Skip to main content

Parallels Between Plant and Animal Parasitic Nematodes

  • Chapter
  • First Online:
Genomics and Molecular Genetics of Plant-Nematode Interactions

Abstract

The simplicity of the nematode body plan, associated morphology and low cell number belies their molecular complexity which, in combination, have provided for unrivalled success amongst the metazoa, with nematodes dominating biomass statistics. Their structural simplicity means that most nematodes, free-living or parasitic, have much in common with parallels in almost every facet of their biology. One major difference between the parasitic nematodes and their free-living cousins is their propensity for host interaction, a fact that is believed to have driven more rapid molecular evolutionary change as they strive to compete with their host for resources and survival in the face of host defence strategies. The fact that both animal and plant parasitism by nematodes arose independently on multiple occasions points to a diversity of starting points for their parasitic way of life. Despite this, animal and plant parasitic nematodes show many of the same traits that are believed to contribute to their success, including: their ability to arrest development at key stages in their life cycle; their ability to locate and infect their host; their ability to manipulate their interface with the host so that they can survive for extended periods and derive appropriate nutrients. Commonalities in the adoption of these strategies in both animal and plant parasites mean that there are many parallels between them, not just in their basic biology which is common across nematode life strategies, but in their parasite-specific adaptations and behaviours that enable them to succeed as infectious organisms living within and upon host species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad P, Gouzy J, Aury JM, Castagnone-Sereno P, Danchi EGJ, Deleury E, Perfus-Barbeoch L, Anthouard V, Artiguenave F, Blok VC, Caillaud MC, Coutinho PM, Dasilva C, De Luca F, Deau F, Esquibet M, Flutre T, Goldstone JV, Hamamouch N, Hewezi T, Jaillon O, Jubin C, Leonetti P, Magliano M, Maier TR, Markov GV, McVeigh P, Pesole G, Poulain J, Robinson-Rechavi M, Sallet E, Segurens B, Steinbach D, Tytgat T, Ugarte E, van Ghelder C, Veronico P, Baum TJ, Blaxter M, Bleve-Zacheo T, Davis EL, Ewbank JJ, Favery B, Grenier E, Henrissat B, Jones JT, Laudet V, Maule AG, Quesneville H, Rosso MN, Schiex T, Smant G, Weissenbach J, Wincker P (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol 26:909–915

    Article  PubMed  CAS  Google Scholar 

  • Agrawal AA, Fishbein M (2006) Plant defence syndromes. Ecology 87:S132–S149

    Article  PubMed  Google Scholar 

  • Angstadt JD, Donmoyer JE, Stretton AO (1989) Retrovesicular ganglion of the nematode Ascaris. J Comp Neurol 284:374–388

    Article  PubMed  CAS  Google Scholar 

  • Ashton FT, Bhopale VM, Fine AE, Schad GA (1995) Sensory neuroanatomy of a skin-penetrating nematode parasite: Strongyloides stercoralis. I. Amphidial neurons. J Comp Neurol 357:281–295

    Article  PubMed  CAS  Google Scholar 

  • Ashton FT, Li J, Schad GA (1999) Chemo- and thermosensory neurons: structure and function in animal parasitic nematodes. Vet Parasitol 84:297–316

    Article  PubMed  CAS  Google Scholar 

  • Auriault C, Ouaissi MA, Torpier G, Eisen H, Capron A (1981) Proteolytic cleavage of IgG bound to the Fc receptor of Schistosoma mansoni schistosomula. Parasite Immunol 3:33–44

    Article  PubMed  CAS  Google Scholar 

  • Ausubel FM (2005) Are innate immune signalling pathways in plants and animals conserved? Nat Immunol 6:973–979

    Article  PubMed  CAS  Google Scholar 

  • Baldwin JG, Hirschmann H (1973) Fine structure of cephalic sense organs in Meloidogyne incognita males. J Nematol 5:285–296

    PubMed  CAS  Google Scholar 

  • Balic A, Harcus Y, Holland MJ, Maizels RM (2004) Selective maturation of dendritic cells by Nippostrongylus brasiliensis secreted-proteins drives Th2 immune responses. Eur J Immunol 34:3047–3059

    Article  PubMed  CAS  Google Scholar 

  • Bandi C, Sironi M, Nalepa CA, Corona S, Sacchi L (1997) Phylogenetically distant intracellular symbionts in termites. Parasitologia 39:71–75

    CAS  Google Scholar 

  • Bandi C, Trees S, Brattig N (2001) Wolbachia in filarial nematodes: Evolutionary aspects and implications for the pathogenesis and treatment of filarial disease. Vet Parasitol 98:215–238

    Article  PubMed  CAS  Google Scholar 

  • Bargmann CI, Mori I (1997) Chemotaxis and thermotaxis. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR (eds) C. elegans II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 717–737

    Google Scholar 

  • Bartholomay LC, Farid HA, Ramzy RM, Christensen BM (2003) Culex pipiens: characterisation of immune peptides and the influence of immune activation on development of Wucheria bancrofti. Mol Biochem Parasitol 130:43–50

    Article  PubMed  CAS  Google Scholar 

  • Bazzocchi C, Jamnongluk W, O’Neill S, Anderson TJC, Genchi C, Bandi C (2000) wsp Gene sequences from the Wolbachia of filarial nematodes. Curr Microbiol 41:96–100

    Article  PubMed  CAS  Google Scholar 

  • Bellafiore S, Shen Z, Rosso MN, Abad P, Shih P, Briggs SP (2008) Direct identification of Meloidogyne incognita secretome reveals proteins with host cell reprogramming potential. PLoS Pathog 4:e1000192

    Google Scholar 

  • Bevins CL (2006) Paneth cell defensins: key effector molecules of innate immunity. Biochem Soc Trans 34:263–266

    Article  PubMed  CAS  Google Scholar 

  • Bird AF, Bird J (1991) The structure of nematodes. Academic Press, San Diego

    Google Scholar 

  • Bird AF, Bonig I, Bacic A (1988) A role for the excretory-secretory in secernentean nematodes. J Nematol 20:493–496

    PubMed  CAS  Google Scholar 

  • Bird DM, Opperman CH, Williamson WM (2009) Plant infection by root-knot nematode. In: Berg RH, Taylor CG (eds) Cell biology of plant nematode parasitism. Springer, Berlin, pp 1–13

