Skip to main content

Vacuum Energy

  • Chapter
  • 1825 Accesses

Part of the book series: Theoretical and Mathematical Physics ((TMP))

Abstract

In this Chapter calculations of the vacuum energy in various physical systems are considered. The first example is the celebrated Casimir effect which is an interaction of parallel conducting plates in vacuum. Then, the method of evaluating the vacuum energy through the scattering data of the problem is introduced. With the help of this method, the zero-point energy of the kink soliton in ϕ 4 theory in two dimensions is calculated. The last section treats supersymmetric models. In particular, the mass shift of supersymmetric solitons in 1+1 dimensions is calculated and related to the central charge anomaly. Contrary to naive expectations, this mass shift is non-zero.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alonso Izquierdo, A., et al.: Lectures on the mass of topological solitons. hep-th/0611180 (2007)

  2. Ambjorn, J., Wolfram, S.: Properties of the vacuum. 1. Mechanical and thermodynamic. Ann. Phys. 147, 1 (1983)

    Article  ADS  Google Scholar 

  3. Belyaev, D.V., van Nieuwenhuizen, P.: Rigid supersymmetry with boundaries. J. High Energy Phys. 04, 008 (2008). 0801.2377

    Article  ADS  Google Scholar 

  4. Birrell, N.D., Davies, P.C.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  5. Blau, S., Visser, M., Wipf, A.: Zeta functions and the Casimir energy. Nucl. Phys. B 310, 163 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bogomolny, E.B.: Stability of classical solutions. Sov. J. Nucl. Phys. 24, 449 (1976)

    Google Scholar 

  7. Bordag, M.: Vacuum energy in smooth background fields. J. Phys. A 28, 755–766 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bordag, M., Kirsten, K., Vassilevich, D.: On the ground state energy for a penetrable sphere and for a dielectric ball. Phys. Rev. D 59, 085011 (1999). hep-th/9811015

    Article  ADS  MathSciNet  Google Scholar 

  9. Bordag, M., Mohideen, U., Mostepanenko, V.M.: New developments in the Casimir effect. Phys. Rep. 353, 1–205 (2001). quant-ph/0106045

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Bordag, M., Goldhaber, A.S., van Nieuwenhuizen, P., Vassilevich, D.: Heat kernels and zeta-function regularization for the mass of the SUSY kink. Phys. Rev. D 66, 125014 (2002). hep-th/0203066

    Article  ADS  MathSciNet  Google Scholar 

  11. Dashen, R.F., Hasslacher, B., Neveu, A.: Nonperturbative methods and extended hadron models in field theory. 2. Two-dimensional models and extended hadrons. Phys. Rev. D 10, 4130–4138 (1974)

    Article  ADS  Google Scholar 

  12. Faddeev, L.D., Korepin, V.E.: Quantum theory of solitons: preliminary version. Phys. Rep. 42, 1–87 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  13. Flügge, S.: Practical Quantum Mechanics. Springer, Berlin (1971)

    Google Scholar 

  14. Goldstone, J., Jackiw, R.: Quantization of nonlinear waves. Phys. Rev. D 11, 1486–1498 (1975)

    Article  ADS  Google Scholar 

  15. Graham, N., Jaffe, R.L.: Energy, central charge, and the BPS bound for 1+1 dimensional supersymmetric solitons. Nucl. Phys. B 544, 432–447 (1999). hep-th/9808140

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Henneaux, M.: Hamiltonian form of the path integral for theories with a gauge freedom. Phys. Rep. 126, 1–66 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  17. Kirsten, K., Loya, P.: Computation of determinants using contour integrals. Am. J. Phys. 76, 60–64 (2008). 0707.3755

    Article  ADS  Google Scholar 

  18. Milton, K.A.: The Casimir Effect: Physical Manifestations of Zero-Point Energy. World Scientific, River Edge (2001)

    Book  MATH  Google Scholar 

  19. Milton, K.A.: The Casimir effect: Recent controversies and progress. J. Phys. A 37, R209 (2004). hep-th/0406024

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Nastase, H., Stephanov, M.A., van Nieuwenhuizen, P., Rebhan, A.: Topological boundary conditions, the BPS bound, and elimination of ambiguities in the quantum mass of solitons. Nucl. Phys. B 542, 471–514 (1999). hep-th/9802074

    Article  ADS  MATH  Google Scholar 

  21. Peebles, P.J.E., Ratra, B.: The cosmological constant and dark energy. Rev. Mod. Phys. 75, 559–606 (2003). astro-ph/0207347

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Prasad, M.K., Sommerfield, C.M.: An exact classical solution for the ’t Hooft monopole and the Julia-Zee dyon. Phys. Rev. Lett. 35, 760–762 (1975)

    Article  ADS  Google Scholar 

  23. Rajaraman, R.: Solitons and Instantons. Elsevier, Amsterdam (1996)

    Google Scholar 

  24. Rebhan, A., van Nieuwenhuizen, P.: No saturation of the quantum Bogomolnyi bound by two-dimensional N=1 supersymmetric solitons. Nucl. Phys. B 508, 449–467 (1997). hep-th/9707163

    Article  ADS  MATH  Google Scholar 

  25. Rebhan, A., van Nieuwenhuizen, P., Wimmer, R.: New developments in the quantization of supersymmetric solitons (kinks, vortices and monopoles). Braz. J. Phys. 34, 1273–1287 (2004). hep-th/0404223

    Article  Google Scholar 

  26. Shifman, M., Yung, A.: Supersymmetric solitons and how they help us understand non-abelian gauge theories. Rev. Mod. Phys. 79, 1139 (2007). hep-th/0703267

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Shifman, M.A., Vainshtein, A.I., Voloshin, M.B.: Anomaly and quantum corrections to solitons in two-dimensional theories with minimal supersymmetry. Phys. Rev. D 59, 045016 (1999). hep-th/9810068

    Article  ADS  Google Scholar 

  28. Wess, J., Bagger, J.: Supersymmetry and Supergravity. Princeton University Press, Princeton (1992)

    Google Scholar 

  29. West, P.C.: Introduction to Supersymmetry and Supergravity. World Scientific, Singapore (1990)

    MATH  Google Scholar 

  30. Witten, E., Olive, D.I.: Supersymmetry algebras that include topological charges. Phys. Lett. B 78, 97 (1978)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri Vassilevich .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Fursaev, D., Vassilevich, D. (2011). Vacuum Energy. In: Operators, Geometry and Quanta. Theoretical and Mathematical Physics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0205-9_9

Download citation

Publish with us

Policies and ethics