Skip to main content

Linear Tracking Controller Design for Small-Scale Unmanned Helicopters

  • Chapter
Linear and Nonlinear Control of Small-Scale Unmanned Helicopters

Abstract

The previous Chapter presented an analytical methodology for the extraction of a linear dynamic model for a small-scale helicopter based on (Mettler in Identification Modeling and Characteristics of Miniature Rotorcraft, Kluwer Academic Publishers, Norwell, 2003; Tischler and Remple in Aircraft and Rotorcraft System Identification, AIAA Education Series, AIAA, Washington, 2006) . Modern control techniques are model based, in the sense that the controller architecture depends on the dynamic description of the system. Therefore, the knowledge of the helicopter linear dynamic model is very valuable for designing (autonomous) flight controllers. This Chapter presents a systematic procedure for the design of a flight controller based on the linear dynamic representation of the helicopter. The controller objective is for the helicopter to track predefined reference trajectories of the inertial position and the yaw angle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More details about linearization may be found in Sect. 5.8.

References

  1. J.S. Bay, Linear State Space Systems (McGraw-Hill, New York, 1999)

    Google Scholar 

  2. A. Budiyonoa, S.S. Wibowob, Optimal tracking controller design for a small scale helicopter. Journal of Bionic Engineering 4(4), 271–280 (2007)

    Article  Google Scholar 

  3. C.I. Byrnes, F.D. Priscoli, A. Isidori (eds.), Output regulation of uncertain nonlinear systems (Birkhäuser, Basel, 1997)

    MATH  Google Scholar 

  4. G. Cai, B.M. Chen, K. Peng, M. Dong, T.H. Lee, Modeling and control system design for a UAV helicopter, in 14th Mediterranean Conference on Control and Automation, 2006

    Google Scholar 

  5. M. Fliess, J. Levine, P. Martin, P. Rouchon, Flatness and defect of nonlinear systems: Introductory theory and applications. International Journal of Control 61, 1327–1361 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. G.F. Franklin, J.D. Powell, A. Emami-Naeini, Feedback Control of Dynamic Systems (Prentice Hall, New York, 2002)

    Google Scholar 

  7. J. Gadewadikar, F. Lewis, K. Subbarao, B. Chen, Structured \(\mathcal{H}_{\infty}\) command and control-loop design for unmanned helicopters. Journal of Guidance, Control and Dynamics 31, 1093–1102 (2008)

    Article  Google Scholar 

  8. J. Gadewadikar, F.L. Lewis, K. Subbarao, K. Peng, B.M. Chen, \(\mathcal{H}_{\infty}\) static output-feedback control for rotorcraft, in AIAA Guidance, Navigation, and Control Conference and Exhibit, 2006

    Google Scholar 

  9. A. Isidori, L. Marconi, A. Serrani, Robust Autonomous Guidance (Springer, Berlin, 2003)

    Book  Google Scholar 

  10. A. Isidori, L. Marconi, A. Serrani, Robust nonlinear motion control of a helicopter. IEEE Transactions on Automatic Control 48, 413–426 (2003)

    Article  MathSciNet  Google Scholar 

  11. R.E. Kalman, R.S. Bucy, New results in linear filtering and prediction theory. Journal of Basic Engineering 83, 95–108 (1961)

    Article  MathSciNet  Google Scholar 

  12. H.K. Khalil, Nonlinear Systems (Prentice Hall, New York, 2002)

    MATH  Google Scholar 

  13. T.J. Koo, S. Sastry, Output tracking control design of a helicopter model based on approximate linearization, in Proceedings of the 37th IEEE Conference on Decision and Control, vol. 4, 1998, pp. 3635–3640

    Google Scholar 

  14. T.J. Koo, S. Sastry, Differential flatness based full authority helicopter control design, in Proceedings of the 38th IEEE Conference on Decision and Control, 1999

    Google Scholar 

  15. W. Levine, M. Athans, On the determination of the optimal constant output feedback gains for linear multivariable systems. IEEE Transactions on Automatic Control 15, 44–48 (1970)

    Article  MathSciNet  Google Scholar 

  16. F.L. Lewis, V.L. Syrmos, Optimal Control (Wiley–Interscience, New York, 1995)

    Google Scholar 

  17. A. Loria, E. Panteley, Advanced Topics in Control Systems Theory: Lecture Notes from FAP 2004, chapter 2 (Springer, Berlin, 2005), pp. 23–64

    Google Scholar 

  18. L. Marconi, R. Naldi, Robust full degree-of-freedom tracking control of a helicopter. Automatica 43, 1909–1920 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. B. Mettler, Identification Modeling and Characteristics of Miniature Rotorcraft (Kluwer Academic Publishers, Norwell, 2003)

    Book  Google Scholar 

  20. A. Moerder, D. Calise, Convergence of a numerical algorithm for calculating optimal output feedback gains. IEEE Transactions on Automatic Control 30(9), 900–903 (1985)

    Article  MATH  Google Scholar 

  21. H.D. Shim, H.J. Kim, S. Sastry, Control system design for rotorcraft-based unmanned aerial vehicles using time-domain system identification, in Proceedings of the 2000 IEEE International Conference on Control Applications, 2000, pp. 808–813

    Google Scholar 

  22. J. Shin, K. Nonami, D. Fujiwara, K. Hazawa, Model-based optimal attitude and positioning control of small-scale unmanned helicopter. Robotica 23, 51–63 (2005)

    Article  Google Scholar 

  23. E.D. Sontag, Remarks on stabilization and input-to-state stability, in Proceedings of the 28th IEEE Conference on Decision and Control, vol. 2, 1989, pp. 1376–1378

    Google Scholar 

  24. H.J. Sussmann, P.V. Kokotovic, The peaking phenomenon and the global stabilization of nonlinear systems. IEEE Transactions on Automatic Control 36, 424–440 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. V.L. Syrmos, C. Abdallah, P. Dorato, Static output feedback: A survey, in 33rd Conference on Decision and Control, 1994

    Google Scholar 

  26. V.L. Syrmos, C. Abdallah, P. Dorato, K. Grigoriadis, Static output feedback: A survey, Technical report, University of New Mexico, 1995

    Google Scholar 

  27. M.B. Tischler, R.K. Remple, Aircraft and Rotorcraft System Identification, AIAA Education Series (AIAA, Washington, 2006)

    Google Scholar 

  28. M.J. Van Nieuwstadt, Trajectory generation for nonlinear control systems, PhD thesis, California Institute of Technology, 1997

    Google Scholar 

  29. M.F. Weilenmann, U. Christen, H.P. Geering, Robust helicopter position control at hover, in American Control Conference, 1999

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis A. Raptis .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Raptis, I.A., Valavanis, K.P. (2011). Linear Tracking Controller Design for Small-Scale Unmanned Helicopters. In: Linear and Nonlinear Control of Small-Scale Unmanned Helicopters. Intelligent Systems, Control and Automation: Science and Engineering, vol 45. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0023-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0023-9_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0022-2

  • Online ISBN: 978-94-007-0023-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics