Skip to main content

Advection and Dispersion of Dissolved Species in Aquifers

  • Chapter
  • First Online:

Part of the book series: Theory and Applications of Transport in Porous Media ((TATP,volume 25))

Abstract

The transfer of chemical components that, when in solutions, have no effect on the physical properties of aquifer materials and groundwater, is inseparable from the groundwater flow. Their advective transport involves micro- and macrodispersion processes, which control the extent of solute dispersion in homogeneous and heterogeneous aquifers. In this chapter, we will consider the migration models that describe the motion of solutions miscible with groundwater in homogeneous aquifers. The solute migration processes in heterogeneous (stratified and fracturedporous) systems will be discussed in separate chapters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abate J, Valkó PP (2004) Multi-precision laplace transform inversion. Intern Journ for Num Meth in Eng 60:979—993

    Google Scholar 

  • Alexeev VC, Communar GM, Sherzhukov BS (1989) Mass-transport in saturated rocks. VINITI, Moscow (In Russian)

    Google Scholar 

  • Allen DA (1985) Dispersion modeling of multiple sources using the HP-41CV. Ground Water 23:85—91

    Google Scholar 

  • Aris R (1956) On the dispersion of a solute in a fluid flowing through a tube. Proc R Soc Lond A 235:67—77

    Google Scholar 

  • Bachu S, Michael K (2002) Flow of variable-density formation water in deep sloping aquifers: minimizing the error in representation and analysis when using hydraulic-head distributions. Hydrol 259:49—65

    Google Scholar 

  • Bateman H, Erdelyi A (1954) Tables of integral transforms, vol 1. McGraw-Hill, New York

    Google Scholar 

  • Batu V (2006) Applied flow and solute transport modeling in aquifers. CRC Press/Taylor & Francis, Boca Raton

    Google Scholar 

  • Bauer P, Attinger S, Kinzelbach W (2001) Transport of a decay chain in homogenous porous media: analytical solutions. J Contam Hydrol 49:217—239

    Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media. Dover, New York

    Google Scholar 

  • Bear J, Cheng AH-D (2010) Modeling groundwater flow and contaminant transport. Springer, Dordrecht/Heidelberg/London/New York

    Google Scholar 

  • Becker MW, Charbeneau RJ (2000) First-passage-time functions for groundwater tracer tests conducted in radially convergent flow. J Contam Hydrol 40:299—310

    Google Scholar 

  • Berkowitz B (2002) Characterizing flow and transport in fractured geological media: a review. Adv Water Res 25:861—884

    Google Scholar 

  • Blum P, Scheunemann M, van Loon L (2007) Evaluating the application of Archie-s law for {argillaceous} rocks. In: Proceedings of international meeting “Clays in natural & engineered barriers for radioactive waste confinement”, Lille, 17—18 Sep 2007, pp 483—484

    Google Scholar 

  • Bodin J, Delay F, de Marsily G (2003) Solute transport in a single fracture with negligible matrix permeability: 1 fundamental mechanisms. Hydrogeol J 11:418—433

    Google Scholar 

  • Boupha K, Jacobs JM, Hatfield K (2004) MDL groundwater software: Laplace transforms and the De Hoog algorithm to solve contaminant transport equations. Comput Geosci 30:445—453

    Google Scholar 

  • Boving ThB, Grathwohl P (2001) Tracer diffusion coefficients in sedimentary rocks: correlation to porosity and hydraulic conductivity. J Contam Hydrol 53:85—100

    Google Scholar 

  • Brenner H (1962) The diffusion model of longitudinal mixing in beds of finite length. Chem Eng Sci 17:229—243

    Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford University Press, London

    Google Scholar 

  • Ceric A, Haitjema H (2005) On using simple time-of-travel capture zone delineation methods. Ground Water 43:408—412

    Google Scholar 

  • Charbeneau RJ (1981) Groundwater contaminant transport with adsorption and ion exchange chemistry: method of characteristics for the case without dispersion. Water Resour Res 17:705—713

