Skip to main content

Daytime Vertical E×B Drift Velocities Inferred from Ground-Based Equatorial Magnetometer Observations

  • Chapter
  • First Online:
Book cover Aeronomy of the Earth's Atmosphere and Ionosphere

Part of the book series: IAGA Special Sopron Book Series ((IAGA,volume 2))

Abstract

The daytime equatorial electrojet is a narrow band of enhanced eastward current flowing in the 100–120 km altitude region within ±2° latitude of the dip equator. A unique way of determining the daytime strength of the electrojet is to observe the difference in the magnitudes of the Horizontal (H) component between a magnetometer placed directly on the magnetic equator and one displaced 6–9° away. The difference between these measured H values provides a direct measure of the daytime electrojet current, and in turn, the magnitude of the vertical E×B drift velocity in the F region ionosphere. This paper emphasizes two major topics related to the title: (1) Describes and summarizes the techniques developed for obtaining the daytime, E×B drift velocities from ground-based magnetometer observations, and (2) Describes and summarizes the equatorial, ionospheric physical transport mechanisms that have been addressed using these techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson DN (1973) A theoretical study of the ionospheric, F-region equatorial anomaly, I. Theory, planet. Space Sci 21:409–419

    Article  Google Scholar 

  • Anderson D, Anghel A, Araujo EA, Valladares C, Lin C (2006a) Theoretically modeling the low-latitude, ionospheric response to large magnetic storms. Radio Sci 41:RS5S04. http://doi:10.1029/2005RS003376

    Article  Google Scholar 

  • Anderson D, Anghel A, Chau J, Veliz O (2004) Daytime vertical E×B drift velocities inferred from ground-based magnetometer observations at low latitudes. Space Weather 2:S11001. http://doi:10.1029/2004SW000095

    Article  Google Scholar 

  • Anderson D, Anghel A, Chau J, Yumoto K (2006b) Global, low-latitude, vertical E×B drift velocities inferred from daytime magnetometer observations. Space Weather 4:S08003. http://doi:10.1029/2005SW000193

    Article  Google Scholar 

  • Anderson D, Anghel A, Yumoto K, Ishitsuka M, Kudeki E (2002) Estimating daytime vertical E×B drift velocities in the equatorial F-region using ground-based magnetometer observations. GRL 29(12):1596. http://doi:10.1029/2001GL014562

    Article  Google Scholar 

  • Anderson D, Araujo-Pradere EA, Scherliess L (2009) Comparing daytime, equatorial E×B drift velocities and TOPEX/TEC observations associated with the 4-cell, non-migrating tidal structure. Ann Geophys 7:1–7

    Google Scholar 

  • Anderson DN, Klobuchar JA, Doherty PH, Rastogi RG (1992) A comparison of theoretical modeling of the low latitude ionosphere against TEC data from the indian longitudes during solar minimum. Int Beacon Symposium, MIT, Boston, MA

    Google Scholar 

  • Anghel A, Anderson DN, Maruyama N, Chau J, Yumoto K, Bhattacharyya A, Alex S (2007) Interplanetary electric fields and their relationship to low-latitude electric fields under disturbed conditions. J Atmos Solar-Terr Phys 69:1147–1159

    Article  Google Scholar 

  • Balsley BB (1964) Evidence of a stratified echoing regions at 150 kilometers in the vicinity of magnetic equator during daylight hours. JGR 69:1925

    Article  Google Scholar 

  • Blanc E, Mercandalli B, Houngninou E (1996) Kilometric irregularities in the E and F regions of the daytime equatorial ionosphere observed by a high resolution HF radar. GRL 23:645

    Article  Google Scholar 

  • Chau JL (1998) Examination of various techniques for measuring wind velocities using clear-air radars, with emphasis on vertical wind measurements. Ph.D Thesis, University of Colorado at Boulder

    Google Scholar 

  • Chau JL, Fejer BG, Goncharenko LP (2009) Quiet variability of equatorial E×B drifts during sudden stratospheric warming events. Geophys Res Lett 36:L05101. http://doi:10.1029/2008GL36785

    Article  Google Scholar 

  • England SL, Maus S, Immel TJ, Mende SB (2006) Longitudinal variation of the E-region electric fields caused by atmospheric tides. Geophys Res Lett 33:L21105. http://doi:10.1029/2006GL027465

    Article  Google Scholar 

  • Fang TW, Richmond AD, Liu JY, Maute A (2008a) Wind dynamo effects on ground magnetic perturbations and vertical drifts. J Geophys Res 113:A11313. http://doi:10.1029/2008JA013513

    Article  Google Scholar 

  • Fang TW, Richmond AD, Liu JY, Maute A, Lin CH, Harper B (2008b) Model simulation of the equatorial electrojet in the Peruvian and Philippine sectors. J Atmos Solar-Terr Phys 70:2203–2211

    Article  Google Scholar 

  • Fejer BG (1991) Low latitude electrodynamic plasma drifts: a review. J Atmos Solar-Terr Phys 53:677–693

