Skip to main content

Electrodynamics of Ionosphere–Thermosphere Coupling

  • Chapter
  • First Online:
Aeronomy of the Earth's Atmosphere and Ionosphere

Part of the book series: IAGA Special Sopron Book Series ((IAGA,volume 2))

Abstract

An overview of ionosphere-thermosphere electrodynamic coupling is presented. Collisions between the charged and neutral constituents of the upper atmosphere couple their respective dynamics and energetics. Magnetic stresses readily transfer momentum and energy over long distances along geomagnetic-field lines, accompanied by electric fields and currents. Consequently, the E and F regions of the ionosphere are strongly coupled, and momentum is transferred between the lower and upper thermosphere through the currents and their associated ion drag. Electrical conductivity mediates the degree of ion-neutral coupling. Conductivity is highly variable, and is itself affected by the electric field in various ways. Thermospheric winds drive the ionospheric wind dynamo. The winds are created by daily absorption of solar radiation in the thermosphere, by upward-propagating solar and lunar tides, by ion-drag acceleration at high latitudes, and by Joule heating at high latitudes. Electric current flows globally in the ionosphere and along geomagnetic-field lines through the magnetosphere. Interactions between the ion and neutral motions produce feedbacks that affect the dynamics of both components. Simulation models of thermosphere-ionosphere-electrodynamic interactions provide powerful tools for investigating the nature of these interactions, and for testing how well the uncertain model inputs and the physics incorporated in the models are able to predict observed features of the ionosphere and thermosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akasofu SI, DeWitt RN (1965) Dynamo action in the ionosphere and motions of the magnetospheric plasma, 3. The Pedersen conductivity, generalized to take account of acceleration of the neutral gas. Planet Space Sci 13:737–744

    Article  Google Scholar 

  • Alken P, Maus S (2010a) Electric fields in the equatorial ionosphere derived from CHAMP satellite magnetic field measurements. J Atmos Solar-Terr Phys 72:319–326

    Article  Google Scholar 

  • Alken P, Maus S (2010b) Relationship between the ionospheric eastward electric field and the equatorial electrojet. Geophys Res Lett 37:L04104. http://doi:1029/2009GL041989

    Article  Google Scholar 

  • Anderson D, Anghel A, Chau JL, Yumoto K, Pyle R, Munakata K, Yasue S, Kato C, Akahane S, Koyama M, Fujii Z, Duldig ML, Humble JE, Silva MR, Trivedi NB, Gonzalez WD, Schuch NJ (2006) Global, low-latitude, vertical E×B drift velocities inferred from daytime magnetometer observations. Space Weather 4:S08003. http://doi:1029/2005SW000193

    Article  Google Scholar 

  • Anderson D, Anghel A, Yumoto K, Ishitsuka M, Kudeki E (2002) Estimating daytime vertical E×B drift velocities in the equatorial F-region using ground-based magnetometer observations. Geophys Res Lett 29:10.1029/2001GL014562

    Google Scholar 

  • Axford WI, Hines CO (1961) A unifying theory of high-latitude geophysical phenomena and geomagnetic storms. Can J Phys 39:1433–1464

    Google Scholar 

  • Baker WG, Martyn DF (1953) Electric currents in the ionosphere, I. The conductivity. Phil Trans R Soc A246:281–294

    Google Scholar 

  • Banks PM (1972) Magnetospheric processes and the behavior of the neutral atmosphere. Space Res 12:1051–1067

    Google Scholar 

  • Banks PM, Yasuhara F (1978) Electric fields and conductivity in the nighttime E-region: a new magnetosphere-ionosphere-atmosphere coupling effect. Geophys Res Lett 5(12):1047–1050

    Article  Google Scholar 

  • Banks PM, Schunk RW, Raitt WJ (1974) NO+ and O+ in the high latitude F-region. Geophys Res Lett 1:239–242

    Article  Google Scholar 

  • Bartels J, Johnston HF (1940) Geomagnetic tides in horizontal intensity at Huancayo. Terr Magn Atmos Elect 45:269

    Article  Google Scholar 

  • Bauske R, Noel S, Proelss GW (1997) Ionospheric storm effects in the nighttime E region caused by neutralized ring current particles. Ann Geophys 15:300–305

    Article  Google Scholar 

  • Bilitza D (ed) (1990) International Reference Ionosphere 1990, National Space Science Data Center publication 90–22

    Google Scholar 

  • Blanc M, Richmond AD (1980) The ionospheric disturbance dynamo. J Geophys Res 85:1669–1686

    Article  Google Scholar 

  • Buchert SC, Hagfors T, McKenzie JF (2006) Effect of electrojet irregularities on DC current flow. J Geophys Res 111:A02305. http://doi:1029/2004JA010788

    Article  Google Scholar 

  • Buchert SC, Tsuda T, Fujii R, Nozawa S (2008) The Pedersen current carried by electrons: a non-linear response of the ionosphere to magnetospheric forcing. Ann Geophys 26:2837–2844

    Article  Google Scholar 

  • Burnside RG, Walker JCG, Behnke RA, Gonzales CA (1983) Polarization electric fields in the nighttime F layer at Arecibo. J Geophys Res 88:6259–6266

    Article  Google Scholar 

  • Deng W, Killeen TL, Burns AG, Roble RG, Slavin JA, Wharton LE (1993) The effects of neutral inertia on ionospheric currents in the high-latitude thermosphere following a geomagnetic storm. J Geophys Res 98:7775–7790

    Article  Google Scholar 

  • Denisenko VV, Biernat HK, Mezentsev AV, Shaidurov VA, Zamay SS (2008) Modification of conductivity due to acceleration of the ionospheric medium. Ann Geophys 26:2111–2130

    Article  Google Scholar 

  • Dickinson RE, Ridley EC, Roble RG (1975) Meridional circulation in the thermosphere, I. Equinox conditions. J Atmos Sci 32:1737–1754

    Article  Google Scholar 

  • Eccles JV (1998) A simple model of low-latitude electric fields. J Geophys Res 103:26699–26708

    Article  Google Scholar 

  • Eccles JV (2004) The effect of gravity and pressure in the electrodynamics of the low-latitude ionosphere. J Geophys Res 109:A05304. http://doi:1029/2003JA010023

    Article  Google Scholar 

  • Emmert JT, Fejer BG, Shepherd GG, Solheim BH (2002) Altitude dependence of middle and low-latitude daytime thermospheric disturbance winds measured by WINDII, J Geophys Res 107(A12):1483. http://doi:1029/2002JA009646

    Article  Google Scholar 

  • Evans DS, Maynard NC, Trøim J, Jacobsen T, Egeland A (1977) Auroral vector electric field and particle comparisons, 2. Electrodynamics of an arc. J Geophys Res 82:2235–2249

    Article  Google Scholar 

  • Fambitakoye O, Mayaud PN, Richmond AD (1976) Equatorial electrojet and regular daily variation SR, III. Comparison of observations with a physical model. J Atmos Solar-Terr Phys 38:113–121

    Article  Google Scholar 

  • Fang TW, Richmond AD, Liu JY, Maute A (2008) Wind dynamo effects on ground magnetic perturbations and vertical drifts. J Geophys Res 113:A11313. http://doi:1029/2008JA013513

    Article  Google Scholar 

  • Fejer BG (1993) F region plasma drifts over Arecibo: solar cycle, seasonal, and magnetic activity effects. J Geophys Res 98:13645–13652

    Article  Google Scholar 

  • Fejer BG, Scherliess L (1995) Time dependent response of equatorial ionospheric electric fields to magnetospheric disturbances. Geophys Res Lett 22:851–854

    Article  Google Scholar 

  • Fejer BG, de Paula ER, Heelis RA, Hanson WB (1995) Global equatorial ionospheric vertical plasma drifts measured by the AE-E satellite. J Geophys Res 100:5769–5776

    Article  Google Scholar 

  • Fejer BG, de Souza J, Santos AS, Costa Pereira AE (2005) Climatology of F region zonal plasma drifts over Jicamarca. J Geophys Res 110:A12310. http://doi:1029/2005JA011324

    Article  Google Scholar 

  • Footitt RJ, Bailey GJ, Moffett RJ (1983) Ion transport in the mid-latitude F1-region. Planet Space Sci 31:671–687

    Article  Google Scholar 

  • Forbes JM (1981) The equatorial electrojet. Rev Geophys Space Phys 19:469–504

    Article  Google Scholar 

  • Forbes JM (1995) Tidal and planetary waves. In: Johnson RM, Killeen TL (eds) The upper mesosphere and lower thermosphere. American Geophysical Union, Washington, DC, pp 67–87

    Google Scholar 

  • Forbes JM, Harel M (1989) Magnetosphere-thermosphere coupling: an experiment in interactive modeling. J Geophys Res 94:2631–2644