    Chapter  Google Scholar 

  • Blaxter ML (2003) Nematoda: Genes, genomes and the evolution of parasitism. Adv Parasitol 54:101–195

    Article  PubMed  Google Scholar 

  • Blaxter ML, Robertson WM (1998) The cuticle. In: Perry RN, Wright DJ (eds) The physiology and biochemistry of free-living and plant-parasitic nematodes. CABI Publishing, Wallingford, pp 25–48

    Google Scholar 

  • Blaxter ML, Page AP, Rudin W, Maizels RM (1992) Nematode surface coats: actively evading immunity. Parasitol Today 8:243–247

    Article  PubMed  CAS  Google Scholar 

  • Blaxter ML, De Ley P, Garey JR, Liu LX, Scheldeman P, Vierstraete A, Vanfleteren JR, Mackey LY, Dorris M, Frisse LM, Vida JT, Thomas WK (1998) A molecular evolutionary framework for the phylum Nematoda. Nature 392:71–75

    Article  PubMed  CAS  Google Scholar 

  • Brindley PJ, Gam AA, McKerrow JH, Neva FA (1995) Ss40: the zinc endopeptidase secreted by infective larvae of Strongyloides stercoralis. Exp Parasitol 80:1–7

    Article  PubMed  CAS  Google Scholar 

  • Brindley PJ, Mitreva M, Ghedin E, Lustigman S (2009) Helminth genomics: the implications for human health. PLoS Neglect Trop Dis 3:e538. doi:10.1371/journal.pntd0000538

    Google Scholar 

  • Brooker S (2010) Estimating the global distribution and disease burden of intestinal nematode infections: adding up the numbers—A review. Int J Parasitol 40:1145–1154

    Article  Google Scholar 

  • Brown A, Girod N, Billet EE, Pritchard DI (1999) Necator americanus (human hookworm) aspartyl proteinases and digestion of skin macromolecules during skin penetration. Am J Trop Med Hyg 60:840–847

    PubMed  CAS  Google Scholar 

  • Brownlie JC, O’Neill SL (2005) Wolbachia genomes: insights into an intracellular lifestyle. Curr Biol 15:R507–R509

    Article  PubMed  CAS  Google Scholar 

  • Casiraghi M, Anderson TJC, Bandi C, Bazzocchi C, Genchi C (2001a) A phylogenetic analysis of filarial nematodes: comparison with the phylogeny of Wolbachia endosymbionts. Parasitology 122:93–103

    Article  PubMed  CAS  Google Scholar 

  • Casiraghi M, Favia G, Cancrini G, Bartoloni A, Bandi C (2001b) Molecular identification of Wolbachia from the filarial nematode Mansonella ozzardi. Parasitol Res 87:417–420

    Article  PubMed  CAS  Google Scholar 

  • Casiraghi M, Bain O, Guerrero R, Martin C, Pocacqua V, Gardner SL, Franceschi A, Bandi C (2004) Mapping the presence of Wolbachia pipientis on the phylogeny of filarial nematodes: evidence for symbiont loss during evolution. Int J Parasitol 34:191–203

    Article  PubMed  Google Scholar 

  • Chan MS, Medley GF, Jamison D, Bundy DAP (1994) The evaluation of potential global morbidity attributable to intestinal nematode infection. Parasitology 109:373–387

    Article  PubMed  Google Scholar 

  • Chappell LH (ed) (1980) Physiology of Parasites. Blackie and Son Ltd. Bishopbriggs, Glasgow, pp 1–229

    Google Scholar 

  • Chitwood BG (1937) A revised classification of the Nematoda. In: Anon (ed) Papers of helminthology, 30 year jubileum KJ Skrjabin. All Union Lenin Academy of Agricultural Sciences, Moscow, pp 67–79

    Google Scholar 

  • Chitwood BG (1958) The designation of official names for higher taxa of invertebrates. Bull Zool Nomencl 15:860–895

    Google Scholar 

  • Chitwood DJ (2003) Research on plant-parasitic nematode biology conducted by the United States Department of Agriculture-Agricultural Research Service. Pest Manag Sci 59:748–753

    Article  PubMed  CAS  Google Scholar 

  • Chitwood BG, Chitwood MB (1933) The characters of a protonematode. J Parasitol 20:130

    Google Scholar 

  • Cho Y, Jones BF, Vermeire JJ, Leng L, DiFedele L, Harrison LM, Xiong H, Kwong YK, Chen Y, Bucala R, Lolis E, Cappello M (2007) Structural and functional characterisation of a secreted hookworm macrophage migration inhibitory factor (MIF) that interacts with the human MIF factor CD74. J Biol Chem 282:23447–23456

    Article  PubMed  CAS  Google Scholar 

  • Cohen YR (2002) Aminobutyric acid induces resistance against plant pathogens. Plant Dis 86:448–457

    Article  CAS  Google Scholar 

  • Colditz IG (2008) Six costs of immunity to gastrointestinal nematode infections. Parasite Immunol 30(2):63–70

    PubMed  CAS  Google Scholar 

  • Coombs I, Crompton DWT (1991) Guide to human helminths. Taylor and Francis, London

    Google Scholar 

  • Cooper WR, Jia L, Goggin L (2005) Effects of jasmonate induced defences on root-knot nematode infection of resistant and susceptible tomato cultivars. J Chem Ecol 31:1953–1967

    Article  PubMed  CAS  Google Scholar 

  • Crainey JL, Wilson MD, Post RJ (2010) Phylogenetically distinct Wolbachia gene and pseudogene sequences obtained from the African onchocerciasis vector Simulium squamosum. Int J Parasitol 40:569–578

    Article  PubMed  CAS  Google Scholar 

  • Curtis RHC (1996) Identification and in vitro and in vivo characterisation of secreted proteins produced by plant parasitic nematodes. Parasitology 113:589–597

    Article  PubMed  CAS  Google Scholar 

  • Curtis RHC, Robinson FA, Perry RN (2009) Hatch and host location. In: Perry RN, Moens M, Starr J (eds) Root-Knot Nematodes. CAB International, Wallingford, pp 139–162

    Chapter  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  PubMed  CAS  Google Scholar 

  • Davis EL, Hussey RS, Baum TJ (2000) Nematode parasitism genes. Ann Rev Phytopathol 38:365–396