    Article  Google Scholar 

  • Forbes JM (1981) The equatorial electrojet. Rev Geophys 19:469–504

    Article  Google Scholar 

  • Fuller-Rowell TJR, Akmaev RA, Wu F, Anghel AF, Maruyame N, Anderson DN, Codrescu MV, Iredell M, Moorthi S, Juang H-M, Hou Y-T, Milllward G (2008) Impact of terrestrial weather on the upper atmosphere. Geophys Res Lett 35:L09808. http://doi:10.1029/2007GL032911

    Article  Google Scholar 

  • Hanson WB, Moffett RJ (1966) Ionization transport effects in the equatorial F region. J Geophys Res 71:5559–5572

    Google Scholar 

  • Kelley MC, Nicolls MJ, Anderson D, Anghel A, Chau JL, Sekar R, Subbaro KSV, Bhattacharyya A (2007) Multi-longitude case studies comparing the interplanetary and equatorial ionospheric electric fields using an empirical model. J Atmos Solar-Terrestr Phys 69:1174–1181

    Article  Google Scholar 

  • Kudeki E, Fawcett C (1993) High resolution observations of 150 km echoes at Jicamarca. GRL 18:1987

    Article  Google Scholar 

  • Manoj C, Luhr H, Maus S, Nagarajan N (2006) Evidence for short spatial correlation lengths of the noon-time equatorial electrojet – inferred from a comparison of satellite and ground magnetic data. J Geophys Res 111:A11312. http://doi:10.1029/2006JA011855

    Article  Google Scholar 

  • Maruyama N, Sazykin S, Spiro R, Andearson D, Anghel A, Wolf RA, Toffoletto FR, Fuller-Rowell TJ, Codrescu MV, Richmond AD, Millward G (2007) Modeling storm-time electrodynamics of the low-latitude ionosphere-thermosphere system: can long lasting disturbance electric fields be accounted for? J Atmos Solar-Terr Phys 69:1182–1199

    Article  Google Scholar 

  • Nicolls MJ, Kelley MJ, Chau JL, Veliz O, Anderson D, Anghel A (2007) The spectral properties of low latitude daytime electric fields inferred from magnetometer observations. J Atmos Solar-Terr Phys 69:1160–1173

    Article  Google Scholar 

  • Rastogi RG, Klobuchar JA (1990) Ionospheric electron content within the equatorial F2 layer anomaly belt. JGR 95:19045–19052

    Article  Google Scholar 

  • Reddy CA (1989) The equatorial electrojet. PAGEOPH 131:485–508

    Article  Google Scholar 

  • Richmond AD (1989) Modeling the ionospheric wind dynamo: a review. PAGEOPH 131:413–435

    Article  Google Scholar 

  • Scherliess L, Fejer BG (1999) Radar and satellite global equatorial F region vertical drift model. JGR 104:6829–6842

    Article  Google Scholar 

  • Scherliess L, Thompson DC, Schunk RW (2008) Longitudinal variability of low-latitude total electron content: tidal influences. J Geophys Res 113:A01311. http://doi:10.1029/2007JA012480

    Article  Google Scholar 

  • Stolle C, Manoj C, Luhr H, Maus S Alken P (2008) Estimating the daytime equatorial ionization anomaly strength from electric field proxies. J Geophys Res 113:A09310. http://doi:10.1029/2007JA012781

    Article  Google Scholar 

  • Tsunoda RT, Ecklund WL (2000) On the nature of 150-km radar echoes over the magnetic dip equator. GRL 27:657–660

    Article  Google Scholar 

  • Wang W, Lei J, Burns AG, Wiltberger M, Richmond AD, Solomon SC, Killeen TL, Talaat ER, Anderson DN (2008) Ionospheric electric field variations during a geomagnetic storm simulated by a coupled magnetosphere ionosphere thermosphere (CMIT) model. Geophys Res Lett 15:L18105. http://doi:10.1029/2008GL035155

    Article  Google Scholar 

  • Woodman RF, Villanueva F (1995) Comparisons of electric fields measured at F-region heights with 150 km – irregularity drift measurements. Paper presented at the 9th international symposium on equatorial aeronomy, Bali, Indonesia

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Koki Chau, Director of the Jicamarca Radio Observatory, for providing the Jicamarca and Piura magnetometer data. The Jicamarca Radio Observatory is a facility of the Instituto Geofisico del Peru, Ministry of Education, and is operated with support from the NSF Cooperative agreement ATM-o432565. We also thank Prof. Kiyo Yumoto, Dept. of Earth and Planetary Sciences, Kyushu University, Fukuoka, Japan for supplying the Davao and Muntinlupa magnetometer observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Anderson, D. (2011). Daytime Vertical E×B Drift Velocities Inferred from Ground-Based Equatorial Magnetometer Observations. In: Abdu, M., Pancheva, D. (eds) Aeronomy of the Earth's Atmosphere and Ionosphere. IAGA Special Sopron Book Series, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0326-1_14

Download citation

Publish with us

Policies and ethics