    Article  Google Scholar 

  • Forbes JM, Vial F (1991) Semidiurnal tidal climatology of the E region. J Geophys Res 96:1147–1157

    Article  Google Scholar 

  • Foster JC, St-Maurice J-P, Abreu VJ (1983) Joule heating at high latitudes. J Geophys Res 88:4885–4896

    Article  Google Scholar 

  • Fuller-Rowell T, Evans DS (1987) Height-integrated Pedersen and Hall conductivity patterns inferred from the TIROS-NOAA satellite data. J Geophys Res 92:7606–7618

    Article  Google Scholar 

  • Fuller-Rowell TJ, Quegan S, Rees D, Moffett RJ, Bailey GJ (1987) Interactions between neutral thermospheric composition and the polar ionosphere using a coupled ionosphere-thermosphere model. J Geophys Res 92:7744–7748

    Article  Google Scholar 

  • Gagnepain J, Crochet M, Richmond AD (1977) Comparison of equatorial electrojet models. J Atmos Solar-Terr Phys 39:1119–1124

    Article  Google Scholar 

  • Hagan ME, Maute A, Roble RG (2009) Tropospheric tidal effects on the middle and upper atmosphere. J Geophys Res 114:A01302. http://doi:1029/2008JA013637

    Article  Google Scholar 

  • Harper RM, Walker JCG (1977) Comparison of electrical conductivities in the E-and F-regions of the nocturnal ionosphere. Planet Space Sci 25:197–199

    Article  Google Scholar 

  • Heelis RA, Coley WR (1992) East-west ion drifts at mid-latitudes observed by dynamics explorer 2. J Geophys Res 97:19461–19469

    Article  Google Scholar 

  • Huang C-M, Richmond AD, Chen M-Q (2005) Theoretical effects of geomagnetic activity on low-latitude ionospheric electric fields. J Geophys Res 110:A05312. http://doi:1029/2004JA010994

    Article  Google Scholar 

  • Johnson RM, Virdi TS (1991) High-latitude lower thermospheric neutral winds at EISCAT and Sondrestrom during LTCS 1. J Geophys Res 96:1099–1116

    Article  Google Scholar 

  • Killeen TL, Roble RG (1984) An analysis of the high-latitude thermospheric wind pattern calculated by a thermospheric general circulation model, 1. Momentum forcing. J Geophys Res 89:7509–7522

    Article  Google Scholar 

  • Killeen TL, Roble RG (1988) Thermosphere dynamics: contributions from the first 5 years of the dynamics explorer program. Rev Geophys 26:329–367

    Article  Google Scholar 

  • Killeen TL, Nardi B, Purcell PN, Roble RG, Fuller-Rowell TJ, Rees D (1992) Neutral winds in the lower thermosphere from dynamics explorer 2. Geophys Res Lett 19:1093–1096

    Article  Google Scholar 

  • Klimenko MV, Klimenko VV, Bryukhanov VV (2006) Numerical simulation of the electric field and zonal current in the Earth’s ionosphere: the dynamo field and equatorial electrojet. Geomag Aeron 46(4):457–466. http://doi:10.1134/S0016793206040074 (Engl. trans.)

    Article  Google Scholar 

  • Kwak Y-S, Richmond AD (2007) An analysis of the momentum forcing in the highlatitude lower thermosphere. J Geophys Res 112:A01306. http://doi:1029/2006JA011910

    Article  Google Scholar 

  • Lyons LR, Killeen TL, Walterscheid RL (1985) The neutral wind “flywheel” as a source of quiet time, polar-cap currents. Geophys Res Lett 12:101–104

    Article  Google Scholar 

  • Maruyama N, Richmond AD, Fuller-Rowell TJ, Codrescu MV, Sazykin S, Toffoletto FR, Spiro RW, Millward GH (2005) Interaction between direct penetration and disturbance dynamo electric fields in the storm-time equatorial ionosphere. Geophys Res Lett 32:L17105. http://doi:1029/2005GL023763

    Article  Google Scholar 

  • Maruyama T, Nakamura M (2007) Conditions for intense ionospheric storms expanding to lower midlatitudes. J Geophys Res 112:A05310. http://doi:1029/2006JA012226

    Article  Google Scholar 

  • Matsushita S (1967) Lunar tides in the ionosphere. In: Flügge S (ed) Handbuch der Physik, vol 49/2. Springer, Berlin, p 547