    Article  CAS  Google Scholar 

  • Davis EL, Hussey RS, Baum TJ (2009) Parasitism genes: what they reveal about parasitism. In: Berg RH, Taylor CG (eds) Cell biology of plant nematode parasitism. Springer, Berlin, pp 15–44

    Chapter  Google Scholar 

  • Despommier DD (1975) Adaptive changes in muscle fibres infected with Trichinella spiralis. Am J Pathol 78:477–496

    PubMed  CAS  Google Scholar 

  • Despommier DD, Aron L, Turgeon L (1975) Trichinella spiralis: growth of the intracellular (muscle) larva. Expl Parasitol 37:108–116

    Article  CAS  Google Scholar 

  • Despommier DD, Gold AM, Buck SW, Capo V, Silberstein D (1990) Trichinella spiralis: secreted antigen of the infective L1 larva localises to the cytoplasm and nucleoplasm of infected host cells. Exp Parasitol 71:27–38

    Article  PubMed  CAS  Google Scholar 

  • De Vos M, Van Zaanen W, Koorneef A, Korzelius JP, Dicke M, Van Loon LC, Pieterse CMJ (2006) Herbivore-induced resistance against microbial pathogens in Arabidopsis. Plant Physiol 142:352–363

    Article  PubMed  CAS  Google Scholar 

  • De Veer MJ, Kemp JM, Meeusen ENT (2007) The innate host defence against nematode parasites. Parasite Immunol 29:1–9

    Article  PubMed  CAS  Google Scholar 

  • Devoto A, Turner JG (2003) Regulation of jasmonate-mediated plant responses in Arabidopsis. Ann Bot 92:329–337

    Article  PubMed  CAS  Google Scholar 

  • Dieterich C, Sommer RJ (2009) How to become a parasite—a lesson from the genomes of nematodes. Trends Genet 25:203–209

    Article  PubMed  CAS  Google Scholar 

  • Dieterich C, Clifton SW, Schuster LN, Chinwalla A, Delehaunty K, Dinkelacker I, Fulton L, Fulton R, Godfrey J, Minx P, Mitreva M, Roeseler W, Tian H, Witte H, Yang SP, Wilson RK, Sommer RJ (2008) The Pristionchus pacificus genome provides a unique perspective on nematode lifecycle and parasitism. Nat Genet 40:1193–1198

    Article  PubMed  CAS  Google Scholar 

  • Dorris M, De Ley P, Blaxter ML (1999) Molecular analysis of nematode diversity and the evolution of parasitism. Parasitol Today 15:188–193

    Article  PubMed  CAS  Google Scholar 

  • Driscoll M, Kaplan J (1997) Mechanotransduction. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR (eds) C. elegans II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 645–677

    Google Scholar 

  • Dubreuil D, Magliano M, Deleury E, Abad P, Rosso, MN (2007) Transcriptome analysis of root-knot nematode functions induced in the early stages of parasitism. New Phytol 176:426–436

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich P, Raven PH (1964) Butterflies and plants. A study in coevolution. Evolution 18:586–608

    Article  Google Scholar 

  • Endo BY (1978) Feeding plug formation in soybean roots infected with the soybean cyst nematode. Phytopathology 68:1022–1031

    Article  Google Scholar 

  • Endo BY (1980) Ultrastructure of the anterior neurosensory organs of the larvae of the soybean cyst nematode Heterodera glycines. J Ultrastruct Res 72:349–366

    Article  PubMed  CAS  Google Scholar 

  • Fioretti L, Porter A, Haydock PJ, Curtis R (2002) Monoclonal antibodies reactive with secreted-excreted products from the amphids and the cuticle surface of Globodera pallida affect nematode movement and delay invasion of potato roots. Int J Parasitol 32:1709–1718

    Google Scholar 

  • Foster J, Ganatra M, Kamal I, Ware J, Makarova K, Ivanova N, Bhattacharyya A, Kapatral V, Kumar S, Posfai J, Vincze J, Ingram J, Moran L, Lapidus A, Omelchenko M, Kyrpides N, Ghedin E,, Wang S, Goltsman E, Joukov V, Ostrovskaya O, Tsukerman K, Mazur M, Comb D, Koonin E, Slatko B (2005) The Wolbachia genome of Brugia malayi: Endosymbiont evolution within a human pathogenic nematode. PLoS Biol 3(4):e121

    Article  CAS  Google Scholar 

  • Gao BL, Allen R, Maier T, Davis EL, Baum TJ, Hussey RS (2002) Identification of a new beta-1,4-endoglucanase gene expressed in the oesophageal subventral gland cells of Heterodera glycines. J Nematol 34:12–15

    PubMed  CAS  Google Scholar 

  • Gao BL, Allen R, Maier T, Davis EL, Baum TJ, Hussey RS (2003) The parasitome of the phytonematode Heterodera glycines. Mol Plant Microbe Interact 16:720–726

    Article  PubMed  CAS  Google Scholar 

  • Gems D, Maizels RM (1996) An abundantly expressed mucin-like protein from Toxocara canis infective larvae: The precursor of the larval surface coat glycoproteins. Proc Natl Acad Sci U S A 93:1665–1670

    Article  PubMed  CAS  Google Scholar 

  • Ghedin E, Wang S, Spiro D, Caler E, Zhao Q, Crabtree J, Allen JE, Delcher AL, Guiliano DB, Miranda-Saavedra D, Angiuoli SV, Creasy T, Amedeo P, Haas B, El-Sayed NM, Wortman JR, Feldblyum T, Tallon L, Schatz M, Shumway M, Koo H, Salzberg SL, Schobel S, Pertea M, Pop M, White O, Barton GJ, Carlow CK, Crawford MJ, Daub J, Dimmic MW, Estes CF, Foster JM, Ganatra M, Gregory WF, Johnson NM, Jin J, Komuniecki R, Korf I, Kumar S, Laney S, Li BW, Li W, Lindblom TH, Lustigman S, Ma D, Maina CV, Martin DM, McCarter JP, McReynolds L, Mitreva M, Nutman TB, Parkinson J, Peregrín-Alvarez JM, Poole C, Ren Q, Saunders L, Sluder AE, Smith K, Stanke M, Unnasch TR, Ware J, Wei AD, Weil G, Williams DJ, Zhang Y, Williams SA, Fraser-Liggett C, Slatko B, Blaxter ML, Scott AL (2007) Draft genome of the filarial nematode parasite Brugia malayi. Science 317:1756–1760