    Google Scholar 

  • Charbeneau RJ (1982) Calculation of pollutant removal during restoration with adsorption and ion exchange. Water Resour Res 18:1117—1125

    Google Scholar 

  • Charbeneau RJ (2000) Groundwater hydraulics and pollutant transport. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Chen J-S, Chen C-S, Chen CY (2007) Analysis of solute transport in a divergent flow tracer test with scale-dependent dispersion. Hydrol Process 21:2526—2536

    Google Scholar 

  • Chrysikopoulos KV, Kitanidis PK, Roberts PV (1992) Generalized Taylor-Aris moment analysis of the transport of sorbing solutes through porous media with spatially-periodic retardation factor. Transp Porous Media 7:163—185

    Google Scholar 

  • Clay Club Catalogue of Characteristics of Argillaceous Rocks (2005) Compiled by Boisson J-Y. Nuclear Energy Agency. Organisation for Economic Co-operation and Development. NEA No 4436, OECD

    Google Scholar 

  • Coats KH, Smith BD (1964) Dead and pore volume and dispersion in porous media. Soc Pet Eng J 6:73—84

    Google Scholar 

  • Cormenzana JL, Garc-a-Guti-rrez M, Missana T (2008) Modeling large-scale laboratory HTO and strontium diffusion experiments in Mont Terri and Bure clay rocks. Phys Chem Earth 33:949—956

    Google Scholar 

  • Cornaton F, Perrochet P (2006) Groundwater age, life expectancy and transit time distributions in advective-dispersive systems: 1 generalized reservoir theory. Adv Water Resour 29:1267—1291

    Google Scholar 

  • Crank J (1975) The mathematics of diffusion, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  • Dahan O, Nativ R, Adar E et al (1999) Field observation of flow in a fracture intersecting unsaturated chalk. Water Resour Res 35:3315—3326

    Google Scholar 

  • Ditkin VA, Prudnikov AP (1965) Integral transforms and operational calculus. International series of monographs in pure and applied mathematics, vol 78. Pergamon Press, Oxford/New York

    Google Scholar 

  • Doetsch G (1967) Anleitung zum praktischen gebrauch der Laplace-transformation und der Z-transformation. R. Oldenbourg, Monchen

    Google Scholar 

  • Doetsch G (1974) Introduction to the theory and applications of the Laplace transformation. Springer, New York

    Google Scholar 

  • Domenico PA (1987) An analytical model for multi-dimensional transport of a decaying contaminant species. J Hydrol 96:47—58

    Google Scholar 

  • Domenico PA, Robbins GA (1985) A new method of contaminant plume analysis. Ground Water 23:476—485

    Google Scholar 

  • Eldor M, Dagan G (1972) Solutions of hydrodynamic dispersion in porous media. Water Resour Res 8:1316—1331

    Google Scholar 

  • Facets of hydrology (1976) Rodda JC (ed). Wiley, Chichester

    Google Scholar 

  • Feehley CE, Zheng Ch, Molz FJ (2000) A dual-domain mass transfer approach for modeling solute transport in heterogeneous aquifers: application to the Macrodispersion Experiment (MADE) site. Water Resour Res 36:2501—2515

    Google Scholar 

  • Galya DP (1987) A horizontal plane source model for ground-water transport. Ground Water 25:733—739

    Google Scholar 

  • García-Gutiérrez M, Cormenzana JL, Missana T et al (2006) Large-scale laboratory diffusion experiments in clay rocks. Phys Chem Earth 31:523—530

    Google Scholar 

  • Gelhar LW (1993) Stochastic subsurface hydrology. Prentice-Hall, Englewood Clift

    Google Scholar 

  • Gelhar LW, Collins MA (1971) General analysis of longitudinal dispersion in nonuniform flow. Water Resour Res 7:1511—1521

    Google Scholar 

  • Gelhar LW, Welty C, Rehfeldt KR (1992) A critical review of data on field-scale dispersion in aquifers. Water Resour Res 28:1955—1974

    Google Scholar 

  • Gershon ND, Nir A (1969) Effects of boundary conditions of modelson tracer distribution in flow through porous medium. Water Resour Res 5:830—839

