubMed  Google Scholar 

  • Posada, D. and Crandall, K.A. (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817–818.

    Article  PubMed  CAS  Google Scholar 

  • Rines, J.E.B. and Theriot, E.C. (2003) Systematics of Chaetocerotaceae (Bacillariophyceae). I. A phylogenetic analysis of the family. Phycol. Res. 51: 83–98.

    Article  Google Scholar 

  • Round, F.E. and Crawford, R.M. (1981) The lines of evolution of the Bacillariophyta .1. Origin. Proc. R. Soc. Lond. Ser. B Biol. Sci. 211: 237–260.

    Article  Google Scholar 

  • Round, F.E. and Crawford, R.M. (1984) The lines of evolution of the Bacillariophyta. 2. The centric series. Proc. R. Soc. Lond. Ser. B Biol. Sci. 221: 169–188.

    Article  Google Scholar 

  • Round, F.E., Crawford, R.M. and Mann, D.G. (1990) The Diatoms: Biology & Morphology of the Genera. Cambridge University Press, Cambridge.

    Google Scholar 

  • Ruck, E.C. and Kociolek, P. (2004) Preliminary phylogeny of the family Surirellaceae. Bibliotheca Diatomologica 50: 1–236.

    Google Scholar 

  • Sato, S., Mann, D.G., Matsumoto, S. and Medlin, L.K. (2008) Pseudostriatella (Bacillariophyta): a description of a new araphid diatom genus based on observations of frustule and auxospore structure and 18 S rDNA phylogeny. Phycologia 47: 371–391.

    Article  CAS  Google Scholar 

  • Shimodaira, H. (2002) An approximately unbiased test of phylogenetic tree selection. Syst. Biol. 51: 492–508.

    Article  PubMed  Google Scholar 

  • Simonsen, R. (1979) The diatom system: ideas on phylogeny. Bacillaria 2: 9–71.

    Google Scholar 

  • Sims, P.A., Mann, D.G. and Medlin, L.K. (2006) Evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia 45: 361–402.

    Article  Google Scholar 

  • Sorhannus, U. (2004) Diatom phylogenetics inferred based on direct optimization of nuclear-encoded SSU rRNA sequences. Cladistics 20: 487–497.

    Article  Google Scholar 

  • Sorhannus, U. (2007) A nuclear-encoded small-subunit ribosomal RNA timescale for diatom evolution. Mar. Micropaleontol. 65: 1–12.

    Article  Google Scholar 

  • Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690.

    Article  PubMed  CAS  Google Scholar 

  • Steinecke, F. (1931) Die Phylogenie der Algophyten. Schriften der Königsberger Geleherten Gesellschaft 8: 127–298.

    Google Scholar 

  • Tapia, P.M., Theriot, E.C., Fritz, S.C., Cruces, F. and Rivera, P. (2004) Distribution and morphometric analysis of Cyclostephanos andinus comb. nov., a planktonic diatom from the central Andes. Diatom Res. 19: 311–327.

    Google Scholar 

  • Theriot, E. (1990) New species of Mesodictyon (Bacillariophyta: Thalassiosiraceae) in late Miocene lacustrine deposits of the Snake River Basin Idaho USA. Proc. Acad. Natl. Sci. Phila. 142: 1–20.

    Google Scholar 

  • Theriot, E.C. (1992) Clusters, species concepts, and morphological evolution of diatoms. Syst. Biol. 41: 141–157.

    Google Scholar 

  • Theriot, E.C., Ashworth, M., Nakov, T., Ruck, E.C. and Jansen, R.K. (2010) A preliminary multigene ­phylogeny of the diatoms (Bacillariophyta): Challenges for future research. Plant Ecol. and Evol. 143: 278–296.

    Article  PubMed  CAS  Google Scholar 

  • Theriot, E. and Bradbury, J.P. (1987) Mesodictyon, a new fossil genus of the centric diatom family Thalassiosiraceae from the Miocene Chalk Hills formation, Western Snake River Plain, Idaho. Micropalaentology (New York) 33: 356–367.

    Google Scholar 

  • Theriot, E. and Serieyssol, K. (1994) Phylogenetic systematics as a guide to understanding features and potential morphological characters of the centric diatom family Thalassiosiraceae. Diatom Res. 9: 429–450.

    Google Scholar 

  • Theriot, E., Stoermer, E. and Håkansson, H. (1987) Taxonomic interpretation of the rimoportula of freshwater genera in the centric diatom family Thalassiosiraceae. Diatom Res. 2: 251–265.

    Google Scholar 

  • Theriot, E.C., Cannone, J.J., Gutell, R.R. and Alverson, A.J. (2009) The limits of nuclear-encoded SSU rDNA for resolving the diatom phylogeny. Eur. J. Phycol. 44: 277–290.

    Article  PubMed  CAS  Google Scholar 

  • Van de Peer, Y., Van der Auwera, G. and de Wachter, R. (1996) The evolution of stramenopiles and alveolates as derived by “substitution rate calibration” of small ribosomal subunit RNA. J. Mol. Evol. 42: 201–210.

    Article  PubMed  Google Scholar 

  • Verbruggen, H. and Theriot, E.C. (2008) Building trees of algae: some advances in phylogenetic and evolutionary analysis. Eur. J. Phycol. 43: 229–252.

    Article  Google Scholar 

  • Wahlberg, N., Braby, M.F., Brower, A.V.Z., De Jong, R., Lee, M.-M., Nylin, S., Pierce, N., Sperling, F.A.H., Vila, R., Warren, A.D. and Zakharov, E. (2005) Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers. Proc. R. Soc. Lond. Ser. B Biol. Sci. 272: 1577–1586.

    Article  CAS  Google Scholar 

  • Williams, D.M. (1985) Morphology, taxonomy and inter-relationships of the ribbed araphid diatoms from the genera Diatoma and Meridion (Diatomaceae: Bacillariophyta). Biblio. Diatomol. 8: 1–228.

    Google Scholar 

  • Williams, D.M. (1990) Cladistic analysis of some freshwater araphid diatoms (Bacillariophyta) with particular reference to Diatoma and Meridion. Plant Syst. Evol. 171: 89–97.

    Article  Google Scholar 

  • Williams, D.M. and Kociolek, J.P. (2007) Pursuit of a natural classification of diatoms: history, monophyly and the rejection of paraphyletic taxa. Eur. J. Phycol. 42: 313–319.

    Article  Google Scholar 

  • Zwickl, D.J. and Hillis, D.M. (2002) Increased taxon sampling greatly reduces phylogenetic error. Syst. Biol. 51: 588–598.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This paper was supported by NSF EF 0629410 awarded to Theriot and Jansen and by the Jane and Roland Blumberg Centennial Professorship in Molecular Evolution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward C. Theriot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Theriot, E.C., Ruck, E., Ashworth, M., Nakov, T., Jansen, R.K. (2011). Status of the Pursuit of the Diatom Phylogeny: Are Traditional Views and New Molecular Paradigms Really That Different?. In: Seckbach, J., Kociolek, P. (eds) The Diatom World. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1327-7_5

Download citation

Publish with us

Policies and ethics