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J (2001) Genes controlling expression of defence responses in Arabidopsis. Curr Opin Plant Biol 4:301–308

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J, Chen W, Estes B, Chang HS, Nawrath C, Metraux JP, Zhu T, Katagiri F (2003) Topology of network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J 34:217–228

    Article  PubMed  CAS  Google Scholar 

  • Goldschmidt R (1908) Das Nervensystem von Ascaris lumbricoides und megalocephala. Ein Versuch, in den Aufbau eines einfachen Nervensystems einzudringen, Erster Teil. Z wiss Zool 90:73–136

    Google Scholar 

  • Goldschmidt R (1909) Das Nervensystem von Ascaris lumbricoides und megalocephala. Ein Versuch, in den Aufbau eines einfachen Nervensystems einzudringen, Zweiter Teil. Z wiss Zool 92:306–357

    Google Scholar 

  • Gomez-Escobar N, Lewis N, Maizels RM (1998) A novel member of the transforming growth factor-beta (TGF-beta) superfamily from the filarial nematode Brugia malayi and B. pahangi. Exp Parasitol 88:200–209

    Article  PubMed  CAS  Google Scholar 

  • Haegeman A, Vanholme B, Jacob J, Vandekerckhove TT, Claeys M, Borgonie G, Gheysen G (2009) An endosymbiotic bacterium in a plant-parasitic nematode: Member of a new Wolbachia supergroup. Int J Parasitol 39:1045–1054

    Article  PubMed  Google Scholar 

  • Harnett W, McInnes IB, Harnet MM (2004) ES-62, a filarial nematode derived immunomodulator with anti-inflammatory potential. Immunol Lett 94:27–33

    Article  PubMed  CAS  Google Scholar 

  • Harris TW, Chen N, Cunningham F, Tello-Ruiz M, Antoshechkin I, Bastiani C, Bieri T, Blasiar D, Bradnam K, Chan J, Chen CK, Chen WJ, Davis P, Kenny E, Kishore R, Lawson D, Lee R, Muller HM, Nakamura C, Ozersky P, Petcherski A, Rogers A, Sabo A, Schwarz EM, Van Auken K, Wang Q, Durbin R, Spieth J, Sternberg PW, Stein LD (2004) WormBase: a multi-species resource for nematode biology and genomics. Nucleic Acids Res 1(32):D411–D417

    Article  CAS  Google Scholar 

  • Hartman S, Kyewski B, Sonnenburg B, Lucius R (1997) A filarial cysteine proteinase inhibitor down-regulates T-cell proliferation and enhances interleukin 10 production. Eur J Immunol 27:2253–2260

    Article  Google Scholar 

  • Haski-Gunther K, Hoffmann-Hergarten S, Sikora RA (1998) Resistance against the potato cyst nematode Globodera pallida systemically induced by rhizobacteria Agrobacterium radiobacter (G12) and Bacillus shaericus (B43). Fundam App Nematol 21:511–517

    Google Scholar 

  • Hawdon JM, Jones BF, Hoffmann DR, Hotez PJ (1996) Cloning and characterisation of Ancylostoma-secreted protein. J Biol Chem 271:6672–6678

    Article  PubMed  CAS  Google Scholar 

  • Heath MC (2000) Nonhost resistance and nonspecific plant defences. Curr Opin Plant Biol 3:315–319

    Article  PubMed  CAS  Google Scholar 

  • Hewitson JP, Grainger JR, Maizels RM (2009) Helminth immunoregulation: The role of parasite secreted proteins in modulating host immunity. Mol Biochem Parasitol 167:1–11

    Article  PubMed  CAS  Google Scholar 

  • Hogenhout SA, Van der Hoorn RAL, Terauchi R, Kamoun S (2009) Emerging concepts in effector biology of plant associated organisms. Mol Plant Microbe Interact 22:115–122

    Article  PubMed  CAS  Google Scholar 

  • Holterman M, van der Wurff A, van den Elsen S, van Megen H, Bongers T, Holovachov O, Bakker J, Helder J (2006) Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution towards crown clades. Mol Biol Evol 23:1792–1800

    Article  PubMed  CAS  Google Scholar 

  • Horvitz HR, Chalfie M, Trent C, Sulston JE, Evans PD (1982) Serotonin and octopamine in the nematode Caenorhabditis elegans. Science 216:1012–1014

    Article  PubMed  CAS  Google Scholar 

  • Hotez PJ (2008) Hookworm and poverty. Ann New York Acad Sci 1136:38–44

    Article  Google Scholar 

  • Hotez P, Haggerty J, Hawdon J, Milstone L, Gamble HR, Schad G, Richards F (1990) Metalloproteases of infective Ancylostoma hook-worms larvae and their possible functions in tissue invasion and ecdysis. Inf Immun 58:3883–3892

    CAS  Google Scholar 

  • Huang G, Dong R, Allen R, Maier T, Davis EL, Baum TJ, Hussey RS (2006) A root-knot nematode secretory peptide functions as a ligand for a plant transcription factor. Mol Plant Microbe Interact 19:463–470

    Article  PubMed  CAS  Google Scholar 

  • Hussey RS (1989) Disease-inducing secretions of plant-parasitic nematodes. Ann Rev Phytopathol 27:123–141

    Article  Google Scholar 

  • Jakab G, Cottier V, Toquin V, Rigoli G, Zimmerli L, Metraux JP, Mauch-Mani B (2001) Aminobutyric acid-induced resistance in plants. Eur J Plant Pathol 107:29–37

    Article  CAS  Google Scholar 

  • Jasmer DP (1990) Trichinella spiralis: altered expression of muscle proteins in trichinosis. Exp Parasitol 70:452–465

    Article  PubMed  CAS  Google Scholar 

  • Jasmer DP (2001) Genetic reprogramming of mammalian skeletal muscle cells by Trichinella spiralis. In: Kennedy MW (ed) Parasitic nematodes. Molecular Biology, biochemistry and immunology. CAB International, Wallingford, pp 121–137

    Chapter  Google Scholar 

  • Jasmer DP, Goverse A, Smant G (2003) Parasitic nematodes interactions with mammals and plants. Ann Rev Phytopathol 41:245–270

    Article  CAS  Google Scholar 

  • Johnstone IL (1994) The cuticle of the nematode Caenorhabditis elegans, a complex collagen structure. Bioessays 16:171–178

    Article  PubMed  CAS  Google Scholar 

  • Johnston KL, Taylor MJ (2007) Wolbachia in filarial parasites: targets for filarial infection and disease control. Curr Inf Dis Rep 9:55–59

    Article  Google Scholar 

  • Jones J (2002) Nematode sense organs. In: Lee DL (ed) The biology of nematodes. Taylor & Francis, London, pp 353–368

    Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  PubMed  CAS  Google Scholar 

  • Jones JT, Furlanetto C, Bakker E, Banks B, Blok V, Chen Q, Phillips M, Prior A (2003) Characterisation of a chorismate mutase from the potato cyst nematode Globodera pallida. Mol Plant Pathol 4:43–50

    Article  PubMed  CAS  Google Scholar 

  • Jones JT, Perry RN, Johnston MRL (1994) Changes in the ultrastructure of the amphids of the potato-cyst nematode, Globodera rostochiensis, during development and infection. Fundam App Nematol 17:369–382

    Google Scholar 

  • Jones JT, Reavy B, Smant G, Prior AE (2004) Glutathione peroxidases of the potato cyst nematode Globodera rostochiensis. Gene 324:47–54

    Article  PubMed  CAS  Google Scholar 

  • Kaya HK (1993) Entomogenous and entomopathogenic nematodes in biological control. In: Evans K, Trudgill DL, Webster JM (eds) Plant parasitic nematodes in temperate agriculture. CAB International, Wallingford, pp 565–591

    Google Scholar 

  • Kempster VN, Davies KA, Scott ES (2001) Chemical induction of resistance to the clover cyst nematode (Heterodera trifolii) in white clover (Trifolium repens). Nematology 3:35–43

    Article  Google Scholar 

  • Kim MG, da Cunha L, McFall A, Belkhadir Y, DebRoy S, Dangl J, Mackeyet D (2005) Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defence in Arabidopsis. Cell 121:749–759

    Article  PubMed  CAS  Google Scholar 

  • Kimber MJ, McKinney S, McMaster SM, Day TA, Fleming CC, Maule AG (2007) flp Gene disruption in a parasitic nematode reveals motor dysfunction and neuronal sensitivity to RNA interference. FASEB J 21:1233–1243

    Article  PubMed  CAS  Google Scholar 

  • Komuniecki RW, Hobson RJ, Rex EB, Hapiak VM, Komuniecki PR (2004) Biogenic amine receptors in parasitic nematodes: what can be learned from Caenorhabditis elegans? Mol Biochem Parasitol 137:1–11

    Article  PubMed  CAS  Google Scholar 

  • Kramer JM, Cox GN, Hirsh D (1982) Comparisons of the complete sequences of 2 collagen genes from Caenorhabditis elegans. Cell 30:599–606

    Article  PubMed  CAS  Google Scholar 

  • Kusel JR, Gordon JF (1989) Biophysical studies of the Schistosome surface and their relevance to its properties under immune and drug attack. Parasite Immunol 11:431–451

    Article  PubMed  CAS  Google Scholar 

  • Lambert KN, Bekal S, Domier LL, Niblack TL, Noel GR, Smith CA (2005) Selection of Heterodera glycines chorismate mutase-1 alleles on nematode-resistant soybean. Mol Plant Microbe Interact 18:593–601

    Article  PubMed  CAS  Google Scholar 

  • Lathrop B, Thomas K, Glaser L (1985) Control of myogenic differentiation by fibroblast growth factor is mediated by position in the G1 phase of the cell-cycle. J Cell Biol 101:2194–2198

    Article  PubMed  CAS  Google Scholar 

  • Lee DL (1969) Changes in adult Nippostrongylus brasiliensis during the development of immunity to this nematode in rats. 1. Changes in ultrastructure. Parasitology 59(1):29–39

    Article  PubMed  CAS  Google Scholar 

  • Lee DL (1970) The fine structure of the excretory system in adult Nippostrongylus brasiliensis (Nematoda) and a suggested function for the ‘excretory glands’. Tissue Cell 2(2):225–231

    Article  PubMed  CAS  Google Scholar 

  • Lee DL (1996) Why do some nematode parasites of the alimentary tract secrete acetylcholinesterase? Int J Parasitol 26:499–508

    Article  PubMed  CAS  Google Scholar 

  • Lee DL (2002) Cuticle, moulting and exsheathment. In: Lee DL (ed) The biology of nematodes. Taylor & Francis, London, pp 171–209

    Chapter  Google Scholar 

  • Li C, Nelson LS, Kim K, Nathoo A, Hart AC (1999) Neuropeptide gene families in the nematode Caenorhabditis elegans. Ann New York Acad Sci 897:239–252

    Article  CAS  Google Scholar 

  • Li HY, Yang GD, Shu HR, Yang YT, Ye BX, Nishida I, Zheng CC (2006) Colonisation by the arbuscular mycorrhyzal fungus Glomus versiforme induces a defence response against the root-knot nematode Meloidogyne incognita in the grapevine (Vitis amurensis), which includes transcriptional activation of class III chitinase gene VCH3. Plant Cell Physiol 47:154–163

    Article  PubMed  CAS  Google Scholar 

  • Lo N, Casiraghi M, Salati E, Bazzocchi C, Bandi C (2002) How many Wolbachia supergroups exist? Mol Biol Evol 3:341–346

    Article  Google Scholar 

  • Lopez M, Curtis RHC, Gowen S (1999) Identification and characterisation of excreted-secreted products and surface coat antigens of animal and plant-parasitic nematodes. Parasitology 118:397–405

    Article  Google Scholar 

  • Lopez-Arellano ME, Curtis RHC (2002) Immunolocalization of Trichinella spiralis L1 surface and excreted/secreted antigens in situ. Int J Nematol 12:55–58

    Google Scholar 

  • Loukas A, Maizels RM (2000) Helminth C-type lectins and host-parasite interactions. Parasitol Today 16:333–339

    Article  PubMed  CAS  Google Scholar 

  • Loukas A, Doedens A, Hints M, Maizels RM (2000) Identification of a new C-type lectin, TES-70, secreted by infective larvae of Toxocara canis, which binds to host ligands. Parasitology 121:545–554

    Article  PubMed  CAS  Google Scholar 

  • Maizels RM, Loukas A (2001) The surface and secreted antigens of Toxocara canis: genes, protein structure and function. In: Kennedy MW, Harnett W (eds) Parasitic nematodes—molecular biology, biochemistry and immunology. CABI Publishing, Wallingford, pp 227–246