    Google Scholar 

  • Merkin VG, Milikh G, Papadopoulos K, Lyon J, Dimant YS, Sharma AS, Goodrich C, Wiltberger M (2005) Effect of anomalous electron heating on the transpolar potential in the LFM global MHD model. Geophys Res Lett 32:L22101. http://doi:1029/2005GL023315

    Article  Google Scholar 

  • Millward GH, Müller-Wodarg ICF, Aylward AD, Fuller-Rowell TJ, Richmond AD, Moffett RJ (2001) An investigation into the influence of tidal forcing on F region equatorial vertical ion drift using a global ionosphere-thermosphere model with coupled electrodynamics. J Geophys Res 106:24,733–24,744

    Article  Google Scholar 

  • Namgaladze AA, Korenkov Yu N, Klimenko VV, Karpov IV, Bessarab FS, Surotkin VA, Glushchenko TA, Naumova NM (1988) Global model of the thermosphereionosphere- protonosphere system. Pure Appl Geophys 127:219–254

    Article  Google Scholar 

  • Pancheva D, Merzlyakov E, Mitchell NJ, Portnyagin Y, Manson AH, Jacobi C, Meek CE, Luo Y, Clark RR, Hocking WK, MacDougall J, Muller HG, Kurschner D, Jones GOL, Vincent RA, Reid IM, Singer W, Igarashi K, Fraser GI, Fahrutdinova AN, Stepanov AM, Poole LMG, Malinga SB, Kashcheyev BL, Oleynikov AN (2002) Globalscale tidal variability during the PSMOS campaign of June–August 1999: interaction with planetary waves. J Atmos Solar-Terr Phys 64:1865–1896

    Article  Google Scholar 

  • Pedatella NM, Forbes JM (2009) Modulation of the equatorial F-region by the quasi- 16-day planetary wave. Geophys Res Lett 36:L09105. http://doi:1029/2009GL037809

    Article  Google Scholar 

  • Pesnell WD, Omidvar K, Hoegy WR (1993) Momentum transfer collision frequency of O+–O. Geophys Res Lett 20:1343–1346

    Article  Google Scholar 

  • Peymirat C, Richmond AD, Roble RG (2002) Neutral wind influence on the electrodynamic coupling between the ionosphere and the magnetosphere. J Geophys Res 107(A1). 10.1029/2001JA900106

    Article  Google Scholar 

  • Picone JM, Hedin AE, Drob DP, Aikin AC (2002) NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J Geophys Res 107(A12):1468. http://doi:1029/2002JA009430

    Article  Google Scholar 

  • Raeder J, Wang Y, Fuller-Rowell TJ (2001) Geomagnetic storm simulation with a coupled magnetosphere-ionosphere-thermosphere model. In: Song P, Singer HJ, Siscoe G (eds) Space weather: progress and challenges in research and applications. Geophysical monograph series, vol 125. American Geophysical Union, Washington, DC, pp 377–384

    Google Scholar 

  • Raghavarao R, Sridharan R, Suhasini R (1984) The importance of vertical ion currents on the nighttime ionization in the equatorial electrojet. J Geophys Res 89:11033–11037

    Article  Google Scholar 

  • Rastogi RG (1989) The equatorial electrojet: magnetic and ionospheric effects. In: Jacobs JA (ed) Geomagnetism, volume 2. Academic, San Diego, CA, p 461

    Google Scholar 

  • Reddy CA (1989) The equatorial electrojet. Pure Appl Geophys 131:485–508

    Article  Google Scholar 

  • Reddy CA, Devasia CV (1981) Height and latitude structure of electric fields and currents due to local east-west winds in the equatorial electrojet. J Geophys Res 86:5751–5767

    Article  Google Scholar 

  • Ren Z, Wan W, Liu L (2009) ITEM-IGGCAS: a new global coupled ionospherethermosphere-electrodynamics model. J Atmos Solar-Terr Phys 71:2064–2076. http://doi:1016/j.jastp.2009.09.015

    Article  Google Scholar 

  • Richmond AD (1995a) The ionospheric wind dynamo: effects of its coupling with different atmospheric regions. In: Johnson RM, Killeen TL (eds) The upper mesosphere and lower thermosphere. American Geophysical Union, Washington, DC, pp 49–65

    Google Scholar 

  • Richmond AD (1995b) Ionospheric electrodynamics. In: Volland H (ed) Handbook of atmospheric electrodynamics, volume II. CRC Press, Boca Raton, FL, pp 249–290

    Google Scholar 

  • Richmond AD, Lathuillère C, Vennerstroem S (2003a)Winds in the high-latitude lower thermosphere: dependence on the interplanetary magnetic field. J Geophys Res 108(A2):1006. http://doi:1029/2002JA009493