    Google Scholar 

  • Golubev VS (1981) Dinamics of geochemical processes. Nedra, Moscow (In Russian)

    Google Scholar 

  • Govindaraju R, Das B (2007) Moment analysis for subsurface hydrologic application. Water Sci Technol Libr 61:29—56

    Google Scholar 

  • Grathwohl P (1998) Diffusion in natural porous media: contaminant transport, sorption/desorption and dissolution kinetics, vol 1, Topics in environmental fluid mechanics. Kluwer, Norwell

    Google Scholar 

  • Guyonnet D, Neville C (2004) Dimensionless analysis of two analytical solutions for 3-D solute transport in groundwater. J Contam Hydrol 75:141—153

    Google Scholar 

  • Hoehn E, Santschi PH (1987) Interpretation of tracer displacement during infiltration of river water to groundwater. Water Resour Res 23:633—640

    Google Scholar 

  • Hunt B (1978) Dispersive sources in uniform ground-water flow. J Hydraul Div 104(HY1):75—85

    Google Scholar 

  • Huysmans M, Dassargues A (2006) Stochastic analysis of the effect of spatial variability of diffusion parameters on radionuclide transport in a low permeability clay layer. Hydrogeol J 14:1094—1106

    Google Scholar 

  • Javandel I, Tsang C-F (1986) Capture-zone type curves: a tool for aquifer cleanup. Ground Water 24:616—625

    Google Scholar 

  • Javandel I, Doughty C, Tsang C-F (1984) Groundwater transport: handbook of mathematical models. American Geophysical Union. Water resources monograph series, 10. Washington, DC

    Google Scholar 

  • Jönsson JA (1984) Elution curves and statistical moments in non-ideal, linear chromatography. Chromatographia 18:427—433

    Google Scholar 

  • Kauch EP (1982) Zur situierung von brunnen im grundwasserstrom. Oesterr Wasserwirtsch 34:157—162

    Google Scholar 

  • Kim DJ, Feyen J (2000) Comparison of flux and resident concentrations in macroporous field soils. Soil Sci 165:616—623

    Google Scholar 

  • Kocabas I, Islam MR (2000) Concentration and temperature transients in heterogeneous porous media Part II: radial transport. J Pet Sci Engin 26:221—233

    Google Scholar 

  • Kosakowski G (2004) Anomalous transport of colloids and solutes in a shear zone. J Contam Hydrol 72:23—46

    Google Scholar 

  • Kreft A, Zuber A (1978) On the physical meaning of the dispersion equation and its solutions for different initial and boundary conditions. Chem Eng Sci 33:1471—1480

    Google Scholar 

  • Kreft A, Zuber A (1979) On the use of the dispersion model of fluid flow. Int J Appl Radiat Isot 30:705—708

    Google Scholar 

  • Kupper JA, Schwartz FW, Steffer PM (1995) A comparison of fracture mixing midels. J Contam Hydrol 18:33—58

    Google Scholar 

  • Kurtzman D, Nativ R, Adar EM (2005) The conceptualization of a channel network through macroscopic analysis of pumping and tracer tests in fractured chalk. J Hydrol 309:241—257

    Google Scholar 

  • Lapidus L, Amundson NR (1952) Mathematics of adsorption in beds. VI The effects of longitudinal diffusion in ion exchange and chromatographic columns. Journ Phys Chem 56(8):984—995

    Google Scholar 

  • Lawrence A, Sanchez-Vila X, Rubin Y (2002) Conditional moments of the breakthrough curves of kinetically-sorbing solute in heterogeneous porous media using multirate mass transfer models for sorption and desorption. Water Resour Res 38:30-1—30-11

    Google Scholar 

  • Leij FJ, Toride N (1995) Discrete time- and length-average solutions of the advection-dispersion equation. Water Resour Res 31(7):1713—1724

    Google Scholar 

  • Leij FJ, van Genuchten MTh (2000) Analytical modeling of nonaqueous phase liquid dissolution with Green-s functions. Transp Porous Media 38:141—166

    Google Scholar 

  • Leij FJ, Priesack E, Schaap MG (2000) Solute transport modeled with {Green-s} functions with {application} to persistent solute sources. J Contam Hydrol 41:155—173

    Google Scholar 

  • Lenda A, Zuber A (1970) Tracer dispersion in groundwater experiments. In: Proceedings of a symposium on the use of isotopes in hydrology. International Atomic Energy Agency, Vienna, pp 619—641

    Google Scholar 

  • Lindstrom FT, Boersma L (1989) Analytical solution for convective-dispersion transport in confined aquifers with different initial and boundary conditions. Water Resour Res 25:241—256

    Google Scholar 

  • Little R, Muller E, Mackay R (1996) Modelling of contaminant migration in a chalk aquifer. J Hydrol 175:473—509

    Google Scholar 

  • Liu HH, Bodvarsson GS, Zhang G (2004) Scale dependency of the effective matrix diffusion coefficient. Vadose Zone J 3:312—315

    Google Scholar 

  • Luo J, Cirpka OA, Dentz M et al (2008) Temporal moments for transport with mass transfer described by an arbitrary memory function in heterogeneous media. Water Resour Res. doi:10.1029/2007WR006262

    Google Scholar 

  • Maes N, Salah S, Jacques D et al (2008) Retention of Cs in Boom clay: comparison of data from batch sorption tests and diffusion experiments on intact clay cores. Phys Chem Earth 33:S149—S155

    Google Scholar 

  • Masciopinto C (2005) Pumping-well data for conditioning the realization of the fracture aperture field in groundwater flow models. J Hydrol 309:210—228

    Google Scholar 

  • Mathias SA (2005) Modeling flow and transport in the chalk unsaturated zone. PhD Thesis, {Department} of Civil and Environmental Engineering, Imperial College, London

    Google Scholar 

  • Mathias SA, Butler AP, McIntyre N (2005) The significance of flow in the matrix of the chalk unsaturated zone. J Hydrol 310:62—77

    Google Scholar 

  • Mathias SA, Butler AP, McIntyre N (2005) The significance of flow in the matrix of the chalk unsaturated zone. J Hydrol 310:62—77

    Google Scholar 

  • Mironenko VA, Rumynin VG (1986) Tracer tests in aquifers. Nedra, Moscow

    Google Scholar 

  • Moench AF (1989) Convergent radial dispersion: a Laplace transform solution for aquifer tracer testing. Water Resour Res 25:439—447

    Google Scholar 

  • Moench AF (1991) Convergent radial dispersion: a note on evaluation of the Laplace transform solution. Water Resour Res 27:3261—3264

    Google Scholar 

  • Moench AF (1995) Convergent radial dispersion in a double-porosity aquifer with fracture skin: analytical solution and application to a field experiment in fractured chalk. Water Resour Res 31:1823—1835

    Google Scholar 

  • Moench AF, Ogata A (1981) A numerical inversion of the Laplace transform solution to radial dispersion in a porous medium. Water Resour Res 17:250—252

    Google Scholar 

  • Moreno L, Tsang YW, Tsang C-F et al (1988) Flow and tracer transport in a single fracture: a stochastic model and its relation to some field observations. Water Resour Res 24:2033—2048

    Google Scholar 

  • Muskat M (1937) The flow of homogeneous fluids in porous media. McGraw-Hill, New York

    Google Scholar 

  • Neuman SP (1990) Universal scaling of hydraulic conductivities and dispersivities in geologic media. Water Resour Res 26:1749—1758

    Google Scholar 

  • Neuman SP (1994) Generalized scaling of permeabilities: Validation and effect of support scale. Geoph Res Lett 21:349—352

    Google Scholar 

  • Neuman ShP (2005) Trends, prospects and challenges in quantifying flow and transport through fractured rocks. Hydrogeol J 13:124—147

    Google Scholar 

  • Nordqvist WA, Tsang YW, Tsang CF (1996) Effects of high variance of fracture transmissivity on transport and sorption at different scales in a discrete model for fractured rocks. J Contam Hydrol 22:39—66

    Google Scholar 

  • Ogata A (1970) Theory of dispersion in a granular medium. Fluid movement in Earth materials. US GS Professional Paper, N 411-I, Washington, DC

    Google Scholar 

  • Ogata A, Banks RB (1961) A solution of the differential equation of longitudinal dispersion in porous media. US Geol Survey Prof Paper 411-A

    Google Scholar 

  • Palut JM, Montarnal P, Gautschi A (2003) Characterisation of HTO diffusion properties by an in situ tracer experiment in Opalinus clay at Mont Terri. J Contam Hydrol 61:203—218

    Google Scholar 

  • Park E, Zhan H (2001) Analytical solutions of contaminant transport from finite one-, two-, and three-dimensional sources in a finite-thickness aquifer. J Contam Hydrol 53:41—61

    Google Scholar 

  • Park Y-J, Lee K-K, Kosakowski G et al (2003) Transport behavior in three-dimensional fracture intersections. Water Resour Res. doi:10.1029/2002WR001801

    Google Scholar 

  • Pickens JF, Grisak GE (1981) Scale-dependent dispersion in a stratified granular aquifer. Water Resour Res 17:1191—1211

    Google Scholar 

  • Polak A, Nativ R, Wallach R (2002) Matrix diffusion in northern Negev fractured chalk and its correlation to porosity. J Hydrol 268:203—213

    Google Scholar 

  • Polyanin AD, Zaitsev VF, Moussiaux A (2002) Handbook of first order partial differential equations. Taylor & Francis, London

    Google Scholar 

  • Post V, Kooi H, Simmons C (2007) Using hydraulic head measurements in variable-density ground water flow analyses. Ground Water 45:664—671

    Google Scholar 

  • Pozdniakov SP, Tsang C-F (2004) A self-consistent approach for calculating the effective hydraulic conductivity of a binary, heterogeneous medium. Water Resour Res. doi:10.1029/2003WR002617

    Google Scholar 

  • Prakash A (1982) Groundwater contamination due to vanishing and finite-size continuous sources. J Hydraul Div 108:572—582

    Google Scholar 

  • Rasmuson A, Neretnieks I (1986) Radionuclide transport in fast channels in crystalline rock. Water Resour Res 22:1247—1256

    Google Scholar 

  • Reeves DM, Benson DA, Meerschaert MM (2008a) Transport of conservative solutes in simulated fracture networks: 1 synthetic data generation. Water Resour Res. doi:10.1029/2007WR006069

    Google Scholar 

  • Reeves DM, Benson DA, Meerschaert MM et al (2008b) Transport of conservative solutes in simulated fracture networks: 2 ensemble solute transport and the correspondence to operator-stable limit distributions. Water Resour Res. doi:10.1029/2008WR006858

    Google Scholar 

  • Rehfeldt KR, Gelhar LW (1992) Stochastic analysis of dispersion in unsteady flow in heterogeneous aquifers. Water Resour Res 28:2085—2099

    Google Scholar 

  • Reimus P, Pohll G, Mihevc T (2003) Testing and parameterizing a conceptual model for solute transport in fractured granite using multiple tracers in a forced-gradient test. Water Resour Res. doi:1029/2002WR001597

    Google Scholar 

  • Reimus PW, Callah TJ, Ware SD et al (2007) Matrix diffusion coefficients in volcanic rocks at the Nevada test site: influence of matrix porosity, matrix permeability, and fracture coating minerals. J Contam Hydrol 93:85—95

    Google Scholar 

  • Rose DA (1977) Hydrodynamic dispersion in porous materials. Soil Sci 123:277—283

    Google Scholar 

  • Rovey CW II, Niemann WL (2005) Do conservative solutes migrate at average pore-water velocity? Ground Water 43:52—62

    Google Scholar 

  • Rumynin VG, Mironenko VA, Sindalovsky LN et al (1998) Evaluation of conceptual, mathematical and physical-and-chemical models for describing subsurface radionuclide transport at the Lake Karachai waste disposal site. Lawrence Berkeley National Laboratory Report Series, LBNL - 41974, Earth Sciences Div., LBNL, University of California, Berkeley

    Google Scholar 

  • Rumynin VG, Pankina EB, Volckaert G et al (2009) Geotechnical, flow and transport properties of Kotlin (Vendian age) and Blue (Cambrian age) clays with respect to design of underground storage facilities for radioactive waste disposal in the north-west region of Russia. In: Proceedings of the IV international nuclear forum 2009. St. Petersburg, pp 195—210

    Google Scholar 

  • Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, New York

    Google Scholar 

  • Sagar B (1982) Dispersion in three dimensions: approximate analytical solutions. J Hydraul Div 108:47—62

    Google Scholar 

  • Salve R (2005) Observations of preferential flow during a liquid release experiment in fractured welded tuffs. Water Resour Res. doi:10.1029/2004WR003570

    Google Scholar 

  • Samper J, Yang C, Naves A et al (2006a) A fully 3-D anisotropic numerical model of the DI-B in situ diffusion experiment in the Opalinus clay formation. Phys Chem Earth 31:531—540

    Google Scholar 

  • Samper J, Yang C, Naves A et al (2006b) A fully 3-D anisotropic numerical model of the DI-B in situ diffusion experiment in the Opalinus clay formation. Phys Chem Earth 31:531—540

    Google Scholar 

  • Samper J, Yang C, Naves A et al (2006c) A fully 3-D anisotropic numerical model of the DI-B in situ diffusion experiment in the Opalinus clay formation. Phys Chem Earth 31:531—540

    Google Scholar 

  • Samper J, Dewonck S, Zheng L et al (2008) Normalized sensitivities and parameter identifiability of in situ diffusion experiments on Callovo-Oxfordian clay at Bure site. Phys Chem Earth 33:1000—1008

    Google Scholar 

  • Scheidegger AE (1957) The physics of flow through porous media. University of Toronto Press, Toronto

    Google Scholar 

  • Schulze-Makuch D (2005) Longitudinal dispersivity data and implications for scaling behavior. Ground Water 43:443—456

    Google Scholar 

  • Schwartz F, Smith L, Crowe A (1983) A stochastic analysis of macroscopic dispersion in fractured media. Water Resour Res 19:1253—1265

    Google Scholar 

  • Shestakov VM (1995) Hydrogeodynamics. MGU, Moscow (In Russian)

    Google Scholar 

  • Soler JM, Samper J, Yllera A et al (2008) The DI-B in situ diffusion experiment at Mont Terri: results and modeling. Phys Chem Earth 33:S196—S207

    Google Scholar 

  • Srinivasan V, Clement TP, Lee KK (2007) Domenico solution - is it valid? Ground Water 45: {136—146}

    Google Scholar 

  • Stehfest H (1970) Algorithm 368: numerical inversion of Laplace transforms. Commun ACM 13(47—49):624

    Google Scholar 

  • Strack ODL (1989) Groundwater mechanics. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Suzuki S, Sato H, Ishidera T et al (2004) Study on anisotropy of effective diffusion coefficient and activation energy for deuterated water in compacted sodium bentonite. J Contam Hydrol 68:23—37

    Google Scholar 

  • Talbot A (1979) The accurate inversion of Laplace transforms. J Inst Math Appl 23:97—120 %%

    Google Scholar 

  • %%Tanaka T, Mukai M, Maeda T et al (2003) Migration mechanisms of 237Np and 241Am through loess media. J Radioanal Nucl Chem 256:205—211

    Google Scholar 

  • Tomasko D, Williams GP, Smith K (2001) An analytical model for simulating step-function injection in a radial geometry. Math Geol 33:155—165

    Google Scholar 

  • Toride N, Leij FJ, van Genuchten MTh (1993) A comprehensive set of analytical solutions for nonequilibrium solute transport with first-order decay and zero-order production. Water Resour Res 29:2167—2182

    Google Scholar 

  • Tsang C-F, Tsang YW, Hale FV (1991) Tracer transport in fractures: analysis of field data based on variable-aperture channel model. Water Resour Res 27:3095—3106

    Google Scholar 

  • Tsang YW, Tsang C-F, Hale FV (1996) Tracer transport in a stochastic continuum model of fractured media. Water Resour Res 32:3077-3092

    Google Scholar 

  • Van der Laan ET (1958) Notes on the diffusion model for longitudinal mixing in flow. Chem Eng Sci 7:187-191

    Google Scholar 

  • Van Genuchten MTh (1981) Analytical solutions for chemical transport with simultaneous adsorption, zero-order production and first order decay. J Contam Hydrol 49:213—233

    Google Scholar 

  • Van Genuchten MTh, Alves WJ (1982) Analytical Solutions of the one-dimensional convective-dispersive solute transport equation. U.S. Department of Agriculture, Washington, DC. {Technical} Bulletin N 1661

    Google Scholar 

  • Van Genuchten MTh, Wierenga PJ (1976) Mass transfer studies in sorbing porous media: I analytical solutions. Soil Sci Soc Am J 40(4):473—480

    Google Scholar 

  • Van Loon LR, Soler JM, Jakob A et al (2003) Effect of confining pressure on the diffusion of HTO, 36Cl?-?and 125I?-?in a layered argillaceous rock (Opalinus clay): diffusion perpendicular to the fabric. Appl Geochem 18:1653—1662

    Google Scholar 

  • Veling Ed JM (2005) Moments and analytical solution of coupled equation describing transport of pollutants in rivers. In: Wlodzimierz Czernuszenko, Rowinski Pawel M (eds) Water quality hazards and dispersion of pollutants. Springer, New York, pp 170—184

    Google Scholar 

  • Verigin NN, Vasiliev SV, Sarkisian VS et al (1977) Hydrodynamic and physicochemical properties of rock formation. Nedra, Moscow (In Russian)

    Google Scholar 

  • Welty C, Gelhar LW (1994) Evaluation of longitudinal dispersivity from nonuniform flow tracer tests. J Hydrol 153:71—102

    Google Scholar 

  • West MR, Kueper BH, Ungs MJ (2007) On the use and error of application in the Dmenico (1987) solution. Ground Water 45:126—135

    Google Scholar 

  • Whitham GB (1974) Linear and nonlinear waves. Wiley, New York/London

    Google Scholar 

  • Wilson JL, Miller PJ (1978) Two-dimensional plumes in uniform groundwater flow. J Hyd Div ASCE 104:503—514

    Google Scholar 

  • Woumeni RS, Vauclin M (2006) A field study of the coupled effects of aquifer stratification, fluid density, and groundwater fluctuations on dispersivity assessments. Adv Water Resour 29:1037—1055

    Google Scholar 

  • Yllera A, Hernández A, Mingarro M (2004) DI-B experiment: planning, design and performance of an in situ diffusion experiment in the Opalinus clay formation. Appl Clay Sci 26:181—196

    Google Scholar 

  • Zhang Y, Baeumer B, Benson DA (2006) Relationship between flux and resident concentrations for anomalous dispersion. Geophys Res Lett. doi:10.1029/2006GL027251, L18407

    Google Scholar 

  • Zhou Q, Liu H-H, Molz FJ et al (2007) Field-scale effective matrix diffusion coefficient for fractured rock: results from literature survey. J Contam Hydrol 93:161—187

    Google Scholar 

  • Zuber A (1974) Theoretical possibilities of the two-well pulse method. In: Isotope techniques in groundwater hydrology. International Atomic Energy Agency, Vienna, pp 277—294

    Google Scholar 

  • Zuber A, Motyka J (1994) Matrix porosity as the most important parameter of fissured rocks for solute transport at large scales. J Hydrol 158:19—46

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vyacheslav G. Rumynin .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rumynin, V.G. (2011). Advection and Dispersion of Dissolved Species in Aquifers. In: Subsurface Solute Transport Models and Case Histories. Theory and Applications of Transport in Porous Media, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1306-2_1

Download citation

Publish with us

Policies and ethics