    Google Scholar 

  • Maizels RM, Gomez-Escobar N, Gregory WF, Murray J, Zang XX (2001) Immune evasion genes from filarial nematodes. Int J Parasitol 31:889–898

    Article  PubMed  CAS  Google Scholar 

  • Marks NJ, Sangster NC, Maule AG, Halton DW, Thompson DP, Geary TG, Shaw C (1999) Structural characterisation and pharmacology of KHEYLRFamide (AF2) and KSAYMRFamide (PF3/AF8) from Haemonchus contortus. Mol Biochem Parasitol 100:185–194

    Article  PubMed  CAS  Google Scholar 

  • McDowell JM, Woffenden BJ (2003) Plant disease resistance genes: Recent insights and potential applications. Trends Biotechnol 21:178–183

    Article  PubMed  CAS  Google Scholar 

  • McLaren DJ (1976) Nematode sense organs. In: Dawes B (ed) Advances in parasitology. Academic Press, London, pp 195–265

    Google Scholar 

  • McLaren DJ, Burt JS, Ogilvie BM (1974) The anterior glands of adult Necator americanus (Nematoda: Strongyloidea). II. Cytochemical and functional studies. Int J Parasitol 4:39–46

    Article  PubMed  CAS  Google Scholar 

  • McNulty SN, Foster JM, Mitreva M, Dunning Hotopp JC, Martin J, Fischer K, Wu B, Davis PJ, Kumar S, Brattig NW, Slatko BE, Weil GJ, Fischer PU (2010) Endosymbiont DNA in endobacteria-free filarial nematodes indicates ancient horizontal genetic transfer. PLoS One 5(6):e11029

    Article  CAS  Google Scholar 

  • McVeigh P, Leech S, Mair GR, Marks NJ, Geary TG, Maule AG (2005) Analysis of FMRFamide-like peptide (FLP) diversity in phylum Nematoda. Int J Parasitol 35:1043–1060

    Article  PubMed  CAS  Google Scholar 

  • McVeigh P, Geary TG, Marks NJ, Maule AG (2006) The FLP-side of nematodes. Trends Parasitol 22:385–396

    Article  PubMed  CAS  Google Scholar 

  • McVeigh P, Alexander-Bowman S, Kidd E, Mousley A, Marks NJ, Maule AG (2008) Neuropeptide-like protein diversity in phylum Nematoda. Int J Parasitol 38:1493–1503

    Article  PubMed  CAS  Google Scholar 

  • Mitreva M, Blaxter ML, Bird DM, McCarter JP (2005) Comparative genomics of nematodes. Trends Genet 21:573–581

    Article  PubMed  CAS  Google Scholar 

  • Mitreva M, Smant G, Helder J (2009) Role of horizontal transfer. Method Mol Biol 532:517–535

    Article  CAS  Google Scholar 

  • Moran NA, Baumann P (2000) Bacterial endosymbionts in animals. Curr Opin Microbiol 3:270–275

    Article  PubMed  CAS  Google Scholar 

  • Nathoo AN, Moeller RA, Westlund BA, Hart AC (2001) Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species. Proc Natl Acad Sci U S A 98:14000–14005

    Article  PubMed  CAS  Google Scholar 

  • Noel GR, Atibalentja N (2006) ‘Candidatus Paenicardinium endonii’, an endosymbiont of the plant-parasitic nematode Heterodera glycines (Nemata: Tylenchida), affiliated to the phylum Bacteroidetes. Int J Syst Evol Microbiol 56:1697–1702

    Article  PubMed  CAS  Google Scholar 

  • Nurenberger T, Brunner F, Kemmerling B, Piater L (2004) Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198:249–266

    Article  Google Scholar 

  • O’Connor RA, Jenson JS, Osborne J, Devaney E (2003) An enduring association? Microfilariae and immunosupression. Trends Parasitol 19:565–570

    Article  PubMed  Google Scholar 

  • Ogawa A, Streit A, Antebi A, Sommer RJ (2009) A conserved endocrine mechanism controls the formation of dauer and infective larvae in nematodes. Curr Biol 19:67–71

    Article  PubMed  CAS  Google Scholar 

  • Oka Y, Cohen Y (2001) Induced resistance to cyst and root-knot nematodes in cereals by DL-beta-aminobutyric acid. Eur J Plant Pathol 107:219–227

    Article  CAS  Google Scholar 

  • Oka Y, Cohen Y, Spiegel Y (1999) Local and systemic induced resistance to the root-knot nematodes in tomato by DL-aminobutyric acid. Phytopathology 89:1138–1143

    Article  PubMed  CAS  Google Scholar 

  • O’Neill SL, Giordano R, Colbert AM, Karr TL, Robertson HM (1992) 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci U S A 89:2699–2702

    Article  PubMed  Google Scholar 

  • Opperman CH, Bird DM, Williamson VM, Rokhsar DS, Burke M, Cohn J, Cromer J, Diener S, Gajan J, Graham S, Houfek TD, Liu Q, Mitros T, Schaff J, Schaffer R, Scholl E, Sosinski BR, Thomas VP, Windham E (2008) Sequence and genetic map of Meloidogyne hapla: A compact nematode genome for plant parasitism. Proc Natl Acad Sci U S A 105:14802–14807

    Article  PubMed  CAS  Google Scholar 

  • Page AP, Johnstone IL (2007) The cuticle. In: Wormbook. The C. elegans Research Community. http://www.wormbook.org

  • Parkinson J, Mitreva M, Whitton C, Thomson M, Daub J, Martin J, Schmid R, Hall N, Barrell B, Waterston RH, McCarter JP, Blaxter ML (2004a) A transcriptomic analysis of the phylum Nematoda. Nat Genet 36:1259–1267

    Article  Google Scholar 

  • Parkinson J, Whitton C, Schmid R, Thomson M, Blaxter M (2004b) NEMBASE: a resource for parasitic nematode ESTs. Nucleic Acids Res 32:D427–D430

    Article  CAS  Google Scholar 

  • Pastrana DV, Raghavan N, Fitzgerald P (1998) Filarial nematode parasites secrete a homologue of the human cytokine macrophage migration inhibitory factor. Infect Immun 66:5955–5963

    PubMed  CAS  Google Scholar 

  • Payne L, Fitchett JR (2010) Bringing neglected tropical diseases into the spotlight. Trends in Parasitology 26(9):421–423

    Article  PubMed  Google Scholar 

  • Pieterse CM, van Loon LC (2004) NPR1: the spider in the web of induced resistance signalling pathways. Curr Opin Plant Biol 7:456–464

    Article  PubMed  CAS  Google Scholar 

  • Preston-Meeke CM, Pritchard DI (1991) Synthesis and replacement of nematode cuticle components. In: Kennedy MW (ed) Parasite nematodes: antigens, membranes and genes. Taylor and Francis, London, pp 84–94

    Google Scholar 

  • Ragsdale EJ, Ngo PT, Crum J, Ellisman MH, Baldwin JG (2009) Comparative, three-dimensional anterior sensory reconstruction of Aphelenchus avenae (nematoda: Tylenchomorpha). J Comp Neurol 517:616–632

    Article  PubMed  Google Scholar 

  • Raleigh JM, Brandon MR, Meeusen E (1996) Stage-specific expression of surface molecules by the larval stages of Haemonchus contortus. Parasite Immunol 18:125–132

    Article  PubMed  CAS  Google Scholar 

  • Reitz M, Oger P, Meyer A, Niehaus K, Farrand SK, Halman J, Sikora SA (2002) Importance of the O-antigen, core region and lipid A rhizobial lipopolysaccharides for induction of systemic resistance in potato to Globodera pallida. Nematology 4:73–79

    Article  CAS  Google Scholar 

  • Robertson WM, Forrest JMS (1989) Factors involved in host recognition by plant-parasitic nematodes. Asp App Biol 22:129–133

    Google Scholar 

  • Robertson L, Robertson WM, Sobczak M, Helder J, Tetaud E, Ariyanayagam MR, Ferguson MAJ, Fairlamb A, Jones JT (2000) Cloning, expression and functional characterisation of a peroxiredoxin from the potato cyst nematode Globodera rostochiensis. Mol Biochem Parasitol 111:41–49

    Article  PubMed  CAS  Google Scholar 

  • Rosso, MN, Jones, JT, Abad P (2009) RNAi and functional genomics in plant parasitic nematodes. Ann Rev Phytopathol 47:207–232

    Article  CAS  Google Scholar 

  • Sahoo MK, Sisodia BS, Dixit S, Joseph SK, Gaur RL, Verma SK, Verma AK, Shasany AK, Dowle AA, Murthy PK (2009) Immunisation with inflammatory proteome of Brugia malayi adult worms induces a TH1/Th2-immune response and confers protection against filarial infection. Vaccine 27:4263–4271

    Article  PubMed  CAS  Google Scholar 

  • Saint André A, Blackwell NM, Hall LR, Hoerauf A, Brattig NW, Volkmann L, Taylor MJ, Ford L, Hise AG, Lass JH, Diaconu E, Pearlman E (2002) The role of endosymbiotic Wolbachia bacteria in the pathogenesis of river blindness. Science 295:1892–1895

    Article  Google Scholar 

  • Santhi A, Sivakumar CV (1997) Biocontrol potential of Pseudomonas fluorescens (migula) against root-knot nematode, Meloidogyne incognita on tomato. J Biol Control 9:113–115

    Google Scholar 

  • Sapio MR, Hilliard MA, Cermola M, Favre R, Bazzicalupo P (2005) The Zona Pellucida domain containing proteins, CUT-1, CUT-3 and CUT-5, play essential roles in the development of the larval alae in Caenorhabditis elegans. Dev Biol 282:231–245

    Article  PubMed  CAS  Google Scholar 

  • Sasser JN, Freckman DW (1987) A world perspective on nematology: the role of society. In: Veech JA, Dickinson DW (Eds) Vistas on nematology. Society of Nematologists Inc., Hyattsville, pp 7–14

    Google Scholar 

  • Schallig HDFH, Vanleeuwen MAW, Hendrikx WML (1994) Immune-responses of texel sheep to excretory/secretory products of adult Haemonchus contortus. Parasitology 108:351–357

    Article  PubMed  Google Scholar 

  • Scholl EH, Thorne JL, McCarter JP, Bird DM (2003) Horizontally transferred genes in plant-parasitic nematodes: a high-throughput genomic approach. Genome Biol 4:R39.1–R39.12

    Google Scholar 

  • Schultz JC (2002) Shared signals and the potential for phylogenetic espionage between plants and animals. Integ Comp Biol 42:454–462

    Article  CAS  Google Scholar 

  • Simpson AJG, Payares G, Walker T, Knight M, Smithers SR (1984) The modulation of expression of polypeptide surface-antigens on developing schistosomula of Schistosoma mansoni. J Immunol 133:2725–2730

    PubMed  CAS  Google Scholar 

  • Sironi M, Bandi C, Sacchi L, Di Sacco B, Damiani G, Genchi C (1995) Molecular evidence for a close relative of the arthropod endosymbiont Wolbachia in a filarial worm. Mol Biochem Parasitol 74:223–227

    Article  PubMed  CAS  Google Scholar 

  • Smithers SR, Doenhoff MJ (1982) Schistosomiasis. In: Cohen S, Warren KS (eds) Immunology of parasitic infections. Blackwell Scientific Publications, Oxford, pp 527–607

    Google Scholar 

  • Stein LD, Bao Z, Blasiar D, Blumenthal T, Brent MR, Chen N, Chinwalla A, Clarke L, Clee C, Coghlan A, Coulson A, D’Eustachio P, Fitch DH, Fulton LA, Fulton RE, Griffiths-Jones S, Harris TW, Hillier LW, Kamath R, Kuwabara PE, Mardis ER, Marra MA, Miner TL, Minx P, Mullikin JC, Plumb RW, Rogers J, Schein JE, Sohrmann M, Spieth J, Stajich JE, Wei C, Willey D, Wilson RK, Durbin R, Waterston RH (2003) The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics. PLoS Biol 1(2):E45

    Article  CAS  Google Scholar 

  • Stewart GR, Perry RN, Alexander J, Wright DJ (1993) A Glycoprotein specific to the amphids of Meloidogyne species. Parasitology 106(4):405–412