    Article  Google Scholar 

  • Richmond AD, Peymirat C, Roble RG (2003b) Long-lasting disturbances in the equatorial ionospheric electric field simulated with a coupled magnetosphere-ionospherethermosphere model. J Geophys Res 108(A3):1118. http://doi:1029/2002JA009758

    Article  Google Scholar 

  • Richmond AD, Ridley EC, Roble RG (1992) A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys Res Lett 19:601–604

    Article  Google Scholar 

  • Ridley AJ, Richmond AD, Gombosi TI, De Zeeuw DL, Clauer CR (2003) Ionospheric control of the magnetospheric configuration: Thermospheric neutral winds. J Geophys Res 108(A8):1328. http://doi:1029/2002JA009464

    Article  Google Scholar 

  • Rishbeth H (1971) Polarization fields produced by winds in the equatorial F-region. Planet Space Sci 19:357–369

    Article  Google Scholar 

  • Roble RG (1992) The polar lower thermosphere. Planet Space Sci 40:271–297

    Article  Google Scholar 

  • Roble RG, Ridley EC, Richmond AD, Dickinson RE (1988) A coupled thermosphere/ionosphere general circulation model. Geophys Res Lett 15:1325–1328

    Article  Google Scholar 

  • Rogister A (1971) Nonlinear theory of ‘Type I’ irregularities in the equatorial electrojet. J Geophys Res 76(31):7754–7760

    Article  Google Scholar 

  • Ronchi C, Sudan RN, Similon PL (1990) Effect of short-scale turbulence on kilometer wavelength irregularities in the equatorial electrojet. J Geophys Res 95:189–200

    Article  Google Scholar 

  • Rowe JF Jr, Mathews JD (1973) Low-latitude nighttime E region conductivities. J Geophys Res 78:7461–7470

    Article  Google Scholar 

  • Sastri JH (1988) Equatorial electric fields of ionospheric disturbance dynamo origin. Ann Geophys 6:635–642

    Google Scholar 

  • Singhal RP (1991) The effect of the electric field and neutral winds on E-region ion densities and conductivities at low latitudes. J Atmos Solar-Terr Phys 53:949–957

    Article  Google Scholar 

  • Stening RJ (1986) Inter-relations between current and electron density profiles in the equatorial electrojet and effects of neutral density changes. J Atmos Solar-Terr Phys 48:163–170

    Article  Google Scholar 

  • Takeda M, Araki T (1985) Electric conductivity of the ionosphere and nocturnal currents. J Atmos Solar-Terr Phys 47:601–609

    Article  Google Scholar 

  • Volland H (1976a) Coupling between the neutral wind and the ionospheric dynamo current. J Geophys Res 81:1621–1628

    Article  Google Scholar 

  • Volland H (1976b) The atmospheric dynamo. J Atmos Solar-Terr Phys 38:869–877

    Article  Google Scholar 

  • Volland H (1988) Atmospheric tidal and planetary waves. Kluwer, Dordrecht

    Google Scholar 

  • Volland H, Mayr HG (1971) Response of the thermospheric density to auroral heating during geomagnetic disturbances. J Geophys Res 76:3764–3776

    Article  Google Scholar 

  • Wang W, Burns AG, Wiltberger M, Solomon SC, Killeen TL (2007) An analysis of neutral wind generated currents during geomagnetic storms. J Atmos Solar-Terr Phys 69:159–165

    Article  Google Scholar 

  • Yamashita S, Iyemori T (2002) Seasonal and local time dependences of the interhemispheric field-aligned currents deduced from the Ørsted satellite and the ground geomagnetic observations. J Geophys Res 107(A11):1372. http://doi:1029/2002JA009414

    Article  Google Scholar 

Download references

Acknowledgments

I thank Astrid Maute for providing Fig. 13.2. The National Center for Atmospheric Research is sponsored by the National Science Foundation (NSF). This work was supported in part by NSF Award No. ATM-0836386, NASA grant NNX09AN57G, and AFOSR Contract FA9550-08-C-0046.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur D. Richmond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Richmond, A.D. (2011). Electrodynamics of Ionosphere–Thermosphere Coupling. In: Abdu, M., Pancheva, D. (eds) Aeronomy of the Earth's Atmosphere and Ionosphere. IAGA Special Sopron Book Series, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0326-1_13

Download citation

Publish with us

Policies and ethics