Skip to main content

Climatic Effects on Atlantic Salmon and Brown Trout

  • Chapter
  • First Online:

Part of the book series: Fish & Fisheries Series ((FIFI,volume 33))

Abstract

This chapter reviews possible effects of expected climate change in view of current knowledge on consequences of water temperature and flow for Atlantic salmon and brown trout in their endemic range. Population-level effects influencing life-history variables, recruitment, mortality and production are especially emphasized, but also behaviour changes influencing migration, distribution and avoidance of unfavourable conditions are included. How these fishes respond to changes in these environmental variables, adaptation processes and tolerance limits have been treated in earlier chapters of this book.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aarestrup K, Koed A (2003) Survival of migrating sea trout (Salmo trutta) and Atlantic salmon (Salmo salar) smolts negotiating weirs in small Danish rivers. Ecol Freshw Fish 12:169–176

    Google Scholar 

  • Abrahams MV, Kattenfield MG (1997) The role of turbidity as a constraint on predator-prey interactions in aquatic environments. Behav Ecol Sociobiol 40:169–174

    Google Scholar 

  • Almodóvar A, Nicola GG (1998) Assessment of a brown trout Salmo trutta population in the River Gallo (central Spain): angling effects and management implications (Salmonidae). Ital J Zool 65:539–543

    Google Scholar 

  • Almodóvar A, Nicola GG (2004) Angling impact on conservation of Spanish stream-dwelling brown trout Salmo trutta. Fish Manage Ecol 11:173–182

    Google Scholar 

  • Anderson RM, Nehring RB (1984) Effects of a catch and release regulation on a wild trout population in Colorado and its acceptance by anglers. N Am J Fish Manage 4:257–265

    Google Scholar 

  • Angilletta MJ, Niewiarowski PH, Navas CA (2002) The evolution of thermal physiology in ectotherms. J Therm Biol 27:249–268

    Google Scholar 

  • Arkoosh MR, Collier TK (2002) Ecological risk assessment paradigm for salmon: analyzing immune function to evaluate risk. Hum Ecol Risk Assess 8:265–276

    CAS  Google Scholar 

  • Armstrong JD, Braithwaite VA, Fox M (1998) The response of wild Atlantic salmon parr to acute reductions in water flow. J Anim Ecol 67:292–297

    Google Scholar 

  • Bailey JK, Loudenslager EJ (1986) Genetic and environmental components of variation for growth of juvenile Atlantic salmon. Aquaculture 57:125–132

    Google Scholar 

  • Baran P, Delacoste M, Dauba F et al (1995) Effects of reduced flow on brown trout (Salmo trutta L.) populations downstream dams in French Pyrenees. Regul River Res Manage 10:347–361

    Google Scholar 

  • Battin J, Wiley MW, Ruckelshaus MH et al (2007) Projected impacts of climate change on salmon habitat restoration. Proc Natl Acad Sci USA 104:6720–6725

    PubMed  CAS  Google Scholar 

  • Beacham TD, Evelyn TPT (1992) Population variation in resistance of pink salmon to vibriosis and furunculosis. J Aquat Anim Health 4:168–173

    Google Scholar 

  • Beacham TD, Withler RE (1991) Genetic variation in mortality of chinook salmon, Oncorhyn­chus tshawytscha (Walbaum), challenged with high water temperatures. Aquacult Res 22:125–133

    Google Scholar 

  • Beamish RJ, Manken C, Neville CM (2004) Evidence that reduced early growth is associated with lower marine survival of coho salmon. Tran Am Fish Soc 133:26–33

    Google Scholar 

  • Beaugrand G, Reid PC (2003) Long-term changes in phytoplankton, zooplankton and salmon related to climate. Glob Change Biol 9:801–817

    Google Scholar 

  • Berg OK (1985) The formation of non-anadromous populations of Atlantic salmon, Salmo salar. J Fish Biol 27:805–815

    Google Scholar 

  • Berge JA, Green N, Rygg B, Skulberg O (1988) Invasion of the plankton alga Chrysochomulina polylepis along the coast of southern Norway in May-June 1988. Part A: Concluding report. Rep Norw Inst Wat Res 328a/88:1–44

    Google Scholar 

  • Blanc JM (2005) Contribution of genetic and environmental variance components to increasing body length in juvenile brown trout Salmo trutta. J World Aquacult Soc 36:51–58

    Google Scholar 

  • Borgstrøm R (2001) Relationship between spring snow depth and growth of brown trout Salmo trutta in an alpine lake: predicting consequences of climate change. Arc Antarc Alp Res 33:476–480

    Google Scholar 

  • Borgstrøm R, Museth J (2002) Snow and temperature in high mountain areas: impact of climate on recruitment to brown trout populations. In: Museth J (ed) Dynamics in European minnow Phoxinus phoxinus and brown trout Salmo trutta populations in mountain habitats: effects of climate and inter- and intraspecific interactions. Dr scient thesis, Agricultural University of Norway, Ås

    Google Scholar 

  • Boxaspen K (2006) A review of the biology and genetics of sea lice. ICES J Mar Sci 63:1304–1316

    CAS  Google Scholar 

  • Boylan P, Adams CE (2006) The influence of broad scale climatic phenomena on long term trends in Atlantic salmon population size: an example from the River Foyle, Ireland. J Fish Biol 68:276–283

    Google Scholar 

  • Bradshaw WE, Holzapfel CM (2008) Genetic response to rapid climate change: it’s seasonal timing that matters. Mol Ecol 17:157–166

    PubMed  CAS  Google Scholar 

  • Brander KM (2007) Global fish production and climate change. Proc Natl Acad Sci USA 104:19709–19714

    PubMed  CAS  Google Scholar 

  • Brooker MP, Morris DL, Hemsworth RJ (1977) Mass mortalities of adult salmon, Salmo salar, in the R. Wye 1976. J Appl Ecol 14:409–417

    Google Scholar 

  • Burke N, Brophy D, Schön PJ et al (2009) Temporal trends in stock origin and abundance of juvenile herring (Clupea harengus) in the Irish Sea. ICES J Mar Sci 66:1749–1753

    Google Scholar 

  • Byrne CJ, Pole R, Dillane M (2004) Temporal and environmental influences on the variation in sea trout (Salmo trutta L.) smolt migration in the Burrishoole system in the west of Ireland from 1971 to 2000. Fish Res 66:85–94

    Google Scholar 

  • Carlson SM, Seamons TR (2008) A review of quantitative genetic components of fitness in salmonids: implications for adaptation to future change. Evol Appl 1:222–238

    Google Scholar 

  • Charles S, Bravo de la Parra R, Mallet JP et al (2000) Annual spawning migration in modelling brown trout population dynamics inside an arborescent river network. Ecol Model 133:15–31

    Google Scholar 

  • Clark CW (1994) Antipredator behavior and the asset-protection principle. Behav Ecol 5:159–170

    Google Scholar 

  • Condron A, DeConto R, Bradley RS et al (2005) Multidecadal North Atlantic climate variability and its effect on North American salmon abundance. Geophys Res Lett 32:L23703

    Google Scholar 

  • Cowx IG, Young WO, Hellawell JM (1984) The influence of drought on the fish and invertebrate populations of an upland stream in Wales. Freshw Biol 14:165–642

    Google Scholar 

  • Crisp DT (1981) A desk study of the relationship between temperature and hatching time for the eggs of five species of salmonid fishes. Freshw Biol 11:361–368

    Google Scholar 

  • Crisp TD (1988) Prediction from temperature of eyeing, hatching and “swim up” for salmonid embryos. Freshw Biol 19:41–48

    Google Scholar 

  • Crozier WW, Kennedy GJA (1999) Relationships between marine growth and marine survival of one sea winter salmon, Salmo salar, from the River Bush Northern Ireland. Fish Manage Ecol 6:89–96

    Google Scholar 

  • Crozier WW, Kennedy GJA (2003) Freshwater influences on marine survival of Atlantic salmon (Salmo salar L.): evidence from the River Bush, Northern Ireland. In: Potter ECE, Ó’Maoileidigh N, Chaput G (eds) Marine mortality of Atlantic salmon, Salmo salar L.: methods and measures. DFO Canadian Science Advisory Secretariat Research Document 2003/101, Ottawa

    Google Scholar 

  • Crozier LG, Hendry AP, Lawson PW et al (2008) Potential responses to climate change in organisms with complex life histories: evolution and plasticity in Pacific salmon. Evol Appl 1:252–270

    Google Scholar 

  • Cunjak RA, Prowse TD, Parrish DL (1998) Atlantic salmon in winter: “the season of parr discontent”? Can J Fish Aquat Sci 55(Suppl 1):161–180

    Google Scholar 

  • Cushing DH (1982) Climate and fisheries. Academic, London

    Google Scholar 

  • Dahl J, Dannewitz J, Karlsson L et al (2004) The timing of spawning migration: implications of environmental variation, life history and sex. Can J Zool 82:1864–1870

    Google Scholar 

  • Daufresne M, Roger MC, Capra H et al (2003) Long-term changes within the invertebrate and fish communities of the Upper Rhône River: effects of climatic factors. Glob Change Biol 10:124–140

    Google Scholar 

  • Daufresne M, Lengfellner K, Sommer U (2009) Global warming benefits the small in aquatic ecosystems. Proc Natl Acad Sci 106:12788–12793

    PubMed  CAS  Google Scholar 

  • Dempson JB, O’Connell MF, Cochran NM (2001) Potential impact of climate warming on recreational fishing opportunities for Atlantic salmon, Salmo salar L., in Newfoundland, Canada. Fish Manage Ecol 8:69–82

    Google Scholar 

  • Dhillon RS, Fox MG (2004) Growth-independent effects of temperature on age and size at maturity in Japanese medaka (Oryzias latipes). Copeia 2004:37–45

    Google Scholar 

  • Dickson RR, Turrell WR (2000) The NAO: the dominant atmospheric process affecting oceanic variability in home, middle and distant waters of European Atlantic salmon. In: Mills DH (ed) Ocean life of Atlantic salmon: environmental and biological factors influencing survival. Fish News Books, Malden

    Google Scholar 

  • Durance I, Ormerod SJ (2007) Climate change effects on upland stream macroinvertebrates over a 25-year period. Glob Change Biol 13:942–957

    Google Scholar 

  • Duston J, Saunders RL, Know DE (1991) Effects of increases in freshwater temperature on loss of smolt characteristics in Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 48:164–169

    Google Scholar 

  • Dutil JD (1986) Energetic constraints and spawning interval in the anadromous Arctic charr (Salvelinus alpinus). Copeia 1986:954–955

    Google Scholar 

  • Edmundson JA, Mazumder A (2001) Linking growth of juvenile sockeye salmon to habitat temperature in Alaskan lakes. Trans Am Fish Soc 130:644–662

    Google Scholar 

  • Edwards M, Johns DG, Leterme SC et al (2006) Regional climate change and harmful algal blooms in the northeast Atlantic. Limnol Oceanogr 51:820–829

    Google Scholar 

  • Einum S, Fleming IA (2000) Selection against late emergence and small offspring in Atlantic salmon (Salmo salar). Evolution 54:628–639

    PubMed  CAS  Google Scholar 

  • Elliott JM (1994) Quantitative ecology and the brown trout. Oxford series in ecology and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Elliott JM, Elliott JA (2006) A 35-year study of stock-recruitment relationships in a small population of sea trout: assumptions, implications and limitations for predicting targets. In: Harris G, Milner N (eds) Sea trout: biology, conservation and management. Blackwell, Oxford

    Google Scholar 

  • Elliott JM, Elliott JA (2010) Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta, and Arctic charr Salvelinus alpinus: predicting the effects of climate change. J Fish Biol 77:1793–1817

    PubMed  CAS  Google Scholar 

  • Elliott JM, Hurley MA (1998) An individual-based model for predicting the emergence period of sea trout fry in a Lake District stream. J Fish Biol 53:414–433

    Google Scholar 

  • Elliott JM, Hurley MA, Elliott JA (1997) Variable effects of droughts on the density of a sea-trout Salmo trutta population over 30 years. J Appl Ecol 34:1229–1238

    Google Scholar 

  • Elliott JM, Hurley MA, Maberley SC (2000) The emergence period of sea trout fry in a Lake District stream correlates with the North Atlantic Oscillation. J Fish Biol 56:208–210

    Google Scholar 

  • Enders EC, Boisclair D, Roy AG (2005) A model of total swimming costs in turbulent flow for juvenile Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 62:1079–1089

    Google Scholar 

  • Farrell AP (2009) Environment, antecedents and climate change: lessons from the study of temperature physiology and river migration of salmonids. J Exp Biol 212:3771–3780

    PubMed  CAS  Google Scholar 

  • Finney BP, Gregory-Eaves I, Douglas MSV et al (2002) Fisheries productivity in the northeastern Pacific ocean over the past 2,200 years. Nature 416:729–733

    PubMed  CAS  Google Scholar 

  • Finstad B, Staurnes M, Reite OB (1988) Effect of low temperature on sea water tolerance in rainbow trout, Salmo gairdneri. Aquaculture 72:319–328

    Google Scholar 

  • Finstad AG, Forseth T, Næsje TF et al (2004a) The importance of ice cover for energy turnover in juvenile Atlantic salmon. J Anim Ecol 73:959–966

    Google Scholar 

  • Finstad AG, Ugedal O, Forseth T et al (2004b) Energy related juvenile winter mortality in a northern population of Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 61:2358–2368

    Google Scholar 

  • Finstad AG, Forseth T, Jonsson B et al (2011) Competitive exclusion along climate gradients: energy efficiency influences the distribution of two salmonid fishes. Glob Change Biol 17:1703–1711

    Google Scholar 

  • Fleming IA (1996) Reproductive strategies of Atlantic salmon: ecology and evolution. Rev Fish Biol Fish 6:379–416

    Google Scholar 

  • Fleming IA, Gross MR (1990) Latitudinal clines: a trade-off between egg number and size in Pacific salmon. Ecology 71:1–11

    Google Scholar 

  • Fleming IA, Lamberg A, Jonsson B (1997) Effects of early experience on the reproductive performance of Atlantic salmon. Behav Ecol 8:470–480

    Google Scholar 

  • Forseth T, Hurley MA, Jensen AJ et al (2001) Functional models for growth and food consumption of Atlantic salmon parr, Salmo salar, from a Norwegian river. Freshw Biol 46:173–186

    Google Scholar 

  • Friedland KD (1998) Ocean climate influences on critical Atlantic salmon (Salmo salar) life history events. Can J Fish Aquat Sci 55(Suppl 1):119–130

    Google Scholar 

  • Friedland KD, Hansen LP, Dunkley DA (1998) Marine temperatures experienced by postsmolts and the survival of Atlantic salmon, Salmo salar L., in the North Sea area. Fish Oceanogr 7:22–34

    Google Scholar 

  • Friedland KD, Hansen LP, Dunkley DA et al (2000) Linkage between ocean climate, post-smolt growth, and survival of Atlantic salmon (Salmo salar L.) in the North Sea area. ICES J Mar Sci 57:419–429

    Google Scholar 

  • Friedland KD, Reddin DC, McMenemy JR et al (2003) Multidecadal trends in North American Atlantic salmon (Salmo salar) stocks and climate trends relevant to juvenile survival. Can J Fish Aquat Sci 60:563–583

    Google Scholar 

  • Friedland KD, Chaput G, MacLean JC (2005) The emerging role of climate in post-smolt growth of Atlantic salmon. ICES J Mar Sci 62:1338–1349

    Google Scholar 

  • Friedland KD, MacLean JC, Hansen LP et al (2009) The recruitment of Atlantic salmon in Europe. ICES J Mar Sci 66:289–304

    Google Scholar 

  • Garant D, Dodson JJ, Bernatchez L (2003) Differential reproductive success and heritability of alternative reproductive tactics in wild Atlantic Salmon (Salmo salar L.). Evolution 57:1133–1141

    PubMed  Google Scholar 

  • Genner MJ, Sims DW, Southward AJ et al (2010) Body size-dependent responses of a marine fish assemblage to climate change and fishing over a century-long scale. Glob Change Biol 16:517–527

    Google Scholar 

  • Gilman SE, Wethey DS, Helmuth B (2006) Variation in the sensitivity of organismal body temperature to climate change over local and geographical scale. Proc Natl Acad Sci USA 103:9560–9565

    PubMed  CAS  Google Scholar 

  • Gilman SE, Urban MC, Tewksbury J et al (2010) A framework for community interactions under climate change. Trends Evol Ecol 25:325–331

    Google Scholar 

  • Gjedrem T, Gjøen HM (1995) Genetic variation in susceptibility of Atlantic salmon, Salmo salar L., to furunculosis, BKD and cold water vibriosis. Aquacult Res 26:129–134

    Google Scholar 

  • Gjerde B, Saltkjelvik B (2009) Susceptibility of Atlantic salmon and rainbow trout to the salmon lice Lepeophtheirus salmonis. Aquaculture 292:31–34

    Google Scholar 

  • Gjerde B, Simianer H, Refstie T (1994) Estimates of genetic and phenotypic parameters for body-weight, growth-rate and sexual maturity in Atlantic salmon. Livest Prod Sci 38:133–143

    Google Scholar 

  • Glebe BD, Leggett WC (1981a) Temporal, intra-population differences in energy allocation and use by American shad (Alosa sapidissima) during the spawning migration. Can J Fish Aquat Sci 38:795–805

    Google Scholar 

  • Glebe BD, Leggett WC (1981b) Latitudinal differences in energy allocation and use during the freshwater migrations of American shad (Alosa sapidissima) and their life history consequences. Can J Fish Aquat Sci 38:806–820

    Google Scholar 

  • Glebe BD, Saunders RL (1986) Genetic factors in sexual maturity of cultured Atlantic salmon (Salmo salar) parr and adults reared in sea cages. Can Spec Publ Fish Aquat Sci 89:24–29

    Google Scholar 

  • Glover KA, Nilsen F, Skaala Ø et al (2001) Differences in susceptibility to sea lice infection between a sea run and a freshwater resident population of brown trout. J Fish Biol 59:1512–1519

    Google Scholar 

  • Graham CT, Harrod C (2009) Implications of climate change for the fishes of the British Isles. J Fish Biol 74:1143–1205

    PubMed  CAS  Google Scholar 

  • Greenberg LA (1999) Effects of predation and discharge on habitat use by brown trout, Salmo trutta, and grayling, Thymallus thymallus, in artificial streams. Arch Hydrobiol 145:433–446

    Google Scholar 

  • Gross MR, Coleman RM, McDowall RD (1988) Aquatic productivity and the evolution of diadromous fish migration. Science 239:1291–1293

    PubMed  CAS  Google Scholar 

  • Gudjonsson S, Einarsson SM, Antonsson T et al (1995) Relation of grilse to salmon ratio to environmental changes in several wild stocks of Atlantic salmon (Salmo salar) in Iceland. Can J Fish Aquat Sci 52:1385–1398

    Google Scholar 

  • Gunnes K, Gjedrem T (1978) Selection experiments with salmon IV. Growth of Atlantic salmon during two years at sea. Aquaculture 15:19–33

    Google Scholar 

  • Hamor T, Garside ET (1977) Size relations and yolk utilization in embryonated ova and alevins of Atlantic salmon Salmo salar L. in various combinations of temperature and dissolved oxygen. Can J Zool 55:1892–1898

    PubMed  CAS  Google Scholar 

  • Hansen LP, Jonsson B (1989) Salmon ranching experiments in the River Imsa: effect of timing of Atlantic salmon (Salmo salar) smolt migration. Aquaculture 82:367–373

    Google Scholar 

  • Hansen LP, Jonsson B (1991) The effect of timing of Atlantic salmon smolt and post-smolt release on the distribution of adult return. Aquaculture 98:61–67

    Google Scholar 

  • Hansen LP, Quinn TP (1998) The marine phase of the Atlantic salmon life cycle, with comparisons to Pacific salmon. Can J Fish Aquat Sci 55(Suppl 1):104–118

    Google Scholar 

  • Hard JJ, Elliott DG, Pascho RG et al (2006) Genetic effects of ELISA-based segregation for control of bacterial kidney disease in Chinook salmon (Oncorhynchus tshawytscha). Can J Fish Aquat Sci 63:2793–2808

    Google Scholar 

  • Hari RE, Livingstone DM, Siber R et al (2006) Consequences of climatic change for water temperature and brown trout populations in Alpine rivers and streams. Glob Change Biol 12:10–26

    Google Scholar 

  • Hembrel B, Arnekleiv JV, L’Abée-Lund JH (2001) In addition to high temperature, the migration can be initiated by high water current. Ecol Freshw Fish 10:61–64

    Google Scholar 

  • Hendry AP, Day T (2005) Population structure attributable to reproductive date: isolation-by-time and adaptation-by-time. Mol Ecol 14:901–916

    PubMed  CAS  Google Scholar 

  • Heuch PA, Parsons A, Boxaspen K (1995) Diel vertical migration: a possible host-finding mechanism in salmon louse (Lepeophtheirus salmonis) copepods? Can J Fish Aquat Sci 52:681–689

    Google Scholar 

  • Heuch PA, Knutsen JA, Knutsen H et al (2002) Salinity and temperature effects on sea lice over-winter on sea trout (Salmo trutta) in coastal areas of the Skagerrak. J Mar Biol Assoc UK 82:887–892

    Google Scholar 

  • Hindar K, Jonsson B (1995) Impacts of aquaculture and hatcheries on wild fish. In: Philipp DP, Epifanio JM, Marsden JE et al (eds.) Protection of biodiversity: Proceedings of the World Fisheries Congress, Theme-3. Oxford and IBH Publishing, New Delhi

    Google Scholar 

  • Hoar WS (1988) The physiology of smolting salmonids. In: Hoar WS, Randall D (eds) Fish physiology, vol XIB. Academic, New York

    Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679

    Google Scholar 

  • Hutchings JA, Jones MEB (1998) Life history variation in growth rate thresholds for maturity in Atlantic salmon. Can J Fish Aquat Sci 55(Suppl 1):22–47

    Google Scholar 

  • Hvidsten NA (1990) High winter discharge after regulation increases the production of Atlantic salmon (Salmo salar) smolts in the River Orkla, Norway. Can Spec Publ Fish Aquat Sci 118:175–177

    Google Scholar 

  • Hvidsten NA, Jensen AJ, Vivås H et al (1995) Downstream migration of Atlantic salmon smolts in relation to water flow, water temperature, moon phase and social interaction. Nordic J Freshw Res 70:38–48

    Google Scholar 

  • Hvidsten NA, Heggberget TG, Jensen AJ (1998) Sea water temperatures at Atlantic salmon smolt entrance. Nord J Freshw Res 74:79–86

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis: Intergovernmental Panel on Climate Change Fourth Assessment Report. htpp://www.ipcc.ch/

  • Jansen PA, Bakke TA, Hansen LP (1991) Resistance to Gyrodactylus salaris Malmberg 1957 (Monogenea) in Salmo salar: a genetic component. Bull Scand Soc Parasitol 1:1–50

    Google Scholar 

  • Jensen AJ, Aass P (1995) Migration of a fast-growing population of brown trout and water temperature. Regul River Res Manage 10:217–228

    Google Scholar 

  • Jobling M (1994) Fish bioenergetics. Fish and fisheries series 13. Kluwer, Dordrecht

    Google Scholar 

  • Johnsen BO, Jensen AJ (1994) The spread of furunculosis in salmonids in Norwegian rivers. J Fish Biol 45:47–55

    Google Scholar 

  • Jónasson J (1993) Selection experiment in salmon ranching. 1. Genetic and environmental sources of variation in survival and growth in freshwater. Aquaculture 109:225–236

    Google Scholar 

  • Jónasson J, Gjedrem T (1997) Genetic correlation for body weight of Atlantic salmon grilse between fish in sea ranching and land-based farming. Aquaculture 157:205–214

    Google Scholar 

  • Jónasson J, Gjerde B, Gjedrem T (1997) Genetic parameters for return rate and body weight of sea ranched Atlantic salmon. Aquaculture 154:219–231

    Google Scholar 

  • Jonsson B, Jonsson N (1993) Partial migration: niche shift versus sexual maturation in fishes. Rev Fish Biol Fish 3:348–365

    Google Scholar 

  • Jonsson N, Jonsson B (1999) Trade-off between egg mass and egg number in brown trout. J Fish Biol 55:767–783

    Google Scholar 

  • Jonsson N, Jonsson B (2002) Migration of anadromous brown trout Salmo trutta in a Norwegian river. Freshw Biol 47:1391–1401

    Google Scholar 

  • Jonsson B, Jonsson N (2004a) Factors affecting marine production of Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 61:2369–2383

    Google Scholar 

  • Jonsson N, Jonsson B (2004b) Size and age of maturity of Atlantic salmon correlate with the North Atlantic Oscillation Index (NAOI). J Fish Biol 64:241–247

    Google Scholar 

  • Jonsson B, Jonsson N (2005) Lipid energy reserves influence life history decision of salmonid parr. Ecol Freshw Fish 14:296–301

    Google Scholar 

  • Jonsson B, Jonsson N (2006) Cultured salmon in nature: a review of their ecology and interactions with wild fish. ICES J Mar Sci 63:1162–1181

    Google Scholar 

  • Jonsson N, Jonsson B (2007) Growth and sexual maturation in Atlantic salmon Salmo salar L. J Fish Biol 71:245–252

    Google Scholar 

  • Jonsson B, Jonsson N (2008) Thinlip grey mullet Liza ramada (Mugilidae) caught in a small Norwegian stream. Fauna Norv 26/27:31–33

    Google Scholar 

  • Jonsson B, Jonsson N (2009a) Migratory timing, marine survival and growth of anadromous brown trout in the River Imsa, Norway. J Fish Biol 74:621–638

    PubMed  CAS  Google Scholar 

  • Jonsson B, Jonsson N (2009b) Influences of the climatic variables water temperature and flow on anadromous salmonids with special reference to Atlantic salmon Salmo salar and brown trout Salmo trutta. J Fish Biol 75:2381–2447

    PubMed  CAS  Google Scholar 

  • Jonsson B, L’Abée-Lund JH (1993) Latitudinal clines in life history variables of anadromous brown trout in Europe. J Fish Biol 43(Suppl A):1–16

    Google Scholar 

  • Jonsson B, Ruud-Hansen J (1985) Water temperature as the primary influence on timing of seaward migrations of Atlantic salmon smolts. Can J Fish Aquat Sci 42:593–595

    Google Scholar 

  • Jonsson N, Jonsson B, Hansen LP (1990) Partial segregation in the timing of migration of Atlantic salmon of different ages. Anim Behav 40:313–321

    Google Scholar 

  • Jonsson B, L’Abée-Lund JH, Heggberget TG et al (1991a) Longevity, body size and growth in anadromous brown trout. Can J Fish Aquat Sci 48:1838–1845

    Google Scholar 

  • Jonsson N, Hansen LP, Jonsson B (1991b) Variation in age, size and repeat spawning of adult Atlantic salmon in relation to river discharge. J Anim Ecol 60:937–947

    Google Scholar 

  • Jonsson N, Jonsson B, Fleming IA (1996) Does early growth rate cause a phenotypically plastic response in egg production of Atlantic salmon? Funct Ecol 10:89–96

    Google Scholar 

  • Jonsson N, Jonsson B, Hansen LP (1997) Changes in proximate composition and estimates of energetic costs during upstream migration and spawning in Atlantic salmon Salmo salar. J Anim Ecol 66:425–436

    Google Scholar 

  • Jonsson B, Jonsson N, Brodtkorb E et al (2001) Life history traits of brown trout vary with the size of small streams. Funct Ecol 15:310–317

    Google Scholar 

  • Jonsson N, Jonsson B, Hansen LP (2003) Marine survival and growth of sea ranched and wild Atlantic salmon. J Appl Ecol 40:900–911

    Google Scholar 

  • Jonsson N, Jonsson B, Hansen LP (2005) Does climate during embryonic development influences parr growth and age of seaward migration in Atlantic salmon (Salmo salar) smolts? Can J Fish Aquat Sci 62:2502–2508

    Google Scholar 

  • Jonsson B, Jonsson N, Hansen LP (2007) Factors affecting river entry of adult Atlantic salmon in a small river. J Fish Biol 71:943–956

    Google Scholar 

  • Juanes F, Gephard S, Beland K (2004) Long-term changes in migration timing of adult Atlantic salmon (Salmo salar) at the southern edge of the species distribution. Can J Fish Aquat Sci 61:2392–2400

    Google Scholar 

  • Jutila E, Jokikokko E, Julkunen M (2006) Long-term changes in the smolt size and age of Atlantic salmon, Salmo salar L., in a northern Baltic river related to parr density, growth opportunity and postsmolt survival. Ecol. Freshw Fish 15:321–330

    Google Scholar 

  • Kallio-Nyberg I, Jutila E, Saloniemi I et al (2004) Association between environmental factors, smolt size and the survival of wild and reared Atlantic salmon from the Simojki River in the Baltic Sea. J Fish Biol 65:122–134

    Google Scholar 

  • Kamler E (1992) Early life history of fishes: an energetic approach. Chapman & Hall, London

    Google Scholar 

  • Kemp SJ, Spotila JR (1997) Effects of urbanization on brown trout Salmo trutta, other fishes and macroinvertebrates in Valley Creek, Valley Forge, Pennsylvania. Am Midl Nat 138:55–69

    Google Scholar 

  • Kennedy RJ, Crozier WW (2010) Evidence of changing migratory patterns of wild Atlantic salmon Salmo salar smolts in the River Bush, Northern Ireland, and possible associations with climate change. J Fish Biol 76:1786–1805

    PubMed  CAS  Google Scholar 

  • Kolstad K, Heuch PA, Gjerde B et al (2005) Genetic variation in resistance of Atlantic salmon (Salmo salar) to the sea louse Lepeophtheirus salmonis. Aquaculture 247:145–151

    CAS  Google Scholar 

  • L’Abée-Lund JH, Jonsson B, Jensen AJ et al (1989) Latitudinal variation in life history characte­ristics of sea-run migrant brown trout Salmo trutta. J Anim Ecol 58:525–542

    Google Scholar 

  • L’Abée-Lund JH, Jensen AJ, Johnsen BO (1990) Interpopulation variation in male parr maturation of anadromous brown trout (Salmo trutta) in Norway. Can J Zool 68:1983–1987

    Google Scholar 

  • Landergren P (2004) Factors affecting early migration of sea trout Salmo trutta parr to brackish water. Fish Res 67:283–294

    Google Scholar 

  • Larsson S, Berglund I (2005) The effect of temperature on the energetic growth efficiency of Arctic charr (Salvelinus alpinus (L.)) from four Swedish populations. J Therm Biol 30:29–36

    Google Scholar 

  • Lassalle G, Rochard E (2009) Impact of twenty-first century climate change on diadromous fish spread over Europe, North Africa and the Middle East. Glob Change Biol 15:1072–1089

    Google Scholar 

  • Leggett WC, Carscadden JE (1978) Latitudinal variation in reproductive characteristics of American shad (Alosa sapidissima): evidence for population specific life history strategies in fish. J Fish Res Board Can 35:1469–1478

    Google Scholar 

  • Lehodey P, Alheit J, Barange M et al (2006) Climate variability, fish, and fisheries. J Clim 19:5009–5030

    Google Scholar 

  • Letcher BH, Dubreuil T, O’Donnell MJ et al (2004) Long-term consequences of variation in timing and manner of fry introduction of juvenile Atlantic salmon (Salmo salar) growth, survival, and life-history expression. Can J Fish Aquat Sci 61:2288–2301

    Google Scholar 

  • Lilja J, Romakkaniemi A (2003) Early-season river entry of adult Atlantic salmon: its dependency on environmental factors. J Fish Biol 62:41–50

    Google Scholar 

  • Linnansaari T, Cunjak RA (2010) Patterns in apparent survival of Atlantic salmon (Salmo salar) parr in relation to variable ice conditions throughout winter. Can J Fish Aquat Sci 67:1744–1754

    Google Scholar 

  • Linnansaari T, Alfredsen K, Stickler M et al (2008) Does ice matter? Site fidelity and movements by Atlantic salmon (Salmo salar L.) parr during winter in a substrate enhanced river reach. River Res Appl 24:1325–1342

    Google Scholar 

  • Lobell DB, Burke MB, Tebaldi C et al (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610

    PubMed  CAS  Google Scholar 

  • Marcogliese DJ (2001) Implications of climate change for parasitism of animals in the aquatic environment. Can J Zool 79:1331–1352

    Google Scholar 

  • Marcos-Lopez M, Gale P, Oidtmann BC et al (2010) Assessing the impact of climate change on disease emergence in freshwater fish in the United Kingdom. Transbound Emerg Dis 57:293–304

    PubMed  CAS  Google Scholar 

  • Matthews KR, Berg NH (1997) Rainbow trout responses to water temperature and dissolved oxygen stress in two southern California stream pools. J Fish Biology 50:50–67

    Google Scholar 

  • McCormick SD, Shrimpton JM, Zydlewski JD (1997) Temperature effects on osmoregulatory physiology of juvenile anadromous fish. In: Wood CM, McDonald DG (eds) Global warming; implications for freshwater and marine fish. Cambridge University Press, Cambridge

    Google Scholar 

  • McCormick SD, Cunjak RA, Dempson JB et al (1999) Temperature-related loss of smolt characteristics in Atlantic salmon (Salmo salar) in the wild. Can J Fish Aquat Sci 59:1649–1667

    Google Scholar 

  • McCullough DA (1999) A review and synthesis of effects of alterations to the water temperature regime on freshwater life stages of Salmonids, with special reference to Chinook salmon. Water Res Assess, Columbia River Inter-Tribal Fish Commission, Portland, OR EDA 910-R-99-101

    Google Scholar 

  • McVicar AH, Sharp LA, Walker AF et al (1993) Diseases of wild sea trout in Scotland in relation to fish population decline. Fish Res 17:185–185

    Google Scholar 

  • Metcalfe NB, Thorpe JE (1990) Determinants of geographical variation in the age of seaward migrating salmon, Salmo salar. J Anim Ecol 59:135–149

    Google Scholar 

  • Minns CK, Randall RG, Chadwick EMP et al (1995) Potential impact of climate change on the habitat and population dynamics of juvenile Atlantic salmon (Salmo salar) in Eastern Canada. Can Spec Publ Fish Aquat Sci 121:699–708

    Google Scholar 

  • Mitchell SC, Cunjak RA (2007) Relationship of upstream migrating adult Atlantic salmon (Salmo salar) and stream discharge within Catamaran Brook, New Brunswick. Can J Fish Aquat Sci 64:563–573

    Google Scholar 

  • Moran P, Perez J, Garcia-Vazquez E (2005) Genetic variation at enzyme loci in the southernmost European populations of Atlantic salmon. J Fish Biol 67:207–213

    Google Scholar 

  • Morita K, Fukuwaka M (2006) Does size matter most? The effect of growth history on probabilistic reaction norm for salmon maturation. Evolution 60:1516–1521

    PubMed  Google Scholar 

  • Morita K, Fukuwaka M, Tanimata N et al (2010) Size-dependent thermal preferences in a pelagic fish. Oikos 119:1265–1272

    Google Scholar 

  • Mueter FJ, Pyper BJ, Peterman RM (2005) Relationships between coastal ocean conditions and survival rates of Northeast Pacific salmon at multiple lags. Trans Am Fish Soc 134:105–119

    Google Scholar 

  • Mustafa A, MacKinnon BM (1999) Genetic variation in susceptibility of Atlantic salmon to the sea louse Caligus elangatus Normann, 1832. Can J Zool 77:1332–1335

    Google Scholar 

  • Narayanan S, Carscadden J, Dempson JB et al (1995) Marine climate off Newfoundland and its influence on salmon (Salmo salar) and capelin (Mallotus villosus). Can Spec Publ Fish Aquat Sci 121:461–474

    Google Scholar 

  • Nicieza AG, Braña F (1993) Relationships among smolt size, marine growth, and sea age at maturity of Atlantic salmon (Salmo salar) in northern Spain. Can J Fish Aquat Sci 50:1632–1640

    Google Scholar 

  • Noakes DJ, Beamish RJ (2009) Synchrony of marine fish catches and climate and ocean regime shifts in the North Pacific Ocean. Mar Coast Fish Dynam Manage Ecosyst Sci 1:155–168

    Google Scholar 

  • Nordeng H (1983) Solution to the ‘charr problem’ based on Arctic charr (Salvelinus alpinus) in Norway. Can J Fish Aquat Sci 40:1372–1387

    Google Scholar 

  • Nordmo R, Ramstad A (1999) Variables affecting the challenge pressure of Aeromonas salmonicidae and Vibrio salmonicida in Atlantic salmon (Salmo salar L.). Aquaculture 171:1–12

    Google Scholar 

  • Norris A, Foyle L, Ratcliff J (2008) Heritability of mortality in response to a natural pancreas disease (SPDV) challenge in Atlantic salmon, Salmo salar L., post-smolts on a West of Ireland sea site. J Fish Dis 31:913–920

    PubMed  CAS  Google Scholar 

  • Nussey DH, Postma E, Gienapp P et al (2005) Selection on heritable phenotypic plasticity in wild birds. Science 310:304–307

    PubMed  CAS  Google Scholar 

  • Ojanguren AF, Reyes-Gavilán FG, Muñoz RR (1999) Effects of temperature on growth and efficiency of yolk utilisation in eggs and pre-feeding larval stages of Atlantic salmon. Aquacult Int 7:81–87

    Google Scholar 

  • Økland F, Jonsson B, Jensen AJ et al (1993) Is there a threshold size regulating smolt size in brown trout and Atlantic salmon? J Fish Biol 42:541–550

    Google Scholar 

  • Ottersen G, Planque B, Belgrano A et al (2001) Ecological effects of the North Atlantic oscillation. Oecologia 128:1–14

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Google Scholar 

  • Parrish DL, Behnke RJ, Gephard SR et al (1998) Why aren’t there more Atlantic salmon (Salmo salar)? Can J Fish Aquat Sci 55(Supp 1):281–287

    Google Scholar 

  • Pauly D (1980) On the relationships between natural mortality, growth parameters and mean environmental temperature in 175 fish stocks. J Conceil Perm Int l’Explor Mer 39:175–192

    Google Scholar 

  • Perry AL, Low PJ, Ellis JR et al (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–1915

    PubMed  CAS  Google Scholar 

  • Peyronnet A, Friedland KD, Ó’Maoileidigh N et al (2007) Links between marine growth and survival of Atlantic salmon (Salmo salar L.). J Fish Biol 71:684–700

    Google Scholar 

  • Peyronnet A, Friedland KD, Ó’Maoiléidigh N (2008) Different ocean and climate factors control the marine survival of wild hatchery Atlantic salmon Salmo salar in the north-east Atlantic Ocean. J Fish Biol 73:945–962

    Google Scholar 

  • Pörtner HO, Farrell AP (2008) Ecology, physiology and climate change. Science 322:690–692

    PubMed  Google Scholar 

  • Pörtner HO, Peck MA (2010) Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. J Fish Biol 77:1745–1779

    PubMed  Google Scholar 

  • Power G (1969) The salmon of Ungava Bay. Arctic Institute of North America, Montreal

    Google Scholar 

  • Power G (1981) Stock characteristics and catches of Atlantic salmon (Salmo salar) in Quebec, and Newfoundland and Labrador in relation to environmental variables. Can J Fish Aquat Sci 38:1601–1611

    Google Scholar 

  • Power M, Power G (1994) Modelling the dynamics of smolt production in Atlantic salmon. Trans Am Fish Soc 123:535–548

    Google Scholar 

  • Pulido F, Berthold P (2010) Current selection for lower migratory activity will drive the evolution of residency in a migratory bird population. Proc Natl Acad Sci, online early (Pulido8 2010/Pulido8 2010 Supp) doi: 10.1073/pnas.0910361107

    Google Scholar 

  • Pulido F, Berthold P, van Noordwijk AJ (1996) Frequency of migrants and migratory activity are genetically correlated in a bird population: evolutionary implications. Proc Natl Acad Sci USA 93:14642–14647

    PubMed  CAS  Google Scholar 

  • Quinn TP, Adams DJ (1996) Environmental changes affecting the migratory timing of American shad and sockeye salmon. Ecology 77:1151–1162

    Google Scholar 

  • Quinn TP, Vøllestad LA (2003) Influences of freshwater and marine growth on the egg size – egg number trade-off in coho and chinook salmon. Trans Am Fish Soc 133:55–65

    Google Scholar 

  • Quinn TP, McGinnity P, Cross TF (2006) Long-term declines in body size and shifts in run timing of Atlantic salmon in Ireland. J Fish Biol 68:1713–1730

    Google Scholar 

  • Rahel FJ, Nibbelink NP (1999) Spatial patterns in relations among brown trout (Salmo trutta) distribution, summer air temperature, and stream size in Rocky Mountain streams. Can J Fish Aquat Sci 56:43–51

    Google Scholar 

  • Refstie T, Steine TA (1978) Selection experiments with salmon: III. Genetic and environmental sources of variation in length and weight of Atlantic salmon in the freshwater phase. Aquaculture 14:221–234

    Google Scholar 

  • Refstie T, Steine TA, Gjedrem T (1977) Selection experiments with salmon II. Proportion of Atlantic salmon smoltifying at 1 year of age. Aquaculture 10:231–242

    Google Scholar 

  • Reist JD, Wrona FJ, Prowse TD et al (2006) An overview of effects of climate change on selected Arctic freshwater and anadromous fishes. Ambio 35:381–387

    PubMed  Google Scholar 

  • Ricker WE (1938) ‘Residual’ and kokanee salmon in Cultus Lake. J Fish Res Board Can 4:192–218

    Google Scholar 

  • Rijnsdorp AD, Peck MA, Engelhard GH et al (2009) Resolving the effect of climate change on fish populations. ICES J Mar Sci 66:1570–1583

    Google Scholar 

  • Rikardsen AH, Hansen LP, Jensen AJ et al (2008) Do Norwegian Atlantic salmon feed in the northern Barents Sea? Tag recoveries from 70 to 78 degrees N. J Fish Biol 72:1792–1798

    Google Scholar 

  • Riley WD, Ibbotson AT, Lower N et al (2008) Physiological seawater adaptation in juvenile Atlantic salmon (Salmo salar) autumn migrants. Freshw Biol 53:745–755

    CAS  Google Scholar 

  • Robards MD, Quinn TP (2002) The migratory timing of adult summer-run steelhead in the Columbia River over six decades of environmental change. Trans Am Fish Soc 131:523–536

    Google Scholar 

  • Rosenberg R, Lindahl O, Blanck H (1988) Silent spring in the sea. Ambio 17:289–290

    Google Scholar 

  • Ryman N (1972) An analysis of growth capability in full sib families of salmon (Salmo salar L.). Hereditas 70:119–128

    PubMed  CAS  Google Scholar 

  • Salminen M, Kuikka S, Erkamo E (1995) Annual variability in survival of sea-ranched Baltic salmon, Salmo salar L.: significance of smolt size and marine conditions. Fish Manage Ecol 2:171–184

    Google Scholar 

  • Salte R, Berntsen HB, Moen T et al (2010) Prospects for a genetic management strategy to control Gyrodactylus salaris infection in wild Atlantic salmon (Salmo salar) stocks. Can J Fish Aquat Sci 67:121–129

    Google Scholar 

  • Saunders RL (1981) Atlantic salmon (Salmo salar) stocks and management implications in the Canadian Atlantic Provinces and New England, USA. Can J Fish Aquat Sci 38:1612–1625

    Google Scholar 

  • Saunders RL, Henderson EB, Glebe BD et al (1983) Evidence of a major environmental component in determination of the grilse: larger salmon ratio in Atlantic salmon (Salmo salar). Aquaculture 33:107–118

    Google Scholar 

  • Scarnecchia DL (1983) Age at sexual maturity in Icelandic stocks of Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 40:1456–1468

    Google Scholar 

  • Scarnecchia DL, Isaksson A, White S (1991) Effects of the Faroese long-line fishery, other oceanic fisheries and oceanic variations on age at maturity of Icelandic north-coast stocks of Atlantic salmon (Salmo salar). Fish Res 190:207–228

    Google Scholar 

  • Schaffer WM, Elson PE (1975) The adaptive significance of variations in life history among local populations of Atlantic salmon in North America. Ecology 56:577–590

    Google Scholar 

  • Scheiner SM (1993) Genetics and evolution of phenotypic plasticity. Ann Rev Ecol Syst 24:35–68

    Google Scholar 

  • Scheurer K, Alewell C, Bänninger D et al (2009) Climate and land-use changes affecting river sediment and brown trout in alpine countries – a review. Environ Sci Pollut Res 16:232–242

    Google Scholar 

  • Scott D (2001) Chemical pollution as a factor affecting the sea survival of Atlantic salmon, Salmo salar L. Fish Manage Ecol 8:487–499

    Google Scholar 

  • Smith IP, Booker DJ, Wells NC (2009) Bioenergetic modelling of the marine phase of Atlantic salmon (Salmo salar L.). Mar Environ Res 67:246–258

    PubMed  CAS  Google Scholar 

  • Solomon DJ, Sambrook HT (2004) Effects of hot dry summers on the loss of Atlantic salmon, Salmo salar, from estuaries in South West England. Fish Manage Ecol 11:353–363

    Google Scholar 

  • Stefansson SO, McGinnity P, Björnsson BT et al (2003) The importance of smolt development to salmon conservation, culture and management: perspectives from the 6th international workshop on salmonid smoltification. Aquaculture 222:1–14

    Google Scholar 

  • Strothotte E, Chaput GJ, Rosenthal H (2005) Seasonal growth of wild Atlantic salmon juveniles and implications on age at smoltification. J Fish Biol 67:1585–1602

    Google Scholar 

  • Summers DW (1995) Long-term changes in the sea-age at maturity and seasonal time of return of salmon, Salmo salar L., to Scottish rivers. Fish Manage Ecol 2:147–156

    Google Scholar 

  • Svendsen CJ, Koed A, Aarestrup K (2004) Factors influencing the spawning migration of female anadromous brown trout. J Fish Biol 64:528–540

    Google Scholar 

  • Svenning MA, Gullestad N (2002) Adaptations to stochastic environmental variations: the effects of seasonal temperatures on the migratory window of Svalbard Arctic charr. Environ Biol Fish 64:165–174

    Google Scholar 

  • Swansburg E, Chaput G, Moore D et al (2002) Size variability of juvenile Atlantic salmon: links to environmental conditions. J Fish Biol 61:661–683

    Google Scholar 

  • Tamate T, Maekawa K (2000) Interpopulation variation in reproductive traits of female masu salmon, Oncorhynchus masou. Oikos 90:209–218

    Google Scholar 

  • Taylor RS, Wynne JW, Kube PD et al (2007) Genetic variation of resistance to amoebic gill disease in Atlantic salmon (Salmo salar) assessed in a challenge system. Aquaculture 272:94–99

    Google Scholar 

  • Tetzlaff D, Soulsby C, Youngson AF et al (2005) Variability in stream discharge and temperature: a preliminary assessment of the implications for juvenile and spawning Atlantic salmon. Hydrol Earth Syst Sci 9:193–208

    Google Scholar 

  • Thomas CD, Cameron A, Green RE (2004) Extinction risk from climate change. Nature 427:145–148

    PubMed  CAS  Google Scholar 

  • Thorpe JE (1986) Age at first maturity in Atlantic salmon, Salmo salar: freshwater period influences and conflicts with smolting. Can Spec Publ Fish Aquat Sci 89:7–14

    Google Scholar 

  • Todd CD (2007) The copepod parasite (Lepeophtheirus salmonis (Krøyer), Caligus elongates Nordmann) interactions between wild and farmed Atlantic salmon (Salmo salar L.) and wild sea trout (Salmo trutta L.): a mini review. J Plankt Res 29(Suppl 1):61–71

    Google Scholar 

  • Todd CD, Hughes SL, Marshall T et al (2008) Detrimental effects of recent ocean surface warming on growth condition of Atlantic salmon. Glob Change Biol 14:1–13

    Google Scholar 

  • Tops S, Lockwood W, Okamura B (2006) Temperature-driven proliferation of Tetracapsuloides bryossalmonae in bryozoan host portends salmonid decline. Dis Aquat Org 70:227–236

    PubMed  CAS  Google Scholar 

  • Tops S, Hartikainen HL, Okamura B (2009) The effects of infection by Tetracapsuloides bryosalmonae (Myxozoa) and temperature on Fredericella sultana (Bryozoa). Int J Parasitol 39:1003–1010

    PubMed  Google Scholar 

  • Trape S (2009) Impact of climate change on the relict tropical fish fauna of Central Sahara: threat for the survival of Adrar mountains fishes, Mauritania. PLoS One 4:e4400. doi:10.1371/journal pone.000400

    PubMed  Google Scholar 

  • Valiente AG, Beall E, Garcia-Vazquez E (2010) Population genetics of south European Atlantic salmon under global change. Glob Change Biol 16:36–47

    Google Scholar 

  • van Damme D, Bogutskaya N, Hoffmann RC et al (2007) The introduction of the European bitterling (Rhodeus amarus) to west and central Europe. Fish Fish 8:79–106

    Google Scholar 

  • Vandeputte M, Quillet E, Chevassus B (2004) Early development and survival in brown trout (Salmo trutta fario L.): indirect effects of selection for growth rate and estimation of genetic parameters. Aquaculture 204:435–445

    Google Scholar 

  • Wahli T, Bernet D, Segner H et al (2009) Role of altitude and water temperature as regulating factors for the geographical distribution of Tetracapsuloides bryosalmonae infected fishes in Switzerland. J Fish Biol 73:2184–2197

    Google Scholar 

  • Walther GR, Post E, Convey P et al (2002) Ecological responses to recent climate change. Nature 416:389–395

    PubMed  CAS  Google Scholar 

  • Webb JH, McLay HA (1996) Variation in the spawning of Atlantic salmon (Salmo salar) and its relationship to temperature in the Aberdeenshire Dee, Scotland. Can J Fish Aquat Sci 53:2739–2744

    Google Scholar 

  • Webb BW, Nobilis F (2007) Long-term changes in river temperature and the influence of climatic and hydrological factors. Hydrol Sci J Sci Hydrolog 52:74–85

    Google Scholar 

  • Wells A, Grierson CE, Marshall L et al (2007) Physiological consequences of “premature freshwater return” for wild sea-run brown trout (Salmo trutta) postsmolts infested with sea lice (Lepeophtheirus salmonis). Can J Fish Aquat Sci 64:1360–1369

    Google Scholar 

  • Whalen KG, Parrish DL, McCormick SD (1999) Migration timing of Atlantic salmon smolts relative to environmental and physiological factors. Trans Am Fish Soc 128:289–301

    Google Scholar 

  • Wild V, Simianer H, Gjøen HM et al (1994) Genetic-parameters and genotype  ×  environment interaction for early maturity in Atlantic salmon (Salmo salar). Aquaculture 128:51–65

    Google Scholar 

  • Windsor ML, Hutchinson P (1990) International management of Atlantic salmon: the role of NASCO. Fish Res 10:5–14

    Google Scholar 

  • Wysujack K, Greenberg LA, Bergman E et al (2009) The role of the environment in partial migration: food availability affects the adoption of a migratory tactic in brown trout Salmo trutta. Ecol Freshw Fish 18:52–59

    Google Scholar 

  • Youngson AF, Buck RJG, Simpson TH et al (1983) The autumn and spring emigrations of juvenile Atlantic salmon, Salmo salar L., from the Girnock Burn, Aberdeenshire, Scotland – environmental release of migration. J Fish Biol 23:625–639

    Google Scholar 

  • Zydlewski GB, Haro A, McCormick SD (2005) Evidence for cumulative temperature as an initiating and terminating factor in downstream migratory behavior of Atlantic salmon (Salmo salar) smolts. Can J Fish Aquat Sci 62:68–78

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bror Jonsson .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Jonsson, B., Jonsson, N. (2011). Climatic Effects on Atlantic Salmon and Brown Trout. In: Ecology of Atlantic Salmon and Brown Trout. Fish & Fisheries Series, vol 33. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1189-1_9

Download citation

Publish with us

Policies and ethics