    Article  CAS  Google Scholar 

  • Stoll NR (1947) This wormy world. J Parasitol 33:1–18

    Article  PubMed  CAS  Google Scholar 

  • Stretton AO, Fishpool RM, Southgate E, Donmoyer JE, Walrond JP, Moses JE, Kass IS (1978) Structure and physiological activity of the motoneurons of the nematode Ascaris. Proc Natl Acad Sci U S A 75:3493–3497

    Article  PubMed  CAS  Google Scholar 

  • Strote G, Bonow I (1993) Ultrastructural observations on the nervous system and the sensory organs of the infective stage (L3) of Onchocerca volvulus (Nematoda: Filarioidea). Parasitol Res 79:213–220

    Article  PubMed  CAS  Google Scholar 

  • Strote G, Bonow I, Attah S (1996) The ultrastructure of the anterior end of male Onchocerca volvulus: papillae, amphids, nerve ring and first indication of an excretory system in the adult filarial worm. Parasitology 113:71–85

    Article  PubMed  Google Scholar 

  • Taylor MJ (2003) Wolbachia in the inflammatory pathogenesis of human filariasis. Ann New York Acad Sci 990:444–449

    Article  Google Scholar 

  • Thomma BPHJ, Eggermont K, Penninckx IAMA, Maunch-Mani B, Broeckert WF, Cammue BPA, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defence response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci U S A 95:15107–15111

    Article  PubMed  CAS  Google Scholar 

  • Thorsen RE (1956) The effect of extracts of the amphidial glands, excretory glands and oesophagus of adults of Ancylostoma caninum on the coagulation of the dog’s blood. J Parasitol 42:26–30

    Article  Google Scholar 

  • Urwin PE, Lilley CJ, Atkinson HJ (2002) Ingestion of double-stranded RNA by preparasitic juvenile cyst nematodes leads to RNA interference. Mol Plant Microbe Interact 15:747–752

    Article  PubMed  CAS  Google Scholar 

  • Vandekerckhove T, Watteyne S, Willems A, Swings JG, Mertens J, Gillis M (1999) Phylogenetic analysis of the 16S rDNA of the cytoplasmic bacterium Wolbachia from the novel host Folsomia candida (Hexapoda, Collembola) and its implications for wolbachial taxonomy. FEMS Microbiol Lett 180:279–286

    PubMed  CAS  Google Scholar 

  • Vandekerckhove TT, Willems A, Gillis M, Coomans A (2000) Occurrence of novel verrucomicrobial species, endosymbiotic and associated with parthenogenesis in Xiphinema americanum-group species (Nematoda, Longidoridae). Int J Syst Evol Microbiol 50:2197–2205

    Article  PubMed  Google Scholar 

  • Van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defence-related disease resistnace in plants. Trends Plant Sci 11:184–191

    Article  PubMed  CAS  Google Scholar 

  • Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of fusarium wilt of carnation by Pseudomonas sp. Strain WCS417r. Phytopathology 81:728–734

    Article  Google Scholar 

  • Van Peer R, Schippers B (1992) Lipopolysaccharides of plant-growth promoting Pseudomonas sp. Strain WCS417r induced resistance in carnation to Fusarium wilt. Neth J Plant Pathol 98:129–139

    Article  Google Scholar 

  • Vermeire JJ, Cho Y., Lolis E, Bucala R, Capppelo M. (2008) Orthologs of macrophage migration inhibitory factor from parasitic nematodes. Trends Parasitol 28:355–363

    Article  CAS  Google Scholar 

  • Waetzig GH, Sobczak M, Grundler FMW (1999) Localization of hydrogen peroxide during the defence response of Arabidopsis thaliana against the plant-parasitic nematode Heterodera glycines. Nematology 1:681–686

    Article  CAS  Google Scholar 

  • Waller PJ (2003) The future of anthelmintics in sustainable parasite control programs for livestock. Helminthologia 40:97–102

    CAS  Google Scholar 

  • Walsh JA (1984) Estimating the burden of illness in the tropics. In: Warren KS, Mahmoud AAF (eds) Tropical and geographical medicine. McGraw-Hill, New York, pp 1073–1085

    Google Scholar 

  • Wasmuth J, Schmid R, Hedley A, Blaxter M (2008) On the extent and origins of genic novelty in the phylum Nematoda. PLoS Negl Trop Dis 2(7):e258

    Article  CAS  Google Scholar 

  • Wei G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletrotichum orbiculare by select strains of plant-growth promoting rhizobacteria. Phytopathology 81:1508–1512

    Article  Google Scholar 

  • Wergin WP, Endo BY (1976) Ultrastructure of a neurosensory organ in a root-knot nematode. J Ultrastruct Res 56:258–276

    Article  PubMed  CAS  Google Scholar 

  • Werren JH (1997) Biology of Wolbachia. Ann Rev Entomol 42:587–609

    Article  CAS  Google Scholar 

  • White JG, Southgate E, Thomson JN, Brenner S (1976) Structure of ventral nerve cord of Caenorhabditis elegans. Philos Trans R Soc Lond B-Biol Sci 275:298–327

    Google Scholar 

  • White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous-system of the nematode Caenorhabditis elegans. Phil Transact Roy Soc Lond B-Biol Sci 314:1–340

    Article  Google Scholar 

  • Wright KA (1980) Nematode sense organs. In: Zuckerman BM (ed) Nematodes as biological models, vol 2. Academic press, New York, pp 237–296

    Google Scholar 

  • Wright KA, Carter RF (1980) Cephalic sense organs and body pores of Xiphinema americanum (Nematoda: Dorylaimoidea). Can J Zool 58:1439–1451

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Egerton G, Pappin DJC, Harrison RA, Wilkinson MC, Underwood A, Bianco AE (2004) The secreted larval acidid (SLAPs) of Onchocerca spp. are encoded by orthologues of the alt gene family of Brugia malayi and have host protective potential. Mol Biochem Parasitol 134:213–224

    Article  PubMed  CAS  Google Scholar 

  • Wyss U (2002) Feeding behaviour of plant-parasitic nematodes. In: Lee DL (ed) The biology of nematodes. Taylor and Francis, London, pp 233–259

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron G. Maule .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Maule, A.G., Curtis, R. (2011). Parallels Between Plant and Animal Parasitic Nematodes. In: Jones, J., Gheysen, G., Fenoll, C. (eds) Genomics and Molecular Genetics of Plant-Nematode Interactions. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0434-3_11

Download citation

Publish with us

Policies